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Abstract

Most of the general principles used to explain sensory cortical function have been inferred from 

experiments performed on neocortical, primary sensory areas. Attempts to apply a neocortical 

view to the study of the gustatory cortex (GC) have provided only a limited understanding of this 

area. Failures to conform GC to classical neocortical principles have been implicitly interpreted as 

a demonstration of GC's uniqueness. Here we propose to take the opposite perspective, dismissing 

GC's uniqueness and using principles extracted from its study as a lens for looking at neocortical 

sensory function. In this review, we describe three significant findings related to gustatory cortical 

function and advocate their relevance for understanding neocortical sensory areas.

Introduction

Historically, sensory physiologists interested in understanding the computations performed 

by cortical circuits have focused their attention on neocortical areas [1-3]. The ability to 

precisely control the physical variables of a stimulus, as well as the ease of experimental 

access have contributed to rendering visual, somatosensory and auditory cortices primary 

models for investigating sensory processing. Electrophysiological studies from these areas 

started earlier and engaged larger communities than studies on chemosensory cortices. As a 

result, many of the fundamental principles of sensory, cortical physiology have been defined 

by results obtained in these cortices. The cortical organization in sensory maps [2,4,5], the 

presence of columns [1] and stereotyped circuits [6] and the hierarchical organization of 

sensory streams (i.e. “lower” order areas devoted to signal processing and “higher” order 

areas involved in integration) [7] are just few among the many principles established in 

neocortical areas. Albeit never explicitly theorized, the knowledge accumulated on 

neocortical areas has influenced the way in which chemosensory areas have been 

approached. Multiple attempts have been made to adapt general principles of neocortical 
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processing to either olfactory or gustatory cortices [8-10]. Failures to fit some of such 

principles to chemosensory areas have been interpreted as evidence for the uniqueness of 

these cortices. However, many of the results initially deemed as specific to chemosensory 

cortices have proven to generalize to neocortical areas. For instance, studies of oscillations 

and their links to sensory coding and cognition have been pioneered in the olfactory system 

[11-14]. Similarly, the importance of sensorimotor rhythms has been first established by 

looking at sniffing and respiration [15-18]. The recent rise in attention toward the olfactory 

cortex has brought into focus its relevance for understanding general computational 

principles. However, a similar process has not yet occurred for the gustatory cortex (GC). In 

the case of GC, the results have been either viewed as confirmatory of known neocortical 

principles [8,9], or, if unique and unprecedented, treated as an exotic peculiarity. In this 

review, we will discuss recent developments in understanding the function of the gustatory 

cortex, with the goal of showing how many of the findings on this area can help us gain an 

original perspective on neocortical sensory areas.

Coding of chemosensory information: the importance of time and dynamics

Neurons in the gustatory cortex are responsible for mediating the perception of different 

taste qualities: sweet, salty, sour, bitter and umami (just to name the best studied). GC 

neurons encode chemosensory information via time-varying changes in firing rates [19,20]. 

Initial analyses of the time course of firing rate activity revealed a great richness in single 

neuron responses to intraorally delivered tastants [20]. Most of the firing rate modulations 

revolved around three temporal epochs that encode different aspects of sensory information 

and unfold on the relatively long-lasting period of 2.5 s from taste delivery [20] [19,21-23].

The temporal evolution of taste-evoked activity in GC has also been analyzed at the neural 

ensemble level. Use of the Hidden Markov Model (HMM) to extract specific patterns of 

ensemble activity revealed that upon gustatory stimulation populations of neurons in GC go 

through different states of partially coordinated activity [24-28]. Each state can last from few 

to hundreds of milliseconds and suddenly end, leading the network to a rapid transition into 

another state. Multiple lines of evidence prove the importance of this regime of activity. 

Analysis of responses to multiple tastants revealed that each taste quality is associated with a 

specific sequence of states [26]. While the duration of each state and the times at which 

transitions occur vary from trial-to-trial, each particular sequence of states is specific to a 

certain taste. The sequences generated by a HMM analysis allowed for a very effective 

decoding of stimulus identity, showing that this conceptual and analytical framework 

successfully captures how GC encodes sensory information [25,26]. This approach to 

understanding how GC encodes gustatory information goes beyond the traditional single cell 

perspective, based on tuning curves computed from averaged data (Figure 1A), and suggests 

that sensory cortical processing entails the concerted activity of populations of neurons.

Understanding sensory cortical activity in terms of metastable states allowed for insights 

beyond sensory coding. The description of sudden transitions between states lead to the 

suggestion that a stochastic, jumping model of decision making could account for ingestive 

decisions more accurately than the traditional diffusion-to-bound model, particularly in 

conditions of noisy signals [29,30] (Figure 1). Recent data confirmed this suggestion in both 
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GC [31] and lateral intraparietal area (LIP) [32]. Finally, recent work unveiled that 

metastability is not limited to evoked activity, but can also be observed during spontaneously 

ongoing activity [28] (Figure 1d). Populations of neurons in GC undergo sudden jumps 

between states even in the absence of any overt stimulation. Analysis of firing rates of single 

neurons revealed that metastability is not simply caused by neurons alternating between two 

regimes of firing rates. Rather, neurons can produce multiple (i.e. more than two) firing rates 

depending on the state (a feature called multistability). Spontaneous metastability and 

multistability result from network interactions, as demonstrated by theoretical analysis and 

simulations with a network model of spiking neurons [28]. Such a model features balanced 

excitation/inhibition and a clustered architecture and generates an attractor landscape that 

spontaneous activity explores (Figure 1e). The model built to explain spontaneous activity 

could reproduce fundamental features of stimulus-evoked activity [27,28], indicating that the 

elusive relationship between spontaneous and evoked cortical activity [33] is grounded in the 

dynamics internally generated by a network with clustered architecture [34].

GC represents the first primary cortical sensory area for which the study of metastable 

ensemble dynamics provides a unifying view that explains sensory coding, decision-making 

and the relationship between evoked and spontaneous activity. We believe that this approach 

could also be productively adopted to study other primary sensory areas, beyond taste and 

olfaction [35].

Integration between sensory and reward processing

Taste coding is intimately linked with reward processing. Gustatory stimuli have hedonic 

valence, they are either palatable or aversive. The reward value of taste can be easily 

measured relying either on consummatory behaviors [36,37] or orofacial reactions [38,39]. 

The ability to assess objectively different dimensions of reward with specific behavioral tests 

has allowed researchers in the field to explore the involvement of GC in processing reward. 

Spatio-temporal patterns of neural activity in GC account for the palatability and/or 

aversiveness of taste. Imaging experiments in rodents revealed that the spatial 

representations of taste qualities are plastic and can track changes in the valence of gustatory 

stimuli [40]. Extensive analysis of single neuron responses showed that valence is encoded 

by the temporal structure of firing rate changes [21,23,41]. Specifically, it has been 

demonstrated that valence coding emerges with a slow latency (i.e., ~ 1 second) compared to 

stimulus onset. Population analyses with HMM confirmed this observation and provided 

further evidence indicating that, at a single trial level, valence coding emerges as a sudden 

and rapid change in the state of ensemble activity [31]. Recent ensemble recordings in rat 

GC showed that gapes (i.e. orofacial reactions of aversion) were reliably preceded by a state 

change, suggesting a causal role of GC in evaluating the palatability of gustatory stimuli. 

Results from optogenetic studies confirm GC's involvement in mediating appetitive and 

aversive responses [42]. The sources of valence-related information in GC could be multiple, 

given its connectivity with limbic regions [43]. However, clear evidence points at the 

amygdala as one of the main synaptic inputs to GC [44,45] and a fundamental source of 

reward-related signals [41,46,47].
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The intimate relationship between taste and reward implies that gustatory stimuli can also be 

used as outcomes. Using tastants as unconditioned stimuli in learning paradigms led to the 

discovery that GC plays a role in encoding reward-predictive stimuli [46,48-50]. Training 

rats to associate a predictive cue with the availability of multiple tastants unveiled that GC 

