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Abstract

Neuroimaging genetic studies that associate genetic and epigenetic variation with neural activity 

or structure provide an opportunity to link genes to psychiatric disorders, often before 

psychopathology is discernable in behavior. Here we review neuroimaging genetics studies with 

participants who have Posttraumatic Stress Disorder (PTSD). Results show that genes related to 

the physiological stress response (e.g., glucocorticoid receptor and activity, neuroendocrine 

release), learning and memory (e.g., plasticity), mood, and pain perception are tied to neural 

intermediate phenotypes associated with PTSD. These genes are associated with and sometimes 

predict neural structure and function in areas involved in attention, executive function, memory, 

decision-making, emotion regulation, salience of potential threats, and pain perception. Evidence 

suggests these risk polymorphisms and neural intermediate phenotypes are vulnerabilities toward 

developing PTSD in the aftermath of trauma, or vulnerabilities toward particular symptoms once 

PTSD has developed. Work distinguishing between the re-experiencing and dissociative subtypes 

of PTSD, and examining other PTSD symptom clusters in addition to the re-experiencing and 

hyperarousal symptoms, will further clarify neurobiological mechanisms and inconsistent 

findings. Furthermore, an exciting possibility is that genetic associations with PTSD may 

eventually be understood through differential intermediate phenotypes of neural circuit structure 

and function, possibly underlying the different symptom clusters seen within PTSD.
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Posttraumatic Stress Disorder (PTSD) is a debilitating disorder associated with increased 

suicide risk, educational dropout, unemployment, relationship instability, and the 

development of comorbid psychiatric disorders (Kessler, 2000). The majority of individuals 

in the US will experience a traumatic event in their lifetime, yet not all will develop PTSD 
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(Kessler, 2000; Kessler et al., 1995, Koenen et al., 2013). There is evidence that genetic and 

epigenetic factors account for 30 – 70% of these individual differences (Afifi et al., 2010; 

Pitman et al., 2012), but the mechanisms by which they exert this influence are not well 

understood. In the long run, understanding these mechanisms will greatly inform both how 

to identify those at risk for certain clusters of PTSD symptoms, and how to tailor individual 

treatments for the best recovery outcomes. Brain structure and function, along with genetics, 

have emerged as important biological markers of PTSD, helping to identify risk for this 

disorder and further linking a complex cluster of behaviors to mechanisms of dysfunction 

and recovery (Greco & Liberzon, 2016; Michopoulos et al., 2015; Peterson et al., 2014; 

Stark et al., 2015). Combining the two methodologies of neuroimaging and genetics, 

however, offers an opportunity for an even more nuanced mechanistic understanding of 

PTSD (Bogdan et al., 2016). In addition to briefly outlining the current findings in the 

neuroimaging and genetics of PTSD, we focus on how the combination of these techniques 

has led to further insight into the vulnerabilities and patterns of PTSD dysfunction and 

recovery.

Classic Findings in the Neurobiology of PTSD

Brain Structure Overview

By examining the structural composition of brain regions we can identify potential 

dysfunctions. Reductions or increases in volume could point toward under or overuse, 

respectively, of that brain region or dysregulated communication between regions. PTSD 

research has consistently implicated abnormal structure in a number of brain regions 

involved in memory, emotion regulation and production (Figure 1). Several studies have 

found decreased hippocampal (HP) volume in participants with PTSD (Gurvitis et al., 1996; 

Stein et al., 1997; Kitayama et al., 2005; Wang et al., 2010; Smith, 2005; Karl, et al., 2006). 

Reduced volume has also been widely observed in the rostral ventromedial prefrontal cortex 

(vmPFC) and in the dorsal anterior cingulate cortex (dACC) (Kasai et al., 2008; Kityama, 

Quinn, & Bremner, 2006; Carrion et al., 2010; Schuff et al., 2008; Karl & Wrner, 2010; 

Sekiguchi et al., 2013). Work has yet to definitively determine whether these structural 

abnormalities are risk factors for developing PTSD or a consequence of the disorder or 

perhaps both. For example, there is evidence to support the hypothesis that lower HP volume 

is the result of exposure to trauma (Bremner, 2001), as well the hypothesis that it is a risk 

factor, environmental and/or genetic, for the development of PTSD (Gilbertson et al., 2002; 

Myslobodsky, 1995). We return to this point in the conclusions section.

Brain Function Overview

Using a non-contrast brain imaging technique, we can measure the concentration of 

paramagnetic deoxyhemoglobin in a particular area of the brain. Functional magnetic 

resonance imaging (fMRI) measures changes in the blood oxygen level-dependent (BOLD) 

signal, which is thought to reflect neural processing in a particular area of the brain (Ogawa 

et al., 1992). By measuring neural activity in this manner, we can identify potential 

dysfunctions in a psychological construct of interest as related to PTSD.
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Several consistent findings have emerged in functional neuroimaging studies of PTSD. The 

amygdala, vmPFC, ACC, insula, and HP have been identified as key functional regions 

involved in PTSD (Figure 1). The amygdala appears to be hyper-responsive in PTSD. 

Exaggerated amygdala activity has been observed in response to trauma-related stimuli such 

as sounds (Liberzon et al., 1999; Pissiota et al., 2002), words (Protopopescu et al., 2005), 

and photographs (Hendler et al., 2003; Shin et al., 1997), trauma-unrelated affective stimuli 

such as fearful faces (Rauch et al., 2000; Shin et al., 2005; Williams et al., 2006), and during 

the acquisition of conditioned fear (Bremner et al., 2005). A positive correlation has been 

reported between amygdala activity and PTSD symptom severity (Rauch et al., 1996; Shin et 

al., 2004; Protopopescu et al., 2005; Armony et al., 2005). Amygdala hyperactivity may 

underlie increased salience and attention to threat in PTSD. In addition, PTSD participants 

often show increased activation in dACC during fear learning and extinction (Rougemont-

Bücking et al., 2011; Milad et al., 2009; Bryant et al., 2005; Hayes et al., 2009), and 

increased insula activity when confronted with potentially aversive stimuli (Pitman et al., 

2012; Simmons et al., 2008; Strigo et al., 2010; Aupperle et al., 2012).

In contrast, the vmPFC and rostral vACC are often hypoactive in PTSD. Decreased vmPFC 

and vACC activation has been reported in response to trauma-related stimuli such as 

narratives (Shin et al., 2004; Lanius et al., 2001; Shin et al., 1999; Bremner et al., 1999; 

Britton et al., 2005; Lindauer et al., 2004), photographs, and sounds (Bremner et al., 1999; 

Yang et al., 2004), as well as in trauma-unrelated stimuli such as fearful faces (Felmingham 

et al., 2010; Gold et al., 2011; Shin et al., 2005; Williams et al., 2006), and affective words 

(Bremner et al., 2003). PTSD symptom severity is often negatively correlated with mPFC 

activity (Shin et al., 2004; Shin et al., 2005; Williams et al., 2006; Britton et al., 2005). 

Hypoactivation in vmPFC and vACC may contribute to the maintenance of traumatic 

memories, and may underlie impaired emotion regulation.

Finally, the HP demonstrates mixed hyper- and hypo- activity across studies (Pitman et al., 

2012). Inconsistent patterns of activity in HP and other regions (e.g., mPFC and amygdala) 

across studies could be caused by any number of design differences and symptom 

heterogeneity. One important potential cause of variation could also be the presence of 

dissociative symptoms. Often studies do not distinguish between the classic or re-

experiencing vs. dissociative subtype of PTSD. The dissociative subtype of PTSD is a 

diagnosis that is characterized by significant symptoms of depersonalization and 

derealization, in addition to the classic PTSD symptoms of re-experiencing (e.g., 

flashbacks), avoidance, negative changes in beliefs and feelings, and hyper-arousal (DSM-5 

American Psychiatric Association, 2013). Most generally, depersonalization and 

derealization are experiences of detachment from one‘s self or surroundings, respectively. 

Recent research suggests that the re-experiencing subtype of PTSD shows classic amygdala 

hyper-activity and vmPFC hypo-activity, and in contrast, the dissociative subtype of PTSD 

shows the opposite pattern (Lanius et al., 2010). For detailed reviews of PTSD neuroimaging 

studies see Greco & Liberzon (2016), Liberzon and Martis (2006), Pitman et al. (2012), 

Peterson et al., (2014), and Shin, Rauch, and Pitman (2006).
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Genetics Overview

Twin studies of PTSD demonstrate that heritability accounts for approximately 30% of the 

variance in risk for PTSD, and that genetic factors influence the risk of exposure to 

traumatic events (True et al., 1993; Xian et al., 2000; Stein et al., 2014; Koenen et al., 2003; 

Koenen et al., 2005). Both candidate gene and hypothesis-neutral genome-wide association 

studies (GWAS) have identified several genes that contribute to PTSD risk and 

symptomatology.

Although replication has been mixed, candidate gene studies have identified that the 

serotonin transporter gene, COMT, FKBP5, ADCYAP1R1, BDNF, GABARA2, and ApoE2 
may play a role in PTSD. Genetic variation (e.g., polymorphisms) in these genes is often 

associated with PTSD. For example, the polymorphism 5-HTTLPR located in the promoter 

region of the serotonin transporter gene has been associated with PTSD. Specifically, the 

short (S) allele of 5-HTTLPR appears to confer risk for PTSD (Kilpatrick et al., 2007; Hans 

Jörgen Grabe et al., 2009; Koenen et al., 2009; Xie et al., 2009; Kolassa et al., 2010; Wang et 

al., 2011; Mercer et al., 2012). The MET158 functional polymorphism in the dopaminergic 

system is associated with a significant reduction in Catechol-O-methyltransferase (COMT) 

enzyme activity, and has been associated with PTSD (Lachman et al., 1996; Valente et al., 

2011; Kolassa et al., 2010). The FKBP5 gene modulates glucocorticoid receptor sensitivity 

(Scammel et al., 2001) and its genetic variation has been associated with PTSD (Binder et 

al., 2008; Xie et al., 2010; Mehta et al., 2011; Sarapas et al., 2011; Klengel at al., 2013). 

Risk alleles of the PAC1 receptor gene (ADCYAP1R1) have been associated with PTSD 

primarily in African American Women (Ressler et al., 2011; Almli et al., 2013). Brain 

derived neurotrophic factor (BDNF) encoded by the BDNF gene is involved in fear 

extinction and recovery from stress, which are impaired in PTSD (Chhatwal et al., 2006; 

Heldt et al., 2007; Soliman et al., 2010). Finally, the GABA receptor gene (GABARA2) 

(Nelson et al., 2009) and ApoE2 (Freeman et al., 2014) have also been significantly 

associated with PTSD.

Genome-wide association studies have linked a number of additional genes and intergenic 

regions with PTSD: TLL1, RORA, COBL, PRTFDC1, linc01090, and BC036345 (Almli et 

al., 2015; Guffanti et al., 2013; Logue et al., 2013; Nievergelt et al., 2015; Xie et al., 2013). 

Several of the single nucleotide polymorphisms (SNPs) identified in these studies, however, 

did not reach genome-wide significance when replicated. Future studies with larger samples 

are needed to clarify the relationship between these genes and PTSD. For detailed reviews of 

PTSD genetics see Almli et al. (2014a), Skelton et al. (2012), and Koenen et al. (2007).

The What and Why of Neuroimaging Genetics

Given the genetic heritability of psychiatric disorders (Afifi et al., 2010; Pitman et al., 2012), 

understanding genetic vulnerabilities to and protective factors against these conditions is 

vital. Linking psychopathology and genetic underpinnings directly, however, has not 

produced stable, robust results. This may be, in part, because genes encode for biological 

activity within and between cells, and not for heterogeneous psychiatric symptoms (Rasetti 

& Weinberger, 2011). One way to address this issue is to identify an intermediate phenotype 

(see also, endophenotype) – a biological marker more directly linked to genetic code 
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compared to the complex patterns of behavior and thought associated with psychiatric 

disorders (Admon, Milad, & Hendler, 2013; Meyer-Lindenberg & Weinberger, 2006). Brain 

structure and function are two examples of intermediate phenotypes that can bridge genetics 

and behavioral psychopathology.

The emerging field of neuroimaging genetics can provide one method for linking genes and 

psychopathology. Neuroimaging genetics is the examination of genetic variation and its 

influence on brain structure and function (Meyer-Lindenberg & Weinberger, 2006). 

Associations between genes and neuroanatomy or function can then be related to the 

behavioral and psychological symptoms of psychiatric disorders. As a result, there is a 

greater chance of detecting biological markers related to dysfunction or recovery from 

psychiatric disorders (Bigos & Weinberger, 2010; Meyer-Lindenberg & Weinberger, 2006; 

Morey et al., 2011). This technique may also reveal vulnerabilities and emerging 

physiological consequences of disorders much earlier, before they are perceivable in 

behavior (Pohlack et al., 2015). Another benefit of this method is that it can begin to 

distinguish between a vulnerability to a disorder and a consequence of the disorder (Admon, 

Milad, & Hendler, 2013).

Neuroimaging genetics can be implemented in different populations, healthy controls and 

those with a psychopathology, to examine the functional relationship between genes and 

psychiatric disorders. Examining healthy controls allows identification of vulnerabilities 

before a disorder develops (Rasetti & Weinberger, 2011). Results are not confounded by 

medication, time course of the disorder, or other comorbid conditions (Rasetti & 

Weinberger, 2011). Healthy control studies, however, require extra steps to make a clear 

connection between their results and the disorder of interest before robust conclusions can 

be made (Rasetti & Weinberger, 2011). Studies conducted with the disordered population 

possess this direct link with the behavioral and psychological symptoms of the disorder. On 

the other hand, potential confounds abound with, for example, medication use that interferes 

with the interpretation of results. Studies with both populations are necessary to provide a 

complete picture of psychopathology biomarkers.

Neuroimaging Genetics of PTSD

The remainder of this article focuses on neuroimaging genetics studies of participants with 

PTSD as opposed to healthy control participants. The genes that we focus on are those that 

have emerged in the PTSD neuroimaging genetics literature as significantly linked to 

differences in brain structure and function. First, we review genetic polymorphisms, for 

example, single nucleotide polymorphisms (SNPs), paired with 1) structural and then 2) 

functional neuroimaging data. The genes in these studies were identified using either a 

candidate gene or genome-wide association approach. Finally, we end with studies 

examining epigenetic changes associated with neuroimaging data.

Genetic variation associated with brain structure differences in PTSD as measured by MRI

By examining the structural composition of brain regions and how they relate to genetic 

variation we can identify potential risk factors in developing PTSD or consequences of the 

disorder. However, as we will discuss in our conclusions section, it remains unclear in many 
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cases whether the origin of these structural differences is antecedent to trauma or is a change 

that occurs as a result of PTSD. Here we review findings from three genes, FKBP5, COMT, 
and BDNF, as they relate to differences in the brain structure of participants with PTSD.

FKBP5—FK506-binding protein 5 gene (FKBP5) modulates glucocorticoid receptor 

activity (Zannas et al., 2016). Increases in the protein produced by this gene inhibit 

glucocorticoid signaling either by decreasing the sensitivity or increasing the resistance of 

the receptor (Zannas et al., 2016). FKBP5 is highly expressed in the hippocampus (Zannas et 

al., 2016), a structure involved in memory for consciously recalled events (declarative/

explicit memory; Kim & Diamond, 2002; Squire, 1992). During memory formation the 

hippocampus (HP) helps bind together patterns of neural activity throughout the brain that 

comprise an episodic memory (Kim & Diamond, 2002; Squire, 1992). The SNP rs1360780 

risk allele (T) is associated with increased FKBP5 transcription, and therefore increased 

inhibition of glucocorticoid signaling (Zannas et al., 2016). Interestingly, low glucocorticoid 

levels and reduced glucocorticoid action have been implicated as vulnerabilities toward 

developing PTSD (Resnick et al., 1995; Yehuda et al., 1998).

In an adult sample of civilian African American women with a high trauma load, Fani et al 

(2013) found that FKBP5 SNP rs1360780 risk allele carriers (TT/TC) had altered left HP 

shape compared to nonrisk allele carriers (CC). This alteration in shape occurred especially 

in the CA1 region of the HP. Stress blocks neurogenesis in the HP, induces dendritic atrophy, 

and reduces long-term potentiation (Kim & Diamond, 2002; Sapolsky et al., 1990), which 

makes it a particularly vulnerable brain structure in PTSD. Approximately half of the sample 

had current PTSD as measured by the PTSD Symptom Scale, but this diagnosis and 

symptoms were not significantly different between the risk and nonrisk allele groups. Those 

with the risk allele (TT/TC), however, had increased attention toward threat cues on an 

attention task (described in detail in the fMRI section), a hallmark of PTSD 

symptomatology. One possible interpretation, given this cross-sectional sample, is that HP 

structural differences associated with increased threat bias in risk allele carries represent a 

vulnerability toward developing PTSD.

Differential structure of the posterior cingulum has also been linked to FKBP5 SNP 

rs1360780. The posterior cingulum is a bundle of white matter fibers that runs from the 

frontal lobe (anterior cingulate) to the temporal lobe (entorhinal cortex). It is a central line of 

communication between structures in the temporal and frontal lobes (Fani et al., 2014). 

Abnormalities in the posterior cingulum imply a disruption or dysregulation in 

communication between these areas. In an adult African American female sample, risk allele 

carriers (T) had lower fractional anisotropy in the left posterior cingulum, reflecting either 

lower fiber density, axonal diameter, myelination, or a combination thereof, in this region 

(Fani et al., 2014; Figure 2A). There was no interaction between genotype, posterior 

cingulum fractional anisotropy, and PTSD symptoms or diagnosis (approximately half of the 

sample had a current PTSD diagnosis as measured by the PTSD Symptom Scale). A 

tentative interpretation to be drawn from this cross-sectional sample is that decreased white 

matter integrity of the posterior cingulum is a vulnerability toward developing PTSD.
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COMT—The COMT gene codes for Catechol-O-methyltransferase, which acts at both the 

level of synaptic terminals and the synaptic cleft to catalyze the breakdown of 

catecholamines such as dopamine (Tunbridge, Harrison, & Weinberger, 2006). COMT helps 

regulate levels of dopamine, especially in the prefrontal cortex where it is highly expressed 

(Tunbridge, Harrison, & Weinberger, 2006). Genetic variation in COMT is associated with 

executive function; for example, polymorphisms on this gene predict differential working 

memory performance (Tunbridge, Harrison, & Weinberger, 2006). The Val allele of COMT 
SNP rs4680 (Val158Met) is associated with the increased breakdown of dopamine, and 

consequently, decreased dopaminergic neurotransmission, decreased cognitive performance 

as seen behaviorally on neuropsychological tests (Dickinson & Elvevag, 2009), and 

decreased neural efficiency (i.e., greater activation in PFC during tasks; Mier, Kirsch, & 

Meyer-Lindenberg, 2010). In contrast, the Met allele is associated with the decreased 

breakdown of dopamine, and consequently, increased dopaminergic neurotransmission. 

Perhaps largely as a result of this, individuals demonstrate dysregulated emotional 

processing, for example, rigidity in emotional responding, and a propensity toward negative 

affect (Dickinson & Elvevag, 2009). These results highlight that it is important to remember 

that risk alleles for particular symptoms or psychopathologies may not be “risk” alleles in all 

contexts. Sometimes these alleles are protective, and the environmental circumstances 

determine their risk vs. resiliency.

There is evidence that the COMT SNP rs4680 moderates the relationship between neural 

cortex structure and PTSD. Schulz-Heik et al. (2011) found that a military veteran sample 

with combat-related PTSD had decreased anterior cingulate cortex (ACC) gray matter 

volume compared to participants without a PTSD diagnosis (as measured by the Clinician-

Administered PTSD Scale, CAPS Blake et al., 1998). This relationship was moderated by 

COMT SNP rs4680 genotype. Val allele carriers with PTSD had smaller right ACC volume 

compared to Val allele carriers without PTSD. In contrast, ACC volume was similar in Met 

allele carriers regardless of PTSD diagnosis. Overall the Val/Val genotype had the smallest 

right ACC volume compared to all other groups (PTSD and non-PTSD). The ACC is 

involved in the production and regulation of emotion (Kober et al., 2008). Functional 

divisions have been identified on the dorsal ventral plane. Dorsal ACC is often involved in 

the processing of pain, fear learning, response selection, and error detection, and ventral 

ACC is involved in visceral states, and conflict monitoring during emotional Stroop tasks 

(Kober et al., 2008; Pitman et al., 2012). As described earlier, PTSD participants often 

demonstrate hypoactivity in vACC during emotional tasks (e.g., Shin et al., 2001), and in 

contrast, hyperactivity in dACC during fear learning (e.g., Rougemont–Bücking et al., 

2011). Schulz-Heik et al (2011) examined vACC and dACC together in their analyses, 

which speaks to a structural abnormality that could underlie either (or both) ventral and 

dorsal functional findings in the PTSD literature. Given that Val allele carriers without 

PTSD did not have reduced ACC volume, these results suggest the Val allele is a risk factor 

for developing structural abnormalities associated with PTSD. Reduced ACC volume linked 

to this genotype may not be a pre-existing vulnerability.

BDNF—The brain-derived neurotrophic factor gene (BDNF) encodes for the BDNF protein, 

a neurotrophin facilitating the development and survival of neurons. BDNF acts to facilitate 
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the activity-dependent strengthening (e.g., in response to thoughts, emotions, behavior) of 

connections between neurons (i.e., synaptic plasticity). Because of this, BDNF is heavily 

involved in learning and memory (Binder & Scharfman, 2004). It is expressed throughout 

the brain, but plays particularly crucial roles with regard to learning and memory in the HP. 

Notably, a functional coding SNP in the BDNF gene, SNP rs6265, is associated with 

increased plasticity (Lyoo et al., 2011). Furthermore, recent data suggests that rs6265 is also 

associated with altered extinction of fear in humans as well as in a humanized transgenic 

mouse‘ that contains the same mutation in BDNF (Soliman et al., 2010).

BDNF SNP rs6265 may also play a role in PTSD recovery processes. Lyoo et al. (2011) 

longitudinally followed an Asian trauma-exposed civilian sample to examine BDNF 
polymorphisms and their relation to neural structure. Approximately 80% of the trauma-

exposed sample was diagnosed with PTSD one-month post trauma (CAPS diagnosed). At 

one year follow-up assessments, they found that participants exposed to trauma had 

increased cortical thickness in dlPFC compared to non-trauma controls. This increase in 

dlPFC cortical thickness appeared most prominent for the Val/Val genotype vs. Met allele 

carriers at the rs6265 SNP (trend toward significance). The dlPFC thickness was associated 

with PTSD symptom improvement and recovery, and better performance on 

neuropsychological tests of executive function. Given the role of dlPFC in emotion 

regulation, reappraisal, and executive function (Miller & Cohen, 2001; Ochsner, Bunge, 

Gross, & Gabrieli, 2002; Spreng et al., 2013), this evidence suggests dlPFC may be involved 

in regulating trauma-related symptoms as individuals recover from PTSD. Furthermore, 

these data suggest that individuals with Val alleles at the rs6265 locus may have an 

advantage. Interestingly, BDNF has also been found to interact with glucocorticoid 

signaling. Higher levels of BDNF are associated with enhanced glucocorticoid receptor 

signaling, and glucocorticoids are important for neuronal plasticity (Arango-Lievano et al., 

2015; Jeanneteau et al., 2012). Therefore, one way the BDNF SNP rs6265 may facilitate 

plasticity and be associated with improved PTSD-related recovery, is by enhancing 

glucocorticoid receptor signaling, thus normalizing recovery from stress-related emotional 

and memory ailments.

GWAS evidence for the COBL gene—Xie and colleagues recently reported a genome-

wide significant single nucleotide polymorphism (SNP) (p = 3.97×10−8) rs406001, in a 

genome-wide association study (GWAS) of PTSD (Xie et al., 2013). The rs406001 SNP is 

intergenic with no known function; however, the closest gene is COBL, which may be 

related to actin polymerization, and neuronal development and function. Almli et al., 

(2014b) sought to replicate the top associations of Xie and colleagues, and to extend these 

findings with structural MRI to examine potential intermediate neural phenotypes. Although 

the main effects were not replicated in this secondary cohort, they found a significant 

genotype by environment interaction (G×E) with childhood trauma in the top SNP, rs406001 

(N = 3076, t = 14.98, p = 0.0006). In fact, all three SNPs close to the gene COBL gene 

reported in Xie et al., (2013), had significant G×E interactions with childhood trauma in the 

replication cohort. The brain imaging findings indicated that risk allele carriers of rs406001 

demonstrate poorer white matter integrity in the uncinate fasciculus, connecting medial 

prefrontal with temporal lobe regions, including the amygdala (Almli et al., 2014b, Figure 
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2B). These are regions thought to play a critical role in regulation and extinction of learned 

fear and trauma associations. These data serve as a partial replication and extension of the 

first large GWAS for PTSD, suggesting a potential white matter intermediate phenotype 

underlying PTSD risk.

Genetic variation associated with differential brain activity in PTSD as measured by fMRI

The majority of neuroimaging genetics papers with participants who have PTSD examine 

BOLD signal associated with attention to threatening stimuli. Given that a core symptom of 

PTSD is hypervigilance toward threat, this is a key paradigm of interest. Here we review 

genetic variance associated with four specific genes, FKBP5, SLC6A4, ADCYAP1R1, 
OPRL1, and the genes encapsulated at chromosome 4p15, in relation to neural activity 

associated with threat.

FKBP5—As described earlier, FKBP5 modulates glucocorticoid receptor activity. FKBP5 
SNP rs1360780 risk allele (T) is associated with increased FKBP5 transcription, and 

increased inhibition of glucocorticoid signaling (Zannas et al., 2016). In an adult sample of 

civilian African American women with a high trauma load, Fani et al (2013) found that 

FKBP5 SNP rs1360780 risk allele carriers (TT/TC) had increased attention toward mild 

threat cues. In this dot probe paradigm, participants were presented with a pair of faces. The 

pair was comprised of either two neutral faces or one neutral face and one valenced 

expression (happy or threatening). At a certain point, an asterisk replaced the faces, and the 

task was simply to indicate whether the asterisk appeared on the left or right side of the 

screen. In general, participants with a threat bias attend to the threatening face. With these 

participants, if the threatening face‘s location matches the location of the asterisk (threat 

congruent), their left/right responses will be faster vs. if the locations are a mismatch (threat 

incongruent). Fani et al. (2013) found the risk allele carriers demonstrated this threat bias 

not only in their behavioral responses on the task, but also in their neural activity. On threat 

incongruent trials compared to threat congruent trials, participants with the risk allele 

(TC/TT) had more activity in their HP and parahippocampal gyrus vs. the CC genotype. 

Given the role of the HP and parahippocampal gyrus in memory encoding and retrieval, 

these results suggest an increased sensitivity to perceived threat in the environment. Findings 

were independent of PTSD symptoms or diagnosis. A tentative interpretation of this cross-

sectional data suggests this FKBP5 risk allele is associated with increased threat bias 

(behaviorally and neurally), which in turn may represent a vulnerability toward developing 

PTSD.

SLC64A—The serotonin transporter gene (SLC64A) encodes a protein that transports 

serotonin back into presynaptic terminals (i.e., reuptake). Serotonin is linked to mood with 

decreased serotonin levels associated with lower mood (Young, 2007). Classically studied 

polymorphisms in this gene include SNPs (e.g., rs16965628, GG genotype and CG 

genotype) and deletions (e.g., 5-HTTLPR short allele, “S” and long allele, “L” ). The 

rs16965628 G allele and 5-HTTLPR S allele are both associated with decreased expression 

of SLC64A (Martin et al., 2007). Both polymorphism types can also be examined in tandem. 

For example, in one triallelic variation of 5-HTTLPR, the SLA, LGLA genotypes offer a 
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baseline for the expression of SLC64A, the LGLG, SLG, and SS genotypes are low 

expressing, and the LALA genotype is high expressing.

In a sample of combat-trauma exposed veterans with and without PTSD (as measured by 

Davidson Trauma Scale, Davidson, 1996), Morey et al. (2011) found the rs16965628 and 5-

HTTLPR polymorphisms predicted differential neural activity on a working memory task. 

Participants were shown a series of faces, a short delay occurred, and then they were shown 

a subsequent face. Their task was to indicate whether this subsequent face was previously 

displayed (“old”) or new. During the delay period between initial face exposures and the 

memory rating (old vs. new), different kinds of distracters were displayed. The distracters 

were combat-related, non-combat related, or scrambled images, and all were irrelevant to the 

task at hand. All groups, regardless of PTSD symptom severity or genotype had a similar 

behavioral performance on this task, but distinct differences emerged between genotype, 

PTSD diagnosis, and neural activity.

When comparing BOLD signal during the delay period for combat-related distracters vs. 

non-combat related distracters, rs16965628 genotype affected ventrolateral PFC (vlPFC) 

activity and 5-HTTLPR genotype affected amygdala activity. In participants with PTSD, 

those with the rs16965628 GG genotype had more activity in vlPFC to combat distracters 

compared to trauma-exposed control participants with the GG genotype. CG genotype was 

not associated with differential vlPFC activity in PTSD and non-PTSD participants. Because 

all groups performed similarly on the working memory task, this evidence suggests PTSD-

positive participants with the GG genotype required more activity in vlPFC to maintain 

performance when confronted with trauma-related distracters. At the same time, the 5-

HTTLPR polymorphism trended toward modulating amygdala activity in response to 

combat distracters. That is, participants with PTSD and an S allele trended toward greater 

left amygdala activity compared to S allele carriers without PTSD. There was no difference 

in amygdala activity between PTSD diagnostic groups in the 5-HTTLPR LL genotype. 

Although this trend level significance should be interpreted with caution, this result suggests 

that PTSD-positive participants with an S allele found the threat cues more salient. Taken 

together, this evidence tentatively suggests that these two polymorphisms are associated with 

biased neural activity to threat once PTSD has developed.

ADCYAP1R1—Pituitary Adenylate Cyclase-Activating Polypeptide Type I Receptor 

(PAC1) is encoded by the ADCYAP1R1 gene, and it was previously associated with 

increased PTSD risk, particularly in women (Ressler et al., 2011; Almli et al., 2013). PAC1 

is selective for Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP). The PAC1 

receptor is highly expressed in the amygdala, hypothalamus, and HP, among other regions 

(Kormos & Gaszner, 2013; Shen, Gehlert, & Collier, 2013). PACAP has a diverse set of 

functions, including both the facilitation and inhibition of neuroendocrine release in 

response to stressors (Vaudry et al., 2009). The ADCYAP1R1 SNP rs2267735 risk allele (C) 

is associated with decreased expression of ADCYAP1R1, and less ADCYAP1R1 mRNA 

(Ressler et al., 2011).

The ADCYAP1R1 SNP rs2267735 may also predict neural activity related to threat 

processing (Stevens et al., 2014). Urban civilian women with a heavy trauma load passively 
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viewed fearful and neutral faces during fMRI. Participants were divided into two groups 

based on rs2267735 genotype, risk (CC) and nonrisk (GC/GG). These groups were matched 

for trauma load and PTSD symptom severity as measured by the modified PSS (Falsetti, 

1993). When BOLD signal to fearful faces was compared to neutral faces, the rs2267735 

genotype modulated activity in the amygdala and HP. The risk genotype (CC) had greater 

activation in amygdala and HP to fearful faces compared to the nonrisk group (G allele 

carriers) (Figure 2C). The number of risk alleles was also positively correlated with activity 

in these regions. Furthermore, the risk genotype had significantly decreased amygdala 

hippocampal connectivity compared to the nonrisk allele carriers. Together these results 

suggest the risk group found the fearful faces more salient, and had more fear reactivity 

(Stevens et al., 2014). Because this was a cross-sectional sample, and groups were matched 

on PTSD symptom severity, these results may represent a vulnerability toward developing 

PTSD.

OPRL1—Opiate Receptor-Like 1 gene (OPRL1) encodes the nociceptin receptor (Andero, 

2015). Among many biological roles, this receptor can modulate the perception of pain 

(Andero et al., 2013). OPRL1 plays a particularly functional role in the amygdala. Evidence 

suggests polymorphisms of this gene may be related to risk for PTSD. In an urban civilian 

sample of women with a high trauma load, Andero et al. (2013) found that OPRL1 SNP 

rs6010719 predicted PTSD symptoms, and behavioral and neural responses to two different 

fear-related tasks. As described in the previous section, participants passively viewed fearful 

and neutral faces while they were in the magnetic resonance imaging scanner. Outside of the 

scanner, participants also completed a fear potentiated startle task. Andero et al (2013) found 

that as participants’ reported trauma load increased, risk allele carriers (G) had increased 

PTSD symptoms (as measured by the PSS and CAPS) compared to the CC genotype. Risk 

allele carriers also had poorer discrimination between safety and danger signals in the fear 

potentiated startle paradigm compared to the CC genotype. In addition, on the fMRI task, 

risk allele carriers had increased functional connectivity between amygdala and posterior 

insula while viewing fearful faces compared to the CC genotype (Figure 2E). The insula is 

involved in pain perception and the posterior insula especially is involved in visceral state 

awareness (Craig, 2003). Together these results suggest risk allele carriers have increased 

PTSD symptom severity, and dysregulated fear responding. The OPRL1 SNP rs6010719 G 

allele carriers may represent a genotype at potentially higher risk for developing PTSD.

SNP rs717947 at chromosome 4p15—The only GWAS with PTSD participants to use 

the functional neuroimaging genetics methodology to date identified a SNP (rs717947) at 

chromosome 4p15 that correlates with neural activity related to threat processing (Almli et 

al., 2015). The functional role of this SNP is unclear, but it is a methylation quantitative trait 

locus, suggesting that is may have important roles in influencing the epigenetic regulation of 

adjacent genetic loci or regulatory regions (Banovich et al., 2014). Participants who 

completed the neuroimaging genetics portion of this study were urban civilian women with a 

high trauma load. Participants passively viewed fearful and neutral faces while in the 

scanner. Risk allele (T) carriers had higher PTSD symptoms compared to the CC genotype. 

The number of risk alleles negatively correlated with dlPFC and dmPFC activity to fearful 

faces compared to neutral faces. That is, risk allele carriers had decreased activity in dlPFC 
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and dmPFC to fearful faces (Figure 2D). Given these regions are associated with emotion 

regulation (Ochsner et al., 2002; Ochsner & Gross, 2005), these results imply that risk allele 

carriers had increased emotional dysregulation to fearful faces perhaps an inability to 

regulate fearful emotion or extinguish fear (Almli et al., 2015). Together these results 

suggest the SNP rs717947 at chromosome 4p15 T allele carriers may represent a genotype at 

higher risk for developing PTSD.

Epigenetic variation associated with brain structure and function differences in PTSD as 
measured by MRI and fMRI

Not only can we look at genetic variation as it relates to risk for PTSD, but we can also 

assess the dynamic regulation of gene expression. One way to measure gene expression is 

through the methylation status of a gene. For the most part, increased methylation implies 

decreased gene expression (Jaenisch & Bird, 2003). Here we examine methylation status as 

it relates to structural and functional differences in the brains of participants with PTSD 

symptoms. We begin with findings from two genes, SKA2 and FKBP5, as their epigenetic 

differences relate to brain structure, and then we end with epigenetic findings related to 

NR3C1 and brain function.

SKA2—Spindle and kinetochore-associated complex subunit 2 (SKA2) encodes for a 

protein that enhances the activation of glucocorticoid receptors (Rice et al., 2008). In this 

way it facilitates negative feedback inhibition of the HPA axis, and is protective against the 

toxic effects of chronic HPA axis activity (Rice et al., 2008). The SKA2 SNP rs7208505 is 

associated with suicidal behavior (Guintivano et al., 2014), and recent evidence suggests it is 

also associated with brain structure differences in PTSD (Sadeh et al., 2015). The rs7208505 

risk allele (C) can have varied methylation status, but the nonrisk allele (T) cannot be 

methylated (Guintivano et al., 2014). Because of this, Sadeh et al. (2015) controlled for 

SKA2 SNP rs7208505 genotype so they could look at the relationship between this gene’s 

methylation status and PTSD. Participants were white, predominately male military veterans 

with Criterion A trauma. Over half of the participants had a current PTSD diagnosis as 

measured by the CAPS. SKA2 methylation (adjusted for genotype) was associated with 

decreased cortical thickness in frontopolar cortex, superior frontal gyrus (SFG), and orbital 

frontal cortex (OFC). In turn, reduced cortical thickness in these areas was associated with 

increased PTSD symptom severity. Frontopolar cortex, SFG, and OFC are involved in 

diverse cognitive functions, for example, complex decision-making, attention, prospective 

thinking, introspection, and reward/punishment-related processing (e.g., Christoff & 

Gabrieli, 2000; Kringelbach & Rolls, 2004; Okuda et al., 2003). Differences in frontopolar 

cortex, SFG, and OFC structure could point toward dysfunction in their processing, for 

example, emotional dysregulation, impulsivity, and difficulty picturing the future (Sadeh et 

al., 2015). A path analysis suggested that SKA2 methylation status mediated the relationship 

between PTSD and cortical thickness in frontopolar cortex, SFG, and OFC. This indicates 

that SKA2 methylation (decreased expression of SKA2) may represent a risk for developing 

PTSD.

