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Abstract

Making decisions that factor the cost of time is fundamental to survival. Yet, while it is readily 

appreciated that our perception of time is intimately involved in this process, theories regarding 

intertemporal decision-making and theories regarding time perception are treated, largely, 

independently. Even within these respective domains, models providing good fits to data fail to 

provide insight as to why, from a normative sense, those fits should take their apparent form. 

Conversely, normative models that proffer a rationalization for why an agent should weigh options 

in a particular way, or to perceive time in a particular way, fail to account for the full body of well-

established experimental evidence. Here we review select, yet key advances in our understanding, 

identifying conceptual breakthroughs in the fields of intertemporal decision-making and in time 

perception, as well as their limits and failings in the face of hard-won experimental observation. 

On this background of accrued knowledge, a new conception unifying the domains of decision-

making and time perception is put forward (Training-Integrated Maximization of 
Reinforcement Rate, TIMERR) to provide a better fit to observations and a more parsimonious 

reckoning of why we make choices, and thereby perceive time, the way we do.

1 Introduction

Appreciating the cost of time is central to determining whether an offer of a later but larger 

reward affords a better opportunity than a smaller, but more immediate one. This is often due 

to the fact that the difference in time that must be invested to acquire the larger later reward 

may, potentially, be put to more profitable use. Therefore, when evaluating the relative worth 

of rewarding (or punishing) options, how should the cost of time invested to achieve an 

option’s outcome be weighed? Fields of study as diverse as economics, psychology, ecology, 
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and neuroscience have struggled to measure, and to rationalize, how and why agents factor 

the cost of time the way they do. Below, we summarize prominent theories, their key 

contributions, and their experimentally determined limitations.

2 The problem of choice when factoring time: extant theories

There is a rich history of normative theories—theories that address the question of how 

behavior ought to be—of intertemporal decision making. Samuelson, from the field of 

economics, was the first to formally state how time should be factored in such intertemporal 

decision-making, postulating in his “Discounted Utility Theory” (DUT) the normative 

principle that decision-making should be stationary in time (that is, an option, having been 

determined to be of the greatest value remains so, all else being equal, with the passage of 

time)[1]. Under this constraint, the value of delayed rewards should appear as if discounted 

by an exponential function, with the exponent of discounting controlling its steepness (i.e. 

the agent’s sense of the cost of time, see Table 1). This formulation advanced the notion that 

time has a cost, that its specific form would derive from normative principles, and that it 

could account for observed behaviors. Yet, despite its appeal, experimental observation over 

the following decades would not well accord with this formalism. Rather, observations in 

psychological and behavioral science were largely found to be better fit by a hyperbolic 

form[2] of temporal discounting (wherein stationary time preference can be, and is, 

violated[2–8]).

While hyperbolic discounting provided a better fit to observation, it was from the fields of 

evolutionary biology and ecology that a normative theory rationalizing why agents should 

discount hyperbolically—and with a certain steepness—was forming. Under the principle 

that animals should forage so as to maximize their long-term reward rates[9], Optimal 

Foraging Theory (OFT) arose[10, 11]. When expressed as a discounting function (see Table 

1), the form it takes is hyperbolic. Importantly, whereas the value of the parameter 

controlling the steepness of discounting in prior hyperbolic models lacked biological 

meaning, OFT asserted that this parameter is the reciprocal of the inter-trial interval (of the 

option chosen by the animal to maximize future reward). Though OFT proffered not only a 

normative theory of why temporal discounting should be hyperbolic but also why it should 

have a particular steepness, here too, experimentation was to show that intertemporal 

decision-making did not always abide by its prediction[2, 6, 7, 12–18], namely that agents 

would factor all the temporal delays associated with maximizing a future global reward rate. 

Given this, Ecological Rationality Theory (ERT) was then devised on the basis that animals, 

while seeking to maximize reward rates, factor only the temporal delays to acquire reward, 

arguing that rewards with differing post-reward delays are rarely encountered under natural 

conditions [11, 12] (see Table 1). In this way, the discounting function of ERT is a special 

case of OFT, wherein the post-reward delay—and therefore ERT’s discounting constant—is 

zero. Despite this reformulation, experiments consistently report discounting constants 

greater than zero, inconsistent with ERT [6, 7, 12–18].