neurons can be modulated by non-gustatory, anticipatory cues. The appearance of cue 

responses, a phenomenon observed so far only in limbic areas depends on learning, and can 

be observed with both classical and instrumental conditioning paradigms [46,48,49]. In 

addition, neurons in GC can encode both the general expectation of taste, i.e. the expectation 

that a general gustatory stimulus is going to be available regardless of its identity, and the 

specific expectation of tastants with opposite valence [49] (Figure 2). The obvious question, 

at this point, is whether this cue-related activity plays any role in guiding behavior, or is just 

a byproduct of GC's connectivity with limbic areas. Behavioral studies relying on 

pharmacological manipulations of the activity in GC suggested its involvement in guiding 

behavioral choices [51]. A recent study was specifically designed to investigate the role of 

cue-related activity in GC [52]. Mice were trained to associate the delivery of a food pellet at 

a food-port with a 10 seconds long anticipatory cue. Upon successful training, mice 

responded to the cue with a series of conditioned, food-port entries. Inactivation of GC 

selectively during the presentation of the cue significantly reduced the number of food-port 

entries, indicating that cue-related activity in GC affects behavior.

While one might argue that taste is unique among the senses for its intimate relationship 

with reward, this is certainly not the case. Stimuli of all sensory modalities can have an 

affective dimension, either innately or upon experience. Alas, only a few studies have 

focused on such an important dimension of perception in primary sensory areas other than 

GC [53-57].

Multisensoriality in a primary sensory cortex

Neurons in GC are not devoted exclusively to processing the physiochemical and affective 

dimensions of taste. Multiple studies demonstrate that GC can effectively process non-

gustatory, cross-modal stimuli encountered either during the consumption of food or even 

before [19,46,49,58-62].

Evidence for multisensory integration during consumption comes from experiments showing 

that single neurons in GC can encode tactile, thermal and olfactory information coming from 

the oral cavity [61,63]. The integration of these multimodal, intraoral signals relates to the 

ability of perceiving flavor [64-66], the unitary, multisensory percept associated with food 

consumption. A second form of multisensory processing, fundamental for forming 

expectations, can occur in GC prior to the consumption of food and triggered by extraoral 

stimuli [46,49]. The sight of food, for instance, successfully activates GC in human subjects 

[67]. In alert rats, GC neurons can respond to sounds, or odors, predicting either the general 

availability of taste or specific gustatory stimuli [46,49] (Figure 2). Single unit recordings 

and immediate early gene analysis demonstrated that cross-modal responses are present 

before learning and increase in prevalence and specificity after stimulus-taste associations 

[46,49,50].

Vincis and Fontanini Page 4

Curr Opin Neurobiol. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While one might argue that the multimodality of GC is a direct consequence of the intrinsic 

relationship of tastants with tactile and odor stimuli, or a consequence of taste being always 

preceded by other sensory stimuli, this is not the case. In the real world, each unimodal 

sensory stimulus is perceived against the background of other stimuli. Perception is 

inherently associated with multisensory integration. While few studies have indeed 

investigated cross-modal responses in primary sensory areas [56,57,68], we believe not 

enough attention has been devoted to this fundamental issue.

Conclusion

In this brief overview, we discussed three lines of investigation on the function of GC. These 

approaches have not been directly influenced by existing theories of neocortical sensory 

function. Rather, these were efforts directed at understanding GC's relationship to gustatory 

perception and taste-related behaviors. These research directions have contributed to 1) 

demonstrate that a single computational framework can link sensory coding, sensory-based 

decisions and spontaneous activity; 2) unveil the intimate links between perception and 

reward; 3) define sensory processing in primary cortices as an inherently multisensory 

process. Altogether, this research has shown that the primary gustatory cortex is not simply 

an analyzer of physiochemical information, but rather an area that integrates perception, 

emotion and actions. Of course, one could dismiss all the results from GC as peculiarities of 

a “unique” cortex. After all, one might argue, GC is part of the insula (an area known to be 

integrative), has a unique cytoarchitecture and deals with atypical stimuli. Here we contend 

that the opposite attitude may be more productive and could lead to original insights on the 

function of neocortical sensory areas. Time might have come to stop imposing a neocortical 

view on all the sensory cortices and begin to be inspired by the chemical senses.
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Highlights

• General principles of sensory coding have been derived from 

neocortical areas.