FKBP5—As already discussed, FKBP5 modulates glucocorticoid receptor activity. FKBP5 
SNP rs1360780 risk allele (T) is associated with increased FKBP5 transcription, and 
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increased inhibition of glucocorticoid signaling (Zannas et al., 2016). Methylation of this 

gene inhibits its expression, which in turn can cause increased glucocorticoid signaling 

(Klengel et al., 2012). Klengel et al. (2012) replicated the finding that an interaction between 

childhood trauma and FKBP5 SNP rs1360780 genotype predicted lifetime PTSD as 

measured by the CAPS (Binder et al., 2008). Risk allele carriers (T) with childhood trauma 

were more likely to have had a PTSD diagnosis over their lifetime. Building on these 

findings, Klengel et al. (2012) found an interaction between FKBP5 SNP rs1360780 

genotype and childhood trauma that predicted methylation status of this gene. Participants 

who experienced childhood abuse and had the risk allele (T) had decreased methylation of 

this gene (associated with more FKBP5 expression and altered GR sensitivity) compared to 

participants with the protective genotype (CC). In the risk allele carriers (T), methylation 

was negatively correlated with overall childhood abuse, especially physical and emotional 

abuse subscales as measured by the Childhood Trauma Questionnaire (Pennebaker & 

Susman, 1988). That is, risk allele carriers (T) with greater levels of childhood abuse had 

demethylation of this gene, and presumably more expression of FKBP5, inhibiting 

glucocorticoid signaling. FKBP5 SNP rs1360780 methylation also positively correlated with 

right HP volume. That is, demethylated FKBP5 seen in the risk group was associated with 

decreased right HP volume, a region especially vulnerable to the effects of chronic stress. 

Together this evidence suggests that risk allele specific FKBP5 demethylation may mediate 

the interaction between this genotype and childhood trauma as it relates to PTSD.

NR3C1—The nuclear receptor subfamily 3, group C, member 1 (NR3C1) gene is the 

glucocorticoid receptor gene. The glucocorticoid receptor is where glucocorticoids, for 

example, cortisol, bind. Because of this, the glucocorticoid receptor is essential for HPA axis 

regulation. Increased methylation of NR3C1 is associated with decreased expression of this 

gene (Yehuda et al., 2013).

Recently methylation status of NR3C1 has been associated with neural activity related to 

distressing interpersonal interactions and PTSD. Schechter et al (2015) examined NR3C1 
methylation in a sample of mothers who had experienced interpersonal violence. One group 

of mothers had PTSD as measured by the CAPS and PCL-S (Weathers et al., 1993), and the 

other group of mothers did not meet PTSD diagnosis criteria, although all participants had 

experienced interpersonal trauma. Both groups watched video clips of mother-child 

interactions while they were in the magnetic resonance imaging scanner. The interactions 

included a child playing with their mother and a child being separated from their mother. 

Some videos were of the participant and their own child; others were of an unfamiliar 

mother and child. In this sample, decreased methylation of the NR3C1 promoter region was 

associated with increased PTSD symptom severity. When BOLD signal for child separation 

videos was compared to the signal for child playing videos, it was also associated with 

NR3C1 promoter region methylation status. Less methylation of NR3C1 promoter region 

was associated with decreased activity in vmPFC, dmPFC, dlPFC, precuneus, and thalamus 

to viewing child separation, and greater PTSD symptom severity. NR3C1 promoter region 

methylation status was also a significant predictor of activity in dlPFC and vmPFC. These 

results suggest that increased expression of NR3C1 (demethylation of the promoter region) 

is associated with increased PTSD symptom severity and decreased activity in areas of the 
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brain related to emotion regulation (e.g., dlPFC, vmPFC) when viewing a distressing 

interpersonal interaction.

Interestingly, increased expression of glucocorticoid receptors is also associated with 

enhanced negative feedback inhibition of the HPA axis (Herman et al., 2012). The PFC is 

heavily populated with glucocorticoid receptors, and actively plays a role in HPA axis 

negative feedback inhibition (Diorio, Viau, & Meaney, 1993; Herman et al., 2012). Lower 

levels of glucocorticoids and enhanced HPA axis negative feedback are often understood to 

be features of PTSD (Yehuda et al., 1990; Yehuda et al., 1993; see Yehuda, 2006 for a 

discussion of mixed findings). Demethylation of the NR3C1 promoter region, which is 

expected to increase receptor expression and thus enhance negative feedback of HPA, may 

therefore represent a risk factor for developing PTSD.

Conclusions and Future Directions

The growing body of research on the neurobiology of PTSD suggests the amygdala, vmPFC, 

ACC, insula, and HP are consistently implicated, and SLC6A4, COMT, FKBP5, 

ADCYAP1R1, BDNF, GABARA2, ApoE2, TLL1, RORA, COBL, PRTFDC1, linc01090, 

and BC036345 are often predictors of dysfunction in the disorder. Neuroimaging genetic 

studies that associate genetic and epigenetic variation with neural activity or structure related 

to PTSD provide an even more nuanced layer of mechanistic information on top of each 

field studied separately. The neuroimaging genetics results reviewed here reveal that genes 

related to the physiological stress response (e.g., glucocorticoid receptor and activity, 

neuroendocrine release), learning and memory (e.g., plasticity), mood, and pain perception 

are tied to neural intermediate phenotypes associated with PTSD. These genes are associated 

with and sometimes predict neural structure and function in areas involved in diverse 

functions, for example, attention, executive function, memory, decision making, emotion 

regulation, salience (e.g., of potential threats), and pain perception. These relationships 

appear to be vulnerabilities toward developing PTSD, or vulnerabilities toward particular 

symptoms once PTSD has developed.

However, the specific relationship between neuroimaging genetic results and PTSD is still 

tentative in most cases. The extent to which identified biological markers represent 

vulnerability factors that increase the likelihood of developing PTSD following a significant 

trauma, or are due to the neurotoxic effects of traumatic stress associated with PTSD has yet 

to be definitely determined. Likely some differences pre-date trauma and PTSD, and others 

are corollaries of the disorder. For example, there is evidence to suggest that the reduced 

hippocampal volume often associated with PTSD is a vulnerability toward developing PTSD 

(Gilberson et al., 2002; Kasai et al., 2008; Pitman et al., 2006). This has been established 

through studies of monozygotic twins, one of the twins having experienced military combat 

exposure and one having not. Of the twin pairs, some of the combat exposed individuals 

developed PTSD and some did not, affording a comparison between PTSD vs. non-PTSD 

twin pairs. For those who did develop PTSD, both the trauma-exposed twin with PTSD and 

the unexposed twin without PTSD and smaller hippocampi compared to the twin pairs in 

which the trauma-exposed twin did not develop PTSD (Gilberson et al., 2002). The reduced 

HP volume for the unexposed monozygotic twin in the PTSD-twin pair suggests this 
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difference predates combat trauma exposure, and may have been a vulnerability toward 

developing PTSD.

However, there is strong rodent and human evidence to suggest that the brain, and the HP 

especially, is subject to structural remodeling due to the effects of stress and glucocorticoids. 

