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Stretchable Triboelectric Fiber for 
Self-powered Kinematic Sensing 
Textile
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Youn Tae Kim2, Xavier Lepró3, Ray H. Baughman3 & Seon Jeong Kim1

Stretchable fiber and yarn triboelectric nanogenerator are sought for such applications as wearable 
sensing system such as cloth communication devices, electronic textiles, and robotic sensory skin. 
Unfortunately, previously reported triboelectric fiber and yarn are difficult to have stretchable property. 
We introduce here a new type of stretchable and weavable triboelectric fibers with microdiameter 
dimensions. The stretchable triboelectric fibers can be reversibly stretched up to 50% in tensile 
direction while generating voltage output proportional to the applied tensile strain. The reversible 
distance change induced by the Poisson’s ratio difference between the core fiber (silver-coated nylon/
polyurethane) and the shell (wrinkled polyvinylidene fluoride-co-trifluoroethylene/carbon nanotube 
layer) during tensile deformation is the key working principle for electrical generation. Owing to 
exceptional structural stability, the stretchable triboelectric fibers show high performance retention 
after 10,000 times repeated stretching/releasing cycle. Furthermore, the stretchable triboelectric fibers 
are mechanically strong to be woven into a commercial textile for textile based sensors, which can 
detect magnitude as well as direction of the motion.

Wearable kinematic sensing systems have attracted considerable attention in the past decade with the growing 
industry of wearable electronics and ubiquitous healthcare. These sensing systems have a high potential for usage in 
a wide range of industrial applications such as wearable communication devices, electronic textiles, robotic sensory 
skin, and biomedical devices1–5. Some kinematic sensing systems for strain detection are based on resistance6–10,  
capacitance11–14, electromagnetic interaction15,16, piezoelectric17–20 and triboelectric effects21–29. Among the 
various strain sensors, the sensing systems based on the triboelectric effect have been intensively studied as 
self-powered sensors that operate without an external energy source. Triboelectric-based sensors have unique 
advantages for their simple design, high energy-converting efficiency, low cost, and high sensitivity22–26.

Wearable sensor mostly focus on the textile-type sensing system, which can be detected from human motion, 
and the device can transformed from a 3-dimensional (3D) or 2-dimensional (2D) structure to a 1-dimensional 
(1D) fiber structure18–20. These 1D fibers have a high mechanical degree of freedom and are used as the building 
blocks of the textile. However, it is an elusive goal to be able to weave a highly stretchable sensing fiber textile. One 
of the problems is the low elastic property of the human motion-sensing textile that can restrict human motion in 
daily life, and it is difficult to be applied to areas of that body that are highly deformable (to strain of ~50%), such 
as fingers, elbows, and knee joints.

Results
Preparation of stretchable triboelectric fiber.  The stretchable triboelectric fiber (STEF) formed 
a multilayered core–shell and wrinkle structure (Fig. 1a). To create the STEF, we first designed a new type 
of stretchable electrode on which silver-coated nylon yarns were wrapped around a polyurethane (PU) fiber 
(Fig. 1b; Supplementary Fig. S1). The silver-coated nylon yarn consisted of silver-coated nylon 6,6 monofilament 
30 μ​m in diameter which has a high conductivity and electrical stability in deformation18,19. The silver-coated 
nylon/PU fiber had an average diameter of 440 μ​m with a resistance of 10.4 Ohm at the initial state of 10 mm 
length (Supplementary Fig. S2a). The resistance increased linearly with a strain of 13.3 Ohm at 50%. When the 
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silver-coated nylon/PU fiber was stretched, the PU fiber elongated longitudinally and shrunk in the radial direc-
tion. At the same time, a gap was created between the wrapped silver-coated nylon yarn around the PU fiber, 
resulting a detachment of the adjacent silver-coated nylon yarn at the gap position. Although the electrical path-
way of the silver-coated nylon/PU fiber was elongated, the electrical pathway along the silver-coated nylon yarn 
was constant. As a result, the silver-coated nylon/PU fiber showed stretchable electrode performance.

Secondly, electrospun mats, prepared from polyvinylidene fluoride-co-trifluoroethylene (PVDF-TrFE), were 
manually wrapped around the silver-coated nylon/PU fiber. The electrospun mats consisted of randomly oriented 
nanofibers with an average diameter of 750 nm (Fig. 1c). The PVDF-TrFE was chosen for their high negativity 
in the triboelectric series. We used the electrospinning method, which is a versatile to yield fine-scale fibers, to 
fabricate high surface roughness of PVDF-TrFE mats for enhanced triboelectric performance30,31.

Then, carbon nanotube (CNT) sheets were drawn from a forest of chemical vapor deposited multiwalled CNTs 
and were wrapped around the 180% strained PVDF-TrFE/silver-coated nylon/PU fiber. However, after releasing 
the CNT/PVDF-TrFE/silver-coated nylon/PU fiber, the length of the fiber increased to about 120% strain. The 
PVDF-TrFE/CNT shell interrupted the recovery of the PU fiber by forming a wrinkled structure on the surface 
of the fiber. Despite non-elastic property of PVDF-TrFE, the electrospun mats can absorb large tensile strain (up 
to 180% in our study) by aligning the randomly oriented nanofibers during first stretching. When the fabrication 
strain is released, plastically deformed PVDF-TrFE mats get uniform and closely packed wrinkles by recovery 
force of core fiber (Supplementary Fig. S3). Also, we observed that the more uniform wrinkles were successfully 
fabricated by wrapping the PVDF-TrFE mats on the core fiber before application of tensile strain. The resist-
ance of 10 mm wrinkled PVDF-TrFE/CNT shell was 5.03 kOhm at the initial state and a constant strain of 50% 
(Supplementary Fig. S2b). The CNT sheets showed high conductivity and strongly adhered to the PVDF-TrFE by 
their nanostructure19 (Fig. 1d). Also the PVDF-TrFE/CNT shell acted as one body system in deformation. When 
the strained fiber was released, the PVