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Abstract

Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables 

multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the 

detected photons corresponding to the full x-ray spectrum are divided into several subgroups of 

bin data that correspond to narrower energy windows. Consequently, noise in each energy bin 

increases compared to the full-spectrum data. This work proposes an iterative reconstruction 

algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm 

is based on the framework of prior image constrained compressed sensing (PICCS) and is called 

spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-

projection as the prior image. The spectral PICCS algorithm is implemented using a constrained 

optimization scheme with adaptive iterative step sizes such that only two tuning parameters are 

required in most cases. The algorithm was first evaluated using computer simulations, and then 

validated by both physical phantoms and in-vivo swine studies using a research PCCT system. 

Results from both computer-simulation and experimental studies showed substantial image noise 

reduction in narrow energy bins (43~73%) without sacrificing CT number accuracy or spatial 

resolution.
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1 Introduction

Dual-energy CT has become a valuable tool in diagnostic imaging (McCollough et al. 2015); 

it is used for virtual mono-energetic imaging, automated bone/plaque removal in CT 

angiography, virtual non-contrast-enhanced/non-calcium imaging, kidney stone 

characterization, and discrimination of gout from pseudo gout. Currently, dual-energy CT 

uses energy-integrating detectors (EIDs) and provides two sets of projection data associated 

with two different x-ray spectra. Dual-energy CT has been used for two basis-material 

decomposition (Alvarez et al. 1976; Heismann et al. 2003; Alvarez 2011) and three basis-
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material decomposition (Liu et al. 2009; Yu et al. 2009; Long et al. 2014; Mendonça et al. 
2014).

Photon-counting CT (PCCT) is conceptually advantageous when compared to dual-energy 

CT (Atak et al. 2015; Faby et al. 2015). Such a technique uses a photon-counting detector 

(PCD) that is capable of resolving the energy information of each incident x-ray photon. 

Consequently, multiple sets of projection data with different x-ray spectra can be obtained 

from a single scan, which enables multi-basis material decomposition (Roessl et al. 2007; 

Schlomka et al. 2008; Kappler et al. 2013; Faby et al. 2015; Li et al. 2015). PCCT is not 

currently used in clinical practice due to limitations in PCD materials at high x-ray flux 

(Taguchi et al. 2013). Several research PCCT systems have been developed by various 

vendors and institutes (Schlomka et al. 2008; Shikhaliev 2008; Iwanczyk et al. 2009; 

Bennett et al. 2014), some of which are capable of handling high x-ray flux (Köhler 2004; 

Xu et al. 2013; Kappler et al. 2014; Gutjahr et al. 2016; Yu et al. 2016).

In particular, PCCT is able to produce narrow-energy-bin images with improved energy 

resolution. These improved-energy-resolution images are further processed to generate 

clinically useful information. For example, they may be used to generate mono-energetic 

images, iodine maps, or virtual non-contrast images, via multi-basis material decomposition; 

they may also be used to generate images of enhanced soft tissue contrast via various 

combination schemes. However, because the number of photons used in a narrow energy bin 

decreases, the associated image noise increases (Roessl et al. 2007; Leng et al. 2011; 

Alvarez 2013). The increased image noise induces substantial difficulty in subsequent 

processing. For example, increased image noise would result in a more ill-posed inversion 

process of a calibration matrix in image-based material decomposition. Therefore, reducing 

noise in narrow energy bins is an important task for PCCT imaging. To this end, traditional 

denoising methods may be applied either in the image domain (Vogel et al. 1996; Tomasi et 
al. 1998; Buades et al. 2005; Borsdorf et al. 2008; Li et al. 2014), or in the projection 

domain (Manduca et al. 2009; Tang et al. 2012). However, these image processing methods 

only work in one domain, and the amount of noise reduction may be limited if image details 

are to be preserved; oftentimes, it is necessary to make a tradeoff between noise reduction 

and spatial resolution.

Noise reduction may be better achieved via iterative image reconstruction methods, such as 

compressed-sensing based methods (Song et al. 2007; Chen et al. 2008; Sidky et al. 2008; 

Sidky et al. 2009; Defrise et al. 2011; Loris et al. 2011; Sidky et al. 2012; Xu et al. 2012), 

and statistical model-based methods (Sauer et al. 1993; Bouman et al. 1996; Elbakri et al. 
2002; Ramani et al. 2012). These methods incorporate data consistency and/or statistical 

information into the noise reduction process. However, they consider each set of projection 

data individually and do not utilize data redundancy between different energy bins. Such 

redundancy is abundant in PCCT, as all sets of PCCT projection data are from a single scan.

To exploit data redundancy in the energy domain for the task of noise reduction, Leng et al. 
developed a noise reduction method called local highly constrained back-projection 

reconstruction (HYPR-LR, (Leng et al. 2011)). This method first creates a composite image 

using images from all energies so as to achieve the minimum noise level. The composite 
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image is then used to reduce noise in individual energy bin images, while preserving CT 

number accuracy and spatial resolution in each energy bin image. HYPR-LR is 

straightforward, efficient and effective, but the noise in each energy bin image is limited by 

the noise level of the composite image.

This work, which is a continuation of the HYPR-LR method, develops an iterative image 

reconstruction algorithm for noise reduction in narrow energy bins by making use of images 

from full-spectrum projection data. The algorithm is based on the PICCS (prior image 

constrained compressed sensing) framework (Chen et al. 2008; Leng et al. 2008; 

Szczykutowicz et al. 2010; Lubner et al. 2011; Chen et al. 2012; Lauzier et al. 2012). To 

distinguish it from PICCS and to emphasize the use of data redundancy in the energy 

domain, we call this method spectral PICCS. For conciseness, spectral PICCS sometimes is 

also abbreviated as SPICCS in figure legends.