The state of the field is then this: while proximate models have been proposed that well-fit 

experimental observations[19–22], as they do not arise from first principles, the meaning 

and/or justification of their terms and form are uncertain. Conversely, theories developed 
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from normative principles, while addressing why a discounting function should take its 

apparent form, fare more poorly in capturing experimental observations. Nonetheless, 

collectively this work has provided deep insight into the problem of intertemporal decision-

making, identifying, formalizing, and framing the issue that time has a cost, that the worth of 

an offer depends on the current state of affairs, and that agents should aim to gather the most 

reward while foraging in an environment. These insights have strong appeal, so what is 

wrong?

3 An experientially-constrained theory of intertemporal decision making: 

Training-Integrated Maximized Estimate of Reward Rate (TIMERR)

Consider an omniscient agent that can foresee the future disposition of reward options 

contingent upon whatever choice path it were to make. Such an agent, for the time it is 

allotted to foraging in an environment, could then determine the choice path that maximizes 

its reward intake over all possible future options. That is truly optimal, yet impossible. A real 

agent is limited in its ability to apprehend the availability of rewards into its future; hence, 

any theory regarding reward rate maximization must be constructed from the perspective of 

what is knowable by the agent. Given that the availability of future reward is unknowable, 

how should an agent evaluate the worth of a reward option, so as to maximize the reward 

acquired during foraging?

To appreciate whether a reward option is worth its cost in time, we have postulated that 

agents look back into their recent past to estimate their rate of experienced reward[23] 

(Figure 1a). An offer of reward is then evaluated by adding the experienced reward rate to 

the offered reward rate as in Figure 1a, and assessing whether the resulting rate of reward 

outstrips the rate that has already been achieved. This construction affords a manner of 

appreciating why some options should be foregone: their selection would needlessly 

decrease the achievable reward rate, as the experienced reward rate foretells of superior 

reward options to come. In the face of multiple offers, it also can determine which is the best 

and by how much. In this way, a reward option is thus evaluated in comparison to the 

estimated worth of the experienced environment as a whole and is the basis of our theory of 

intertemporal decision-making, named so to reflect that postulate: Training-Integrated 

Maximized Estimation of Reinforcement Rate (TIMERR) [23].

TIMERR’s decision-making algorithm can be re-expressed as a statement of an offer’s 

subjective value (Figure 1b), or, as a discounting function (Figure 1c). While all are 

equivalent, these expressions of TIMERR provide additional insights into the consequences 

of TIMERR’s construction. For instance, in a world where one cannot pursue other rewards 

during the delay to a chosen reward, when an offer of reward of a given magnitude, r, and 

delay, d, is expressed in terms of its subjective value (SV[r,t]), it can be seen that an 

opportunity cost (the experienced rate of reward, R/Time, times the delay to the reward, t) is 

subtracted from the offered reward’s magnitude. Therefore, the degree to which an 

environment is rewarding is factored into the decision-making process by subtracting the 

amount of reward that would be expected to be received in lieu of pursuing the offer. The 

richer the reward environment, the less the subjective value of a given offer (and the more 
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discerning the agent appears to be). In a setting where other rewards can indeed be pursued 

during the wait to a chosen option, the opportunity cost lowers to zero, but the hyperbolic 

form remains. By expressing TIMERR as a discounting function (see Figure 1c), it is 

perhaps most readily appreciated that the parameter controlling the steepness of temporal 

discounting is not a free-fit parameter of uncertain meaning (as in DUT and many 

psychological models), but rather is the reciprocal of the time that the agent looks back to 

estimate its experienced reward rate, (1/Time). The longer the agent looks back into its past, 

the greater the subjective value of an offer (and the more patient the agent appears to be). 

Therefore, the time an agent looks back (Time) to estimate its rate of reward, and what that 

experienced reward rate is (R/Time), controls how an offer of a given magnitude and delay is 

evaluated.

The merit of TIMERR rests, of course, on its ability to account for the breadth of well-

established phenomenology in intertemporal decision-making. Key experimental 

observations in intertemporal decision-making are: hyperbolic discounting [2–8], that the 

steepness of discounting varies across individuals and even within individuals in varying 

contexts[2–8, 13, 24], that losses are discounted more steeply the larger the loss[25], that 

there is a differential treatment of losses[3], the Magnitude effect[26–29], the Sign effect[24, 

27, 29], and relatedly, how increasing the size of outcomes diminishes how pronounced the 

Sign effect appears to be[3, 8, 29], when to forgo an option, and the delay-speedup effect[3, 

29]. All of these observations are well-accounted for by TIMERR[23, 30–32]. Notably, and 

in addition, an agent employing the TIMERR decision rule will collect more long-term 

reward rate compared to one employing best fit exponential (DUT), hyperbolic (OFT & 

ERT), or hyperbolic-like (βδ) discounting [23].

4 The perception of time: extant theory and implementation

Above, we have considered how time is factored into decision-making. Since such choices 

require some comprehension of time, perhaps the vagaries of intertemporal decision making 

can be understood as arising from our sense of time? Indeed, it is on this basis that theories 

of temporal perception, in addition to accounting for distinctive features of timing behaviors, 

have been related to intertemporal decision-making. So, how do key theories of time 

perception explain why and/or how time perception expresses the errors? We will treat two 

kinds of errors, one in precision (spread in the temporal estimate) and one in accuracy (how 

close the temporal estimate is to the actual time interval).

Accounts of temporal imprecision

A core experimental observation in time perception is that errors in the precision of time 

perception are largely found to scale in proportion to the interval being timed. Leading 

theories of time perception[33–36] provide a framework as to how this oft observed 

characteristic[37–39], termed the “scalar timing property”, may come about. Scalar 

Expectancy Theory (SET) [36, 38] accounts for the temporal scalar property by asserting 

that a comparator operates on a ratio-rule in assessing whether the accumulation of a 

pacemaker matches a remembered interval. When the interval to be timed is the delay to a 

reinforcement, Behavioral Theory of Timing (BeT) can account for the scalar property by 
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assuming that the rate of accumulation is inversely proportional to the rate of reinforcement 

(being the inverse of the delay to reward)[35]. These and related models of time perception 

[14, 33, 40–42] make connection to intertemporal decision-making in that they offer a 

rationale as to why agents may exhibit non-stationary time preferences: as two reward 

options separated by a given delay lie further into the future, their perceived delays 

increasingly approximate one another, leading to an increased likelihood of selecting the 

later, but larger, option. But, while these theories describe processes that would lead to scalar 

timing and, potentially, non-stationary time preferences, they don’t address why errors in 

timing should exhibit their observed relationship to the interval being timed.

Providing a proximate answer to this issue, it has been proposed that imprecision in timing 

may arise due simply to noise introduced by neural processing. Though a simple pacemaker-

accumulator model that assumes Poisson-spiking of a single neuron can be constructed that 

produces the scalar timing property (mathematically mimicking BeT), a drift-diffusion 

model of timing comprised of a network of Poisson neurons provides a more biologically 

feasible account[43]. In this “Time-adaptive, opponent DDM” (TopDDM) model, it is 

assumed that two opponent Poisson processes (one excitatory and the other inhibitory) 

linearly sum to produce drift in the accumulator[44]. By this means, accumulation to a target 

threshold at rates tuned to the interval to be timed is shown to abide by the temporal scalar 

property. The above theories and implementation models posit how scalar timing comes 

about, and may thus offer a rationale as to why non-stationary time preference could be 

observed as imprecise perception at long delays might bias choices towards larger, later 

rewards. However, recent experimental observations [45, 46] run counter to the scalar timing 

account of non-stationary time preference. By its reckoning, improved time perception 

should result in reduced tolerance to delay; yet, improved time perception is correlated with 

a greater delay tolerance[45, 46]. Therefore, scalar timing is likely not the basis of non-

stationary time preferences.

Accounts of temporal accuracy

In addition to the imprecision in timing, the accuracy of timing is yet another defining 

feature. Does subjective time (defined as the neuronal metric of the passage of time) 

accurately reflect objective time? Addressing this question requires a direct measure of 

subjective time and is thus, extremely difficult. However, psychologists attempt to infer the 

subjective representation of time by observing patterns in particular timing behaviors. To 

assess what form subjective time takes, the method of temporal bisection [47–49] is often 

used to determine the point of subjective equality (PSE) between two temporal intervals (ie, 

the intermediate interval equally mistaken as being short or long). Asserting that subjective 

time is linear, SET predicts that the PSE should be the geometric mean, which is consistent 

with many experimental observations [47, 50]. Yet, surveying temporal bisection 

experiments [48, 51, 52], the PSE can be found to range from the harmonic mean of the 

reference intervals to the arithmetic mean. This may either be because 1) the subjective 

representation of time is linear but the comparison of two intervals is performed by 

comparing their ratio against a standard (e.g. unity ratio within a measurement error implies 

equal intervals) or some other non-linear operation, or, 2) because the subjective 

representation of time itself is non-linear with the comparison of two intervals performed by 
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comparing their difference (e.g. zero difference within a measurement error implies equal 

intervals). Therefore, while the form of subjective time can accord with objective time 

(under a ratio read-out rule), it also could deviate from objective time, apparently as some 

nonlinear, concave function[42]. Indeed, should subjective time be logarithmic, exponential 

temporal discounting in subjective time would then appear as hyperbolic, explaining non-

stationary time preference as well as the scalar property[42, 53]. Nevertheless, these theories 

and implementation models do not speak to the purpose of why subjective time should take 

the form that it does, nor how or why the curvature of that form may, or should, change.

5 TIMERR and its reckoning of time perception

Postulating that the subjective reward rate of an option should reflect the change in objective 

reward rate it offers, we have recently derived, using TIMERR’s framework, an expression 

for the subjective representation of time (figure 1d1)[30–32]. This rationalizes why the 

representation of subjective time takes the form it does: so that the subjective reward rate 

accurately represents the change in objective reward rate. The key feature of representing 

subjective time in such a way is that it is a bounded, nonlinear concave function whose 

curvature is controlled, crucially, by Time (the past integration integral over which the animal 

estimates its experienced reward rate). In this way, TIMERR is able to account for the 

varying forms subjective time has been inferred to have through the method of temporal 

bisection. When the past integration interval becomes increasing large, the degree of 

nonlinearity between objective time and the subjective representation of time becomes 

diminishingly small, resulting in the PSE approaching the arithmetic mean of the reference 

intervals. As the past integration interval decreases, this non-linearity increases such that the 

PSE will come to accord with the geometric mean. Further decreasing the past integration 

interval toward zero results in this nonlinearity approaching its maximum, causing the PSE 

to approach the harmonic mean. Hence, TIMERR can reconcile divergent experimental 

observations regarding the form of subjective time, while addressing what purpose its form 

serves, but what of subjective time’s imprecision?

An implementation-level model of TIMERR that provides a mechanistic account of time 

perception and production is a drift-diffusion model (TIMERR-DDM), that assumes, like 

TopDDM, neurons that function as Poisson accumulators[30]. Poisson processes, by their 

very nature, produce errors that scale with the square root of their magnitude. How then do 

such accumulators result in timing errors that grow linearly with time? While TopDDM 

solves this problem by assuming that the accumulation is to a constant threshold with its rate 

tuned to be inversely proportional to the interval to be timed, TIMERR-DDM proposes a 

recurrent feedback onto the accumulator so as to represent the non-linear subjective time 

mentioned above. The TIMERR-DDM network accumulator model can produce near scalar 

invariance in timing[30], but importantly, also predicts, under certain conditions, systematic 

deviations from scalar timing, as have been observed experimentally [54, 55]. A defining 

feature of TIMERR-DDM is that the rate of integration is inversely proportional to the 

interval the agent looks back to estimate the rate of reward, Time, which controls this non-

linearity in the accumulator. The distinctive prediction of TopDDM is that the ratio of 

skewness to CV of produced time intervals is exactly 3 [44]. Interestingly, while this 