• Studying the gustatory cortex (GC) provides a new perspective on 

sensory processing.

• GC ensemble activity can be described in terms of metastable 

dynamics.

• GC activity is intimately linked to reward processing.

• GC integrates cross-modal information for the sake of perception and 

prediction.
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Figure 1. 
Metastable dynamics in the gustatory cortex of awake animals. a) Representative ensemble 

showing taste-evoked metastable dynamics. Top: population raster with overlaid the HMM 

fit; each color represents a different state. Bottom: histograms showing firing rate vectors for 

each HMM state. b) Metastable dynamics and taste quality coding. Left: schematic showing 

the four different tastants delivered. Right: histogram showing that an HMM-based 

classification can outperform a PSTH-based classification. c) Metastable dynamics and 

decision-making. Left: schematic showing the architecture of the decision-making network 
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used to test the role of reproduce metastable in ingestive decisions. Right. Comparison of the 

performance for two models of decision-making: deterministic integration (“ramping”) and 

stochastic (“jumping”). The plot shows how performance depends on network size and 

internal noise. For a complete analysis of the differences between the two models of 

decision-making see Miller and Katz [30] d) Representative example of metastable 

dynamics during spontaneous activity. Top: population raster with overlaid the HMM fit; 

each color represents a different state. Bottom: histograms showing firing rate vectors for 

each state. e) Model and theory of spontaneous activity. Left: schematic of the clustered 

spiking network capable of reproducing spontaneous metastability and multistability. Right: 

Attractor landscape of the spiking network model. The plot shows the number of active 

clusters and relative firing rates of neurons inside clusters as a function of the strength of 

relative intracluster synaptic connections (J+). Vertical dotted lines indicate values of 

intracluster connections at which new clusters are recruited. The numbers of activated 

clusters in each configuration are indicated in red (configurations with larger clusters have 

lower firing rates, due to the overall inhibition). Panel a) and b) modified from Jones et al 

[26]; panel c) modified from Miller and Katz [29]; panel e) modified from Mazzucato et al 

[28].
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Figure 2. 
Cross-modal cue responses in the gustatory cortex can encode specific expectations of 

rewarding or aversive tastants. a) Go/no go paradigm. Top: schematic of the behavioral 

paradigm; one auditory cue predicts the availability of sucrose; the other cue predicts the 

availability of quinine. Rats press a lever following the sucrose predicting cue (Suc_Cue) 

and self-deliver sucrose directly into their mouth. On the contrary, rats refrain from pressing 

following the quinine-predicting cue (Q_Cue). Bottom: representative behavioral record a 

session. The plot shows the percentage of trials for Suc_Cue (cyan) and Q_Cue (gold) 

followed by a lever pressing. The solid black line indicates the average performance. b) 
Selectivity of cue responses. Raster plots and peri-stimulus histograms (PSTHs) for two 

representative units, one selective for Suc_Cue (blue, left) and one selective for Q_Cue 

(right, gold). The dotter line overlaying the PSTHs shows the time course of the magnitude 

of mouth movements. Time 0 represents the onset of the auditory cue. Triangles markers 

represent lever-presses. The gray shading indicates the temporal window in which only the 

cue was present, without any lever-press. c) Emergence of cue selectivity with learning. The 

three plots depict the difference in normalized firing between responses to Suc_Cue and 

Q_Cue averaged across neurons. A flat line indicates no difference between cue responses 

(hence no cue selectivity). Each plot features data from animals at different stage of 

learning. Top: rats not showing any sign of learning in the first few sessions; middle: rats 

showing learning in the first few sessions; bottom: rats extensively trained. Notice how the 

difference between cue responses (i.e., the selectivity) increases with learning. Time 0 and 

gray shadow as in panel b. Dotted horizontal line represents zero difference. Panels a-c) 

modified from Gardner and Fontanini [49].
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