Thus many structural differences in PTSD may reflect consequences of the disorder. For 

example, there is evidence to suggest that chronic stress exposure and glucocorticoids can 

affect the hippocampus by reducing neurogenesis and synaptic plasticity, hindering long-

term potentiation and lowering dendritic spine density, among other alterations (see Conrad, 

2008 for a review). If not directly causing hippocampal cell death (see Glucocorticoid 

Cascade Hypothesis, Sapolsky, Krey, & McEwen, 1986), chronic stress exposure and 

glucocorticoids at the very least make the HP vulnerable to such damage for extended 

periods of time (see the Glucocorticoid Vulnerability Hypothesis; Conrad, 2008). This 

evidence for the detrimental effects of stress and glucocorticoid exposure on the HP points 

towards PTSD potentially causing reductions in HP. Similarly, Kasai et al (2008) found that 

reductions in pregenual ACC gray matter were a consequence of PTSD in a study of 

monozygotic twins discordant for combat exposure. The combat exposed twins had smaller 

pgACC compared to their twins who did not experience combat and did not have PTSD. 

More longitudinal research that assesses individuals before and after PTSD develops is 

necessary to definitely delineate pre-existing vulnerabilities and consequences of PTSD.

Similarly on the functional imaging side, for example, it is often unclear whether the neural 

activity associated with potential threat is a predisposing risk for PTSD or a PTSD-acquired 

dysfunction. It is perhaps likely that the biomarkers discussed here represent both 

vulnerability factors and the results of traumatic exposure. A recent review, however, 

proposes a potential causal model of PTSD risk and corollaries (Admon, Milad, & Hendler, 

2013). Based on growing evidence including monozygotic twin studies, Admon et al (2013) 

suggest increased amygdala activity to emotionally salient stimuli and hyperactivity in the 

dACC during fear learning appear to be predisposing vulnerabilities toward developing 

PTSD (e.g., Shin et al., 2011). On the other hand, reduced connectivity between mPFC and 

HP resulting in reduced capacity to extinguish fear may be an acquired PTSD dysfunction. 

Combining results from healthy controls, healthy controls whose immediate family members 

have PTSD, and patients with PTSD themselves will continue to refine this relationship. 

Admon et al (2013) also suggest a renewed focus on neuroimaging genetics in twin studies 

and prospective studies that catch participants before trauma occurs.

Neuroimaging genetic approaches may also be valuable in the study of sex differences in 

PTSD. Males are more likely to experience potentially traumatic events, however, females 

are more likely to meet criteria for PTSD (Kessler et al., 1995). These differences may in 

part be accounted for by higher incidences of highly pathogenic types of trauma for females 

compared to males (e.g., childhood sexual abuse, sexual assault; Tolin & Foa, 2006). 

However, females are more likely to meet criteria for PTSD even in categories more 

frequently experienced by males (e.g., non-sexual assault, accidents; Tolin & Foa, 2006), 

suggesting the relevance of biological mechanisms for PTSD related sex differences. Recent 

findings on the dynamic regulation of PACAP and the PAC1 receptor gene by estrogen point 

to genetic variation contributing to these sex differences (Jovanovic et al., 2012; Ressler et 
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al., 2011). The enhanced ability of neuroimaging genetics to identify biological markers 

related to psychiatric disorders may be especially relevant to the understanding of sex 

differences in PTSD.

Future research should also aim to distinguish between the re-experiencing and the 

dissociative subtype of PTSD to help clarify neurobiological mechanisms and inconsistent 

findings. Notably, the majority of work has focused on the re-experiencing and hyperarousal 

symptoms associated with PTSD. It may be beneficial to concentrate on other symptom 

clusters, for example, negative alterations in cognitions and mood, to identify novel neural 

and genetic mechanisms of PTSD related to self-referential processing. Understanding the 

neurobiological mechanisms of these symptoms, and how genetics underlies differential 

neural phenotypes, could prove very fruitful in breaking down barriers to PTSD treatment 

and recovery.
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Figure 1. Brain Regions most frequently associated with Posttraumatic Stress Disorder
This diagram of the human brain illustrates some of the most frequent brain regions 

associated with PTSD in two decades of work related using fMRI approaches to understand 

brain activation in PTSD. The prefrontal cortex (PFC) and the hippocampus have strong 

connections to the amygdala, which is important for conditioned fear and associative 

emotional learning. The PFC is involved in emotion regulation and is hypoactive in PTSD 

with some studies showing decreased gray matter density. The hippocampus is thought to 

play a role in explicit and contextual memories of traumatic events and in mediating 

extinction of conditioned fear. In PTSD, the hippocampus is decreased in volume. The 

amygdala is the most well-known area in regulating fear responses, involved in conditioned 

fear and recovery from fear. Hyperactivation of the amygdala to fearful cues is a robust 

intermediate phenotype in patients with PTSD. The end result of these neuroanatomical 

alterations is increased stress sensitivity, generalized fear responses and impaired extinction. 

Other regions including the anterior cingulate cortex, the orbitofrontal cortex, the 

parahippocampal gyrus, the thalamus and the sensorimotor cortex also play a secondary role 

in the regulation of fear and PTSD. (Figure Adapted from Mahan & Ressler, 2012).
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Figure 2. Genetic Associations with Structural and Functional Neural Pathways in PTSD
Shown are examples of neuroimaging genetic approaches to identifying associations of 

PTSD-associated SNPs with intermediate phenotypes of neural structure and activation 

using structural and functional MRI. A) Differential structure of the posterior cingulum 

connecting hippocampus to cingulate cortex has been linked to FKBP5 SNP rs1360780. 

Risk allele carriers had lower fractional anisotropy in the left posterior cingulum (from Fani 

et al., 2014). B) The risk allele carriers of rs406001 (identified in a PTSD GWAS, Xie et al., 

2013) demonstrate poorer white matter integrity in the uncinated fasciculus, connecting 

medial prefrontal with temporal lobe regions, including the amygdala (from Almli et al., 

2014b). C) Carriers of the ADCYAP1R1 SNP rs2267735 risk allele show greater activation 

in amygdala to fearful faces compared to the nonrisk group (from Stevens et al., 2014). D) 

The number of risk alleles of SNP rs717947 (identified in a GWAS for PTSD) negatively 

correlated with dmPFC activity to fearful faces compared to neutral faces (from Almli et al., 

2015). E) The OPRL1 gene SNP rs6010719 was found to be associated with PTSD and 

intermediate phenotypes of PTSD. With fMRI, enhanced bilateral amygdala activation in 

response to fearful versus neutral face stimuli was observed in all participants, irrespective 

of genotype. However, when viewing fearful faces, risk allele carriers had increased 

functional connectivity between amygdala and right posterior insula (from Andero et al., 

2013).
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