In this paper, we describe the spectral PICCS algorithm and demonstrate its performance 

qualitatively and quantitatively via computer simulations and experiments using a research 

whole-body PCCT system (Gutjahr et al. 2016; Yu et al. 2016; Yu et al. 2016). Both 

computer-simulation and experimental studies showed substantial noise reduction in narrow 

energy bin images with preserved CT number accuracy and spatial resolution. In some cases, 

the noise performance in narrow energy bin images was better than that in the corresponding 

full-spectrum images, which is a fundamental advantage compared to HYPR-LR.

2 Materials and Method

In this section, the spectral PICCS algorithm is explained and relevant notation is 

introduced. Then details of the computer simulations are provided, and the figures-of-merit 

(FOM) used for quantitative assessments are defined. Finally, a brief description of the 

research PCCT system is provided, along with details of the physical phantom and in-vivo 
swine studies. The computer simulations used realistic x-ray interaction models but ideal 

detector response, whereas the phantom and swine studies were performed on a research 

PCCT system.

2.1 Spectral PICCS

The PICCS reconstruction framework (Chen et al. 2008) is described as below. Let x̲ and b̲ 
be the column vectors denoting the object of interest and its corresponding projection data, 

respectively. Additionally, let A be the matrix representing the forward projection and x̲p be 

the prior image. Let

(1)

Here c is a weighting factor between (0,1] and TV stands for total variance. The PICCS 

reconstruction result, denoted as x̲*, is a solution to the constrained minimization problem

(2)
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Equation (2) can be solved by an iterative method, as presented in (Chen et al. 2008), with 

each iteration consisting of two steps. First, data consistency Ax̲ = b̲ is enforced using the 

algebraic reconstruction technique (ART) (Kak et al. 2001). Second, TV summation 

expressed in Equation (1) is minimized using a gradient descent algorithm. These two steps 

alternate until the difference between the images reconstructed from two neighboring 

iterations is below a predefined threshold.

The spectral PICCS algorithm follows the PICCS framework; see the diagram in Figure 1. 

We consider two sets of projection data, one being bin data that belongs to a relatively 

narrow energy window, and the other being full spectrum data that contains all detected x-

ray photons. The task is to perform image reconstruction for the bin data.

To start, two images were reconstructed using the conventional filtered-back-projection 

(FBP) algorithm (Kak et al. 2001), one for the bin data, denoted as , and the other for 

the full spectrum data, denoted as . The FBP images of the bin data and full spectrum 

data were used as the seed image and the prior image of the spectral PICCS algorithm, 

respectively. Next, the seed bin image was updated by an outer iterative process that 

contained three steps, namely the simultaneous ART (SART) step, the projection-onto-

convex (POC) step, and the TV minimization step. Note that each SART or TV 

minimization step was also iterative, which we call inner iterative processes so as to 

distinguish them from the outer iterative process.

The SART step updated the bin image every projection view, and traversed all projection 

views in a random fashion to accelerate convergence (Köhler 2004). The forward projection 

of the SART step was implemented using the Joseph method (Joseph 1982). The relaxation 

parameter used for the inner SART iteration (equivalent to the β in (Sidky et al. 2008)) was 

1/k, where k was the iteration number of the outer iterative process. The rationale for 

choosing 1/k was based on the rules for the relaxation parameter presented in Section 2.1 in 

(Bertsekas 2015), which would guarantee convergence if ART alone was considered. The 

POC step ensured that the bin image (in terms of linear attenuation coefficient) was non-

negative (Sidky et al. 2008).

The TV minimization step was implemented using the scheme proposed by (Sidky et al. 
2009) except that the step size of each TV iteration was calculated using a backtracking line 

search algorithm [Algorithm 3.1] (Nocedal et al. 2006). For each outer iterative process, the 

number of TV iterations was fixed, e.g., 50.

The spectral PICCS algorithm stopped when one of the following two criteria was met: 1) 

when the maximum outer iteration number, denoted as Nstop, was reached, or 2) when the 

difference image between two consecutive outer iterations became smaller than a predefined 

threshold. For this 2nd condition, let IFBP be the bin image reconstructed using the FBP 

algorithm, and let  and  be the bin images obtained from the SART step in the 

(k-1)th and kth outer iterations, respectively. We define
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(3)

for 1<k<Nstop, where ‖·‖ stands for the Frobenius norm (L2 norm). We call rSART 

normalized image update, and use it for quantification of image update. Note that rSART is a 

relative value that is normalized by the seed image, hence the choice of values for rSART is 

relatively stable across different objects and scanning techniques.

Overall, the spectral PICCS algorithm was mainly controlled by three parameters, i.e., the 

iteration number for the TV minimization step, the threshold (normalized image update) for 

the 2nd stopping criterion, as well as the weighting factor c.

2.2 Computer Simulations

2.2.1 Digital Phantoms—Two digital phantoms were designed for our computer 

simulations, a characterization phantom and a water phantom. The characterization phantom 

was composed of seven materials, including water, calcium of 300mg/ml concentration, 

iodine of 20mg/ml concentration, C1, C2, C3, and C4 (see the central plane of the 

characterization phantom in Figure 2). C1, C2, and C3 were defined according to (Woodard 

et al. 1986); they were representative of muscle, grey matter, and white matter, respectively. 

C4 was defined according to (Kramer et al. 1982), and was representative of bone. The 

calcium and iodine portions were spherical balls of diameter 40 mm, whereas C1, C2, and 

C3 were spherical balls of diameter 20 mm. The centers of all these five objects were located 

on a circle of diameter 120 mm. C4 was a spherical shell of diameter 200 mm and radial 

width of 10 mm; it was concentric to the 120 mm circle. The free space inside C4 was filled 

with water.

The water phantom consisted of a cylindrical wall of C4 filled with water. The C4 wall was 

of longitudinal length 20 mm and radius 200 mm with radial width 10 mm. Therefore, the 

cross section of the water phantom was exactly the same as the central cross section of the 

characterization phantom (Figure 2), except that the water phantom did not contain C1, C2, 

C3, the calcium disk, or the iodine disk.

2.2.2 Data Simulation—Projection data of the two digital phantoms were obtained by a 

simulation tool called DRASIM (Stierstorfer 2000). For pre-patient filters, a 2 mm thick 

aluminum filter mimicking tube housing was included, and a 0.9 mm thick titanium filter 

and a 1.5 mm thick aluminum filter were added. Three x-ray interactions, including 

photoelectric, Compton, and Rayleigh, were taken into account. The detector utilized CdTe 

based sensors, and was assumed to have an ideal response. Consequently, physical effects 

such as charge sharing, pulse pile-up, and K-escape were not modeled.

For data acquisition, a full circular trajectory of radius 595 mm was used. This trajectory 

consisted of 1152 equiangular x-ray source positions in one rotation. This geometry is 

similar to that used on the research PCCT system. The characterization phantom was placed 

such that its central cross section was located on the trajectory plane, and the center of the 

C4 shell was at the center of the circular trajectory. The water phantom was placed such that 
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its middle plane was on the trajectory plane, and its axis coincided with the rotation axis of 

the circular trajectory. The detector was one circular row composed of 480 channels with 

quarter-detector pixel shift, which corresponded to 0.5 mm slice thickness and 0.7 mm in-

plane pixel pitch at the iso-center. This configuration provided a field-of-view (FOV) of 

diameter 330 mm at the iso-center.

All projection data were acquired using 1s rotation, 550 mA, and 140 kV. Four energy 

thresholds were used: 20, 54, 64, and 84 keV. We reconstructed images for four energy bins: 

[20, 54) keV, [54, 64) keV, [64, 84) keV, and [84, 140] keV. We considered the energy 

threshold data within [20, 140] keV as the full spectrum data, and used the corresponding 

FBP images as the prior images for the spectral PICCS image reconstruction of the four 

energy bins.

2.2.3 Image Reconstruction—Both seed (bin) and prior (full spectrum) images were 

reconstructed by the conventional FBP algorithm with the ramp filter apodized by a Hanning 

window within the Nyquist frequency band associated with the image pixel size. For spectral 

PICCS, the number of TV iterations was set to 50, whereas the maximum outer iteration 

number was set to 100 (Nstop).

For both digital phantoms, a series of weighting factors c from 0.1 to 1 with a step size of 

0.1 was used. All c values were used to investigate the impact of c on spectral PICCS image 

quality, whereas the c value of 0.5 was used for other quantitative evaluation. The final 

spectral PICCS images were obtained once the normalized image update, i.e., rSART in 

Equation (3), dropped below 0.05%. The image pixel size was 0.5 mm × 0.5 mm, whereas 

the image thickness was 0.5 mm. Prior to image reconstruction, water beam hardening 

correction was performed for all simulated projection data using the method presented in 

(Hsieh 2009). After reconstruction, the linear attenuation coefficient images were converted 

to Hounsfield Unit (HU) using the standard conversion formula and the linear attenuation 

coefficient of water at the effective energy corresponding to the respective energy bin or 

threshold.

2.2.4 Quantitative Evaluation—Spectral PICCS was quantitatively evaluated in terms of 

convergence, CT number accuracy, spatial resolution, noise, as well as the impact of the 

weighting factor c.

First, the convergence was analyzed using the normalized image update rSART (Equation 

(3)). Second, the CT numbers of water, calcium and iodine were measured using disk-like 

regions of interest (ROIs) that were of radius 25 mm (Figure 3A). The measured CT 

numbers were compared between the FBP and spectral PICCS images for evaluation of CT 

number bias. Third, spatial resolution was measured using modulation transfer functions 

(MTF). To generate an MTF curve, an edge spread function corresponding to the calcium 

edge was calculated, which was differentiated to generate a line spread function. The line 

spread function was then averaged radially and Fourier transformed. The final MTF curve 

was obtained by normalizing the Fourier transformed curve to the magnitude of its zero-

frequency component.
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Fourth, for a fair noise comparison, spatial resolution was matched between FBP and 

spectral PICCS images. As will be reported later, the spectral PICCS images had better 

spatial resolution than the FBP images. To this end, Gaussian low-pass filters were applied 

to the spectral PICCS images such that the resultant MTF curves corresponding to the 

calcium disk best matched those measured from the FBP images in terms of root mean 

square errors. Noise was then measured in the water ROI (Figure 3A) and compared 

between pairs of FBP and spectral PICCS images that had the matched MTF curves.

Finally, the impact of c on spectral PICCS image quality was investigated in terms of 1) 

noise power spectrum (NPS) using the water phantom, 2) MTF using the calcium edge of 

the characterization phantom, 3) noise using the water ROI of the characterization phantom, 

and 4) CT numbers using the water, calcium and iodine ROIs (Figure 3A). To measure NPS, 

40 Poisson realizations were inserted to the same set of projection data, and 40 sets of noisy 

images were reconstructed. These 40 sets of images were further used to generate 20 sets of 

difference images. In each difference image, 24 square ROIs of size 10 mm × 10 mm located 

on a radius of 60 mm were drawn (Figure 3B), and an NPS curve was calculated for each 

ROI using the method presented in (Siewerdsen et al. 2002). The final NPS curve was 

obtained by averaging 24×40 NPS curves. The measured NPS curves, MTF curves and noise 

were studied for different c values.

2.3 Experiments

2.3.1 Research PCCT System—The research PCCT system used the same platform as 

the 2nd generation dual-source dual-energy (DSDE) CT system (SOMATOM Definition 

Flash, Siemens Healthcare GmbH, Forchheim, Germany). It consisted of two x-ray sources 

that were about 90 degrees apart. One source was coupled to an EID and the other to a PCD; 

see Figure 4A. We refer to the former source-detector assembly as the EID subsystem, and 

the latter as the PCD subsystem.

The EID consisted of 64 rows of width 0.6 mm (at iso-center), providing a longitudinal 

coverage of 38.4 mm. The PCD consisted of 32 rows of width 0.5 mm (at iso-center), 

providing a longitudinal coverage of 16 mm. The FOVs of the EID and PCD subsystems 

were 500 mm and 275 mm in diameter, respectively. Unlike the 2nd generation DSDE CT 

system, the EID and PCD subsystems were not simultaneously energized. However, due to 

the limited FOV size of the PCD, in-plane data truncation occurred when the PCD 

subsystem imaged a large object. To avoid such artifacts when imaging a large object, a 

separate low-dose data-completion scan (DCS) was performed using the EID subsystem. 

The truncated PCD projection data were estimated and completed using the DCS data. A 

more detailed description about the DCS method can be found in (Yu et al. 2016).

The research PCCT system provided two data acquisition modes, namely the macro mode 

and the chess mode. The macro mode allowed two energy thresholds, whereas the chess 

mode allowed four energy thresholds. In this work, we will only explain how the chess mode 

works, as all our experimental data were acquired using this mode. For details of the macro 

mode, we refer to (Yu et al. 2016).
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A macro pixel was the smallest readout unit of the PCD, and its size defined the detector 

row width. Each macro pixel was composed of 4×4 subpixels (Figure 4B), and each subpixel 

registered two energy thresholds. In the chess mode, the 16 subpixels were interlaced into 

two groups, with one group registering two energy thresholds, and the other registering two 

different energy thresholds. As a result, the chess mode allowed 4 energy thresholds. With 

such a configuration, the chess mode only uses half dose for each threshold (Yu et al. 2016), 

and presents a unique noise correlation between different energy bins (Schmidt et al. 2015). 

Let E1, E2, E3 and E4 be the 4 thresholds in an ascending order, and let Ekv be the tube 

potential. The chess mode generated 4 sets of bin data with energy ranges of [E1, E2), [E2, 

E3), [E3, E4) and [E4, Ekv], as well as 3 sets of threshold data with energy ranges of [E1, 

Ekv], [E2, Ekv], [E3, Ekv]. In this work, the goal was to apply the spectral PICCS algorithm 

to the bin data by using FBP images of the [E1, Ekv] threshold data as prior images.

The research PCCT system provided two types of scan protocols, namely the head and body 

scan protocols. The head scan protocols assumed a 275 mm scan FOV, and thus did not 

require a DCS, whereas the body scan protocols required a DCS. In this work, the physical 

phantom studies used the head scan protocols, whereas the swine studies used the body scan 

protocols.

2.3.2 Anthropomorphic Phantom Studies—The head portion of an anthropomorphic 

torso phantom was scanned on the research PCCT system using the head scan protocols. The 

head was placed such that it was entirely within the PCD FOV. The head was scanned in the 

chess mode using an axial acquisition, head protocol, 140 kV and 280 effective mAs 

(CTDIvol = 71 mGy). The four thresholds used in the chess mode were 25, 48, 65, and 84 

keV. For each set of bin or threshold data, 2304 fan-beam projections were generated. These 

projection data were preprocessed by a workstation provided by the vendor, which included 

water beam hardening correction, scatter correction and the logarithm operation.

Spectral PICCS image reconstruction was performed for the central plane using the two 

central rows of projection data, which resulted in a slice thickness of 1 mm. All images were 

reconstructed using a pixel size of 0.5 mm × 0.5 mm. The seed and prior images were 

generated by the FBP algorithm using a Hanning apodization window. For the spectral 

PICCS algorithm, the iteration number of the TV minimization step and the maximum outer 

iterations were 50 and 100 respectively, the same as those used in the simulation studies. The 

weighting factor c = 0.5 was used for the spectral PICCS algorithm. For comparison, TV 

images were also reconstructed by setting c = 1.0. All spectral PICCS (and TV) 

reconstructions were stopped when the normalized image update (rSART) became smaller 

than 0.05%.

2.3.3 In-vivo Swine Studies—With approval from our institutional animal care and use 

committee, a 40 kg female pig was scanned on the research PCCT system. The neck and 

thorax regions were scanned in the chess mode with an axial acquisition, body protocol. As 

the entire pig was placed on the patient table, in-plane data truncation occurred in all scans, 

and DCSs were performed for data truncation corrections.
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One neck scan and two thoracic scans were performed at 140 kV. The neck scan used energy 

thresholds 25, 45, 65 and 85 keV, as well as 440 effective mAs (CTDIvol = 111 mGy). The 

two thoracic scans were performed right after a contrast enhanced scan, hence there were 

iodine residuals in the heart. Both thoracic scans were performed with breathing suspended 

using the same energy thresholds 20, 25, 57 and 77 keV, except that the first thoracic scan 

used 550 effective mAs (CTDIvol = 60.7 mGy), whereas the second used 276 effective mAs 

(CTDIvol = 30.5 mGy).

Each scan generated 2304 projections, which were further preprocessed by a workstation 

provided by the vendor. Besides those preprocessing steps applied to the head phantom data, 

truncation correction using the DCS method was also applied to the pig data. Note that the 

output projection data of the DCS method were in parallel-beam geometry, indicating that a 

rebinning process was involved in the preprocessing steps. Unlike in the simulation and head 

phantom studies that images were reconstructed using fan-beam data, the pig images were 

reconstructed using parallel-beam data. However, the reconstruction parameters and kernels 

(Hanning apodization) used for the pig studies were the same as those used for the 

simulation and head phantom studies.

For comparison, HYPR-LR images of the swine neck were also generated from the FBP 

images. For each energy bin, both bin and prior images were low-pass filtered and the ratio 

of the low-pass filtered bin images over the low-pass filtered prior images were calculated as 

the weighting images. The final HYPR-LR images were obtained as the multiplication of the 

prior images and the weighting images (Leng et al. 2011). The HYPR-LR images were then 

compared to the FBP and spectral PICCS images both qualitatively and quantitatively.

2.4 Evaluation of Computational Time

Reconstruction speed of spectral PICCS was evaluated on a personal computer that was 

equipped with dual core CPUs (Intel(R) Xeon(R) CPU E5520 @ 2.27 GHZ) and 6 GB 

RAM. Graphic processing units (GPU) were not used. The operation system was 64-bit 

Windows 7 Professional, and the algorithm was implemented in C. Average reconstruction 

time of 10 outer iterations was recorded and calculated for each object. The size of the 

projection data and image is summarized in Table 4 in the Appendix.

3 Results

3.1 Computer Simulations

The spectral PICCS images of the characterization phantom converged for all energy bins 

for the 1st 100 iterations; see the convergence curve of Bin-1 images in Figure 5 as an 

example. The final spectral PICCS images for Bin-1 to Bin-4 were generated using 22, 19, 

19 and 24 iterations, respectively; see Figure 6. The average time taken by one iteration was 

33 seconds; see Table 4 in the Appendix. The spectral PICCS images of different energy 

bins demonstrated different features, indicating that the spectral PICCS preserved energy 

information. Take the beam hardening artifacts indicated by the dashed rectangle in Figure 6 

as an example; they are dominant in Bin-1 images but almost vanish in the Bin-4 image. 
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Compared to the FBP images, it is obvious that the spectral PICCS images have less noise. 

These observations are consistent with our quantitative assessment below.

In terms of CT number accuracy, the differences between the FBP and spectral PICCS 

images for water, calcium and iodine are shown in Figure 7. All differences converged to a 

number smaller than 2 HU. Around 20 iterations, which corresponded to the generation of 

the images presented in Figure 6, the CT number differences between FBP and spectral 

PICCS were less than 3 HU for all materials and energy bins. Therefore, we conclude that 

the spectral PICCS algorithm provided satisfactory CT number accuracy.

In terms of spatial resolution, the MTF curves were measured for Bin 2, 3, and 4. The MTF 

curve of the Bin-1 image was excluded as the calcium edge was contaminated too much by 

beam hardening artifacts. The widths of the MTF curves of the FBP images at its 50% peak 

values were 0.258 mm−1 for all three bins, whereas those of the spectral PICCS images were 

0.398, 0.375, and 0.367 mm−1 for Bin 2, Bin 3, and Bin 4, respectively. As an example, the 

MTF curves of Bin 4 are shown in Figure 8. As we can see, substantial enhancement in 

spatial resolution was achieved in the spectral PICCS images relative to the FBP images that 

were reconstructed with a Hanning apodization window.

For a fair noise comparison between FBP and spectral PICCS, spatial resolution was 

matched. The MTF curves corresponded to the low-passed spectral PICCS images fit the 

MTF curve of the FBP image almost perfectly; see the MTF curves of Bin 4 in Figure 8 as 

an example. With matched spatial resolution, image noise was measured in the water ROI 

(Figure 3A) for both the FBP and spectral PICCS images (Table 1). Due to beam hardening 

artifacts in the Bin-1 images, neither spatial resolution nor noise measurement was 

performed for the Bin-1 images. Compared to the FBP images, a noise reduction between 

55% and 60 % was achieved in the spectral PICCS images. Furthermore, the spectral PICCS 

images had even less noise than the prior FBP image, which cannot be achieved by the 

HYPR-LR method (Leng et al. 2011).

Finally we report on the impact of the weighting factor c on spectral PICCS image quality. 

The NPS curves corresponding to different c values in Bin 3 are plotted in Figure 9A. The 

NPS peaks of both the spectral PICCS and FBP images appeared at the same frequency 

location (0.185 lp/mm). In addition, the areas under the NPS curves of the spectral PICCS 

images were substantially smaller than that of the FBP image. It was clear that the area 

under the NPS curve achieved a minimum value when c was 0.5, indicating maximum noise 

reduction.

The results from the characterization phantom were consistent with the NPS results from the 

water phantom. The MTF curves corresponding to the calcium edge in Bin 4 were plotted in 

Figure 9B. The spectral PICCS MTF curves did not change much across difference c values, 

and were much wider than the FBP MTF curve. Also, we note that the measured noise in the 

water ROI of the characterization phantom was minimum when c was 0.5 (without spatial 

resolution matching).
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In addition, we compared the CT numbers between the FBP images and the spectral PICCS 

images using different c values. It turned out that the maximum differences in CT numbers 

of water, calcium, and iodine were 3.4, 3.2 and 3.5 HU, respectively.

In summary, according to the results from both the water and characterization phantoms, a c 

value of 0.5 was optimal in terms of noise performance of the spectral PICCS algorithm, 

which is consistent to what was suggested in (Lauzier et al. 2012). Thus, all c values in the 

other spectral PICCS reconstructions of this work were set to 0.5.

3.2 Anthropomorphic Phantom

The spectral PICCS images of the head phantom were obtained at the 39th, 36th, 39th, and 

36th iterations for Bin 1 – 4, respectively. The average time taken by one iteration was 98 

seconds; see Table 4 in the Appendix. All images converged for the 1st 100 iterations.

The reconstruction results of the head phantom are shown in Figure 10. The spectral PICCS 

images preserved spectral information. For example, compared to the Bin-1 images, 

substantial reductions in beam hardening and calcium blooming were achieved in Bin 4; see 

the regions indicated by arrows in Figure 10. Further, compared to the FBP images, 

considerable noise reduction was achieved in the spectral PICCS images. The amount of 

noise reduction can be better appreciated in a zoomed in region; see Figure 11. The region 

used in this figure is indicated by the dashed rectangle in the bottom right of Figure 10. 

Noise measurements are presented in Table 2; these results were measured in the region 

indicated by the solid rectangle as shown in Figure 10. Noise reductions ranging from 43% 

to 53% were achieved. Note that these results were obtained without matching spatial 

resolution, and thus are conservative. It is also important to point out that this amount of 

noise reduction was achieved without introducing patchy artifacts, which are evident in the 

TV reconstructions (Figure 10 and Figure 11, right columns).

3.3 In-vivo Swine Study – Neck

The spectral PICCS images of the pig neck were obtained at the 55th, 50th, 50th, and 51th 

iterations for Bin 1, 2, 3, and 4, respectively. The average time taken by one iteration was 

220 seconds; see Table 4 in the Appendix. Compared to the FBP seed images, the spectral 

PICCS images achieved considerable noise reduction without introducing patchy artifacts 

(Figure 12B and E). In particular, spectral PICCS images recovered some subtle structures 

that were less visible in the FBP images; see the structures in the dashed red circles in Figure 

12. In contrast, the same structures were noticeably contaminated by patch artifacts in the 

TV image (Figure 12D). The HYPR-LR images also achieved considerable noise reduction 

and had recovered subtle structures, however, the amount of noise reduction in HYPR-LR 

images were observed less than in the spectral PICCS images. These visual inspections were 

confirmed by our quantitative analysis below.

For quantitative analysis, we measured CT numbers and noise in the pig neck images. For 

CT numbers, we plotted the profiles along the line depicted in Figure 12A. The small disks 

above the pig neck were calcium (left four) and iodine solutions (right four) with different 

concentrations. For each bin, the spectral PICCS, FBP, and HYPR-LR profiles matched each 

other except that the spectral PICCS profile appeared smoother indicating lower image 
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noise; see Figure 13 as an example. In addition, the slope of these profiles also overlap well 

among the three algorithms, which indicates that the spectral PICCS, FBP, and HYPR-LR 

profiles had similar spatial resolution.

The noise was measured in a region of interest (ROI) indicated by the white circle (Figure 

12A), and the results are shown in Table 3. For Bin 2, 3 and 4, the spectral PICCS images 

achieved 49–73% noise reduction relative to the FBP images. In addition, the spectral 

PICCS images in Bin 2, 3 and 4 had less noise than that of the prior images. The HYPR-LR 

images also achieved substantial noise reduction, but their noise in bin images was higher 

than the prior images as expected, except for Bin 1. In Bin 1, the HYPR-LR image showed 

lowest noise among the three algorithms and was even lower than that in the prior image, 

which is considered the theoretical limit. The exact reason was unclear, however we 

suspected this was at least partially related to the fact that Bin 1 image, with the lowest 

energy range, had most contamination from any non-ideal physical effects, such as charge-

sharing, k-escape and beam hardening. Note that bone beam hardening correction was not 

applied to the FBP images.

3.4 In-vivo Swine Study – Thorax

First, we report reconstruction results from Bin-1, starting with the 550 mAs scans. Because 

of the narrow energy window, the FBP image demonstrated excessive noise (Figure 14A) 

such that most details of the soft tissue were lost. In contrast, the spectral PICCS image 

(Figure 14B) recovered most of the soft tissue details. This Bin 1 image was obtained using 

31 iterations, with each iteration took about 185 seconds on average; see Table 4 in the 

Appendix. The correctness of the recovered soft tissue was validated by the prior image 

(Figure 14C). We further subtracted the FBP Bin-1 image from the spectral PICCS Bin-1 

image. The mean CT number measured inside the black ROI shown in Figure 14D was −0.7 

HU, which indicates that the prior image did not induce bias in the spectral PICCS image.

Several other observations were also made in Figure 14. First, although the energy range of 

Bin 1 was located in the lower end of the full spectrum that was used for the prior image, the 

contrast of myocardium was not noticeably enhanced neither in the FBP Bin-1 image nor in 

the spectral PICCS image. Second, although soft tissue details were recovered, the noise 

texture in the spectral PICCS image was not as natural when compared to the prior image. 

Finally, it should be pointed out that when the dose was decreased by half (276 mAs), both 

FBP and spectral PICCS failed.

Furthermore, we compared the spectral PICCS images of the 276 mAs scans to the FBP 

images of the 550 mAs scans; see Figure 15. The spectral PICCS reconstruction results of 

Bin 2, 3 and 4 were obtained using 27, 27 and 26 iterations, respectively. We measured noise 

in both FBP and spectral PICCS images using the white circular ROIs as indicated in the 

bottom row of Figure 15. For FBP, the noise was 25.0, 30.5 and 16.0 HU in Bin-2, −3 and 

−4 images, respectively. For spectral PICCS, the noise was 9.3, 14.2 and 7.7 HU in Bin-2, 

−3 and −4 images, respectively. As the appearance of the spectral PICCS half-dose images 

was comparable to that of the FBP full-dose images, we conclude that use of spectral PICCS 

could allow at least 50% dose reduction when compared to FBP. Note that the myocardium 

in the FBP images were different from that in the spectral PICCS images in terms of both 
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shape and contrast, because the projection data used for the two reconstructions were 

acquired in-vivo during different time periods.

4 Discussion

Spectral PICCS used three main tuning parameters: the iteration number for the TV 

minimization step, the threshold for the normalized-image-update stopping criterion, and the 

weighting factor c. In this work, these parameters were set to be identical for the simulation 

and experimental studies, and satisfactory spectral PICCS images were obtained for each 

case, which indicated that these parameters were reasonable for a range of object sizes and 

scan techniques. This is important for translation to clinical practice, as the parameters did 

not require substantial tuning efforts for different imaging scenarios. Regarding the 

weighting factor c, it was shown in Section 3.1 that it had negligible impact on the shape of 

NPS and MTF curves for high contrast objects, but substantially changed the noise 

magnitude, which reached a minimum for c = 0.5. These findings, together with those 

reported in (Lauzier et al. 2012), that c has a noticeable impact on noise texture and that c 

around 0.5 results in a noise texture similar to that of FBP images, suggest fixing c at 0.5 for 

the spectral PICCS algorithm. Consequently, two tuning parameters should be satisfactory in 

most scenarios for the spectral PICCS algorithm.