distinguishes TopDDM from other accumulator models [30], TIMERR DDM makes very 
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similar predictions. However, TIMERR-DDM makes additional falsifiable predictions. The 

most important such prediction is that the non-linearity of time perception will be tuned to 

be optimal for an interval to be timed. Since TIMERR predicts that the non-linearity of time 

perception is also tied to the rate of temporal discounting, this prediction implies that 

optimal timing of intervals will affect temporal discounting. This has not yet been 

appropriately tested, but it is known that there is strong correlation between temporal 

discounting and time perception, such that the greater the tolerance to delay, the greater the 

ability to perceive time[45, 46, 56, 57].

Summary

Why has the hunt for the perfect discounting function and a reckoning of time perception 

been so elusive? The accretion of thought and observation surveyed above argues that, with 

regards to intertemporal decision-making, evolutionarily motivated normative principles 

should underpin the decision-making process while being limited by what is knowable to the 

agent. In this light, TIMERR is a next step in rationalizing why temporal discounting takes 

its apparent form: so as to maximize reward rate within experiential constraints. From this 

perspective, error in subjective time can also then be understood as taking the form that it 

does in the service of maximizing reward rate, rather than simply being nature’s 

impoverished attempt at representing time as it is.
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Highlights

• Intertemporal decision-making is not well-accounted for by prior 

normative theories

• Prior theories of timing consider the perception of time to be 

independent of intertemporal decision-making

• A new reward-rate maximizing theory (TIMERR) rationalizes 

observations in intertemporal decision-making & time perception
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Figure 1. 
A) The TIMERR decision-making algorithm (right) can be depicted graphically (left) so as 

to visualize how offers of given reward sizes (r) and delays (t) are evaluated. An agent (filled 

orange circle), by looking into its past over an interval Time, assesses the rewards 

accumulated (R), thereby appreciating the reward rate experienced in the environment up to 

that moment. The local reward rates associated with current offers of future reward (slopes 

of red and blue offers) are then added to the experienced reward rate so as to calculate 

respective reward rates that could be achieved, were the agent to pursue an offer.
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B) The TIMERR decision-making algorithm can be used to derive an expression for the 

subjective value of an offer, by equating an immediate offer of reward with a delayed offer 

of greater size but which yields the same achievable reward rate. By rearranging for 

subjective value, it is then appreciated that the opportunity cost of time (R/Time* t) is 

subtracted from a reward option (right inset). Graphically, the subjective value of a delayed 

reward is the y-intercept “now” in time of the line depicting the achievable reward rate were 

the agent to pursue that reward option (left).

C) The TIMERR decision-making algorithm can also be re-expressed as a temporal 

discounting function in terms of the fraction of an offer’s magnitude as a function of time 

(inset). The discounting function can be visualized by re-plotting the subjective value of a 

reward that is delayed through time at the offered reward’s respective delay (left). The 

resulting function is hyperbolic.

D) The form of subjective time under TIMERR. D1) TIMERR postulates that the subjective 

reward rate of an offer should equal the difference between the local reward rate of an offer 

and the experienced reward rate. D2) Subjective representation of time (ST(t)) is then found 

by replacing the subjective value of a delayed reward of magnitude r and delay t, SV(r,t), 

with its equation in B, and solving for ST(t). D3) We hypothesize that the neural 

representation of time is ST(t) normalized by Time, as shown in the y-axis. This neural 

representation of subjective time yields a bounded, concave function from 0 (corresponding 

to zero delay) to 1 (corresponding to infinite delay). The smaller the past integration interval 

(Time), the more non-linear the neural representation of time (as visualized in D3).
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Table 1

Theory Normative
Principle

Decision
Formula

Discounting
Form

Steepness
parameter

DUT Stationary
time
preference

Choose max(r(t)D(t));
D(t) = exp(−kt)

Exponential Free-fit

OFT Future
reward-rate
maximization

Hyperbolic Inter-trial
interval

ERT Local reward-
rate
maximization

Hyperbolic Delay to
reward

TIMERR Experientially-
bounded
reward-rate
maximization

Hyperbolic Past
integration
interval
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