It is worth mentioning that the x-ray spectrum was non-overlapping between different 

energy bins in our computer simulation studies, but were overlapping in the real data studies 

due to detrimental physical effects such as charge sharing and K-escape. Nevertheless, the 

spectral PICCS produced satisfactory reconstruction results. We also showed that spectral 

PICCS worked well in a case of an extremely narrow energy window (relative to the range 

of x-ray spectrum for medical usage). For the 550 mAs pig-thorax scans, spectral PICCS 

was able to recover almost all the soft tissue details that were lost in the FBP Bin-1 images 

([20, 25] keV), without introducing bias. Note that the Bin-1 projection data from the 550 

mAs scans were contaminated by various detrimental physical effects such as charge sharing 

and K-escape. Consequently, Bin-1 data may have used more x-ray photons than what would 

be expected in an ideal scenario, which could help allay photon starvation. On the other 

hand, the detrimental physical effects may have increased the effective energy of Bin-1, 

which is likely the reason that the myocardium contrast in Bin 1 was not noticeably better 

than that in the prior image.

In the simulation studies of the characterization phantom (Section 2.2.4), the spatial 

resolution of SPICCS was higher than the corresponding FBP images. To match the spatial 

resolution between these two algorithms, a Gaussian filter was applied to the SPICCS 

images so that the spatial resolution of the calcium disk was matched between the two 

algorithms. Unlike FBP algorithms, spectral PICCS is non-linear, and its images may have 

different spatial resolution for edges of different contrast levels (Li et al. 2014; Yu et al. 
2015). Consequently, although the spatial resolution corresponding to the calcium disk of 

the characterization phantom was matched between the spectral PICCS and FBP images, it 

might not be matched for low contrast objects such as C2. The choice of the calcium disk 

used in this work for spatial resolution matching was mainly based on the fact that its edge 

was long and of high contrast such that MTF curves could be accurately measured. Also, the 
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spatial resolution improvement shown in this case was measured with piece-wise constant 

objects, which were suitable for TV-based algorithms. The amount of spatial resolution 

improvement may be different in cadaveric and animal studies where complex objects and 

textures exist. Results in our cadaveric and animal studies demonstrated that at least SPICCS 

didn’t degrade spatial resolution in these scenarios (Figure 13).

Recently a Poly-United-Iterative Reconstruction algorithm involving a concept of prior 

image (Poly-UIR, (Xi et al. 2015) was proposed for spectral CT. The presented work is 

different from the Poly-UIR algorithm. First, although the mathematical formulation is 

similar, the optimization method was different. The Poly-UIR algorithm uses an 

unconstrained optimization method called split Bregmen, whereas the spectral PICCS uses a 

constrained optimization method. Although the convergence rate was not reported in (Xi et 
al. 2015), an unconstrained optimization method in general requires considerably more 

iterations than a constrained optimization method. In addition, compared to the three tuning 

parameters (including c) in spectral PICCS, Poly-UIR requires five tuning parameters. 

Second, projection data used for algorithm demonstration are different as well. For Poly-

UIR, projection data were first obtained from a dual-energy CT system capable of fast kV 

switching, which were further forward projected via computer simulation programs to 

simulate a PCCT system with a down-sampling rate (60 views per 360 degrees), whereas in 

the presented work, both simulation and real data from a research PCCT system were used 

with a typical CT sampling rate (1000~2000 views per 360 degrees). Third, image quality 

was assessed differently. The work of (Xi et al. 2015) focused on noise reduction with 

preserved similarity between the Poly-UIR images and the corresponding reference images, 

whereas our goal in this work was to demonstrate noise reduction with preserved CT number 

and spatial resolution.

Finally, we would like to point out a couple of potential limitations of the spectral PICCS 

algorithm in its current form. First, its forward/back projectors, as well as the TV process are 

all in 2D, and thus the algorithm is for 2D images. The performance of the algorithm for 3D 

images is currently under development. Second, current spectral PICCS does not involve 

statistical noise modeling, which could be important in cases where the number of x-ray 

photons is limited. To this end, many statistical image reconstruction algorithms developed 

for dual-energy CT, such as those mentioned in the introduction (Sauer et al. 1993; Bouman 

et al. 1996; Elbakri et al. 2002; Ramani et al. 2012) as well as the dPIRPLE algorithm 

developed at the Johns Hopkins University (Dang et al. 2014), may be incorporated into the 

spectral PICCS algorithm.

Our intention of the spectral PICCS algorithm was to reduce noise in narrow energy bins for 

improved performance in further spectral imaging applications such as multi-material 

decomposition and K-edge imaging. In future work, we are interested in combining the 

spectral PICCS algorithm with our general volume constrained material decomposition 

algorithm (Li et al. 2015). Our ultimate goal is, however, is to incorporate material 

decomposition into the spectral PICCS framework such that noise reduction and material 

decomposition can be simultaneously achieved in one step, similar to the idea proposed in 

(Barber et al. 2015). To further improve the performance, the statistical material 

decomposition methods that are developed for dual-energy CT, such as those with direct 
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noise modeling for individual set of spectral data (Long et al. 2014; Niu et al. 2014) as well 

as those involving noise correlation modeling between different sets of spectral data 

(Kalender et al. 1988; Zhang et al. 2014; Brown et al. 2015; Liu et al. 2015), are inspiring 

and worth investigation in future work.

5 Conclusion

A full-spectrum image-constrained reconstruction algorithm called spectral PICCS has been 

developed. For both ideal spectra separation and overlapping spectra, the algorithm 

converged and was able to accurately preserve spectral information: the CT number 

difference between the spectral PICCS images and the FBP images was no larger than 4 HU 

in water, calcium and iodine for all cases. Furthermore, the spectral PICCS algorithm was 

able to achieve substantial noise reduction without sacrificing spatial resolution. The amount 

of noise reduction relative to the FBP images were 1) 55 – 60% in our computer simulation 

studies with spatial resolution matching and 2) 43 – 73% in our experimental studies without 

spatial resolution matching. In some of the computer-simulation and swine studies, bin 

images generated from the spectral PICCS had less noise than the prior image, indicating a 

fundamental advantage when compared to the HYPR-LR method. We also have shown that 

the spectral PICCS algorithm could achieve at least 50% dose reduction when used in 

conjunction with a research PCCT system.
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Appendix

Table 4

Data Size and Computational Time used for spectral PICCS

Objects Image Size Number of
Views

Number of
Channels

Time/Iteration
(seconds)

Characterization 420×420 1152 480 33

Head Phantom 512×512 2304 480 98

Swine Neck 500×370 2304 1612 220

Swine Thorax 440×350 2304 1612 185
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Figure 1. 
Constrained optimization diagram of the spectral PICCS algorithm.

Yu et al. Page 20

Phys Med Biol. Author manuscript; available in PMC 2017 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Central cross section of the characterization phantom. The concentrations of calcium and 

iodine were 300mg/ml and 20mg/ml, respectively. C1, C2, C3, and C4 were representative 

of muscle, grey matter, white matter, and bone, respectively.
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Figure 3. 
A: Illustration of disk ROIs for CT number measurements using the characterization 

phantom. B: Illustration of square ROIs for noise power spectrum calculation using the 

water phantom.
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Figure 4. 
A: The research PCCT system. EID: energy-integrating detector. PCD: photon-counting 

detector. B: Depiction of a PCD pixel.
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Figure 5. 
Spectral PICCS convergence of Bin-1 images of the characterization phantom. The spectral 

PICCS program was stopped when the normalized image update is less than 0.05%. Similar 

convergence behaviors were observed for the other bins.
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Figure 6. 
Left: FBP bin images. Right: spectral PICCS bin images. Iteration numbers of Bin 1 to Bin 4 

were 22, 19, 19, and 24, respectively. Display: L / W = 40 / 400 HU. Slice thickness: 0.5 

mm.
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Figure 7. 
CT number differences between the FBP images and spectral PICCS images of the 

characterization phantom. After 20 iterations, all differences were within 3 HU.
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Figure 8. 
MTF curves of the Bin-4 images of the characterization phantom (calcium edge). Spatial 

resolution match was performed for the Bin-4 image of the characterization phantom. The 

resolution match was achieved by applying a low-pass (Gaussian) filter to the spectral 

PICCS such that the MTF curve of the low-passed spectral PICCS image almost overlapped 

that of the FBP image.

Yu et al. Page 27

Phys Med Biol. Author manuscript; available in PMC 2017 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
A: Noise power spectrum (NPS) of the spectral PICCS and FBP Bin-3 images of the water 

phantom. The NPS curves peak at frequency of 0.185 mm−1, and the minimum peak 

magnitude was reached when c was 0.5. B: MTF curves of the spectral PICCS and FBP 

Bin-4 images of the characterization phantom. The MTF curves of the spectral PICCS 

images were similar for different c values. The spectral PICCS images all had better spatial 

resolution than the FBP image reconstructed with a Hanning apodization window.
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Figure 10. 
The spectral PICCS images of the head phantom preserved spectral information: beam 

hardening artifacts and calcium blooming were substantially reduced in Bin-3 and −4 

images when compared to Bin-1 and −2 images, as indicated by the arrows. Compared to the 

FBP images, the spectral PICCS images had noticeably reduced noise. The TV images 

showed noticeable patchy artifacts, which did not appear in the spectral PICCS images. 

Display: L / W = 40 / 400 HU. Slice thickness: 1 mm.
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Figure 11. 
Enlarged images of the head phantom corresponding to the dashed rectangle in Figure 10. 

The spectral PICCS images had noticeably less noise than the FBP images. Patchy artifacts 

were noticeable in the TV images, but not in the spectral PICCS images. Display: L / W = 

40 / 400 HU. Slice thickness: 1.0 mm.
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Figure 12. 
Reconstruction images of the swine neck in Bin 2. A: Full spectrum image reconstructed by 

FBP. B: Bin-2 image reconstructed by FBP. C: Bin-2 image reconstructed by HYPR-LR. D: 

Bin-2 image reconstructed by TV. E: Bin-2 image reconstructed by spectral PICCS. Display: 

L / W = 40 / 400 HU. Slice thickness: 1 mm.
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Figure 13. 
Profile along the white line (Figure 12A) for Bin-2 images of the swine neck. Display: L / W 

= 40 / 400 HU. Slice thickness: 3 mm. The spectral PICCS, FBP, and HYPR-LR profiles 

overlapped each other, and the SPICCS profile contained least fluctuations.
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Figure 14. 
Reconstruction images of the swine thorax obtained from the 550 mAs scans. The spectral 

PICCS iterations were stopped when the normalized image update was less than 0.05% (31 

iterations). Display windows: L / W = 40 / 400 HU and 0 / 60 HU. Slice thickness: 3 mm.
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Figure 15. 
Reconstruction images of the swine thorax. Left: FBP images from the 550 mAs scans. 

Right: spectral PICCS images from the 276 mAs scans obtained when the normalized image 

update was less than 0.05%. From top to bottom: Bin-2 to Bin-4 images obtained at the 27th, 

27th, and 26th iterations. The white circles in the bottom row indicate ROIs for noise 

measurements. Display window: L / W = 40 / 400 HU. Slice thickness: 3 mm.
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Table 1

Noise measurements of the characterization phantom with matched spatial resolution

Noise (water, HU) Bin 2 Bin 3 Bin 4 TL1 (Prior)

FBP 6.5 5.7 4.7 2.7

SPICCS 3.0 2.8 2.2 N.A

Noise Reduction 58% 55% 60% N.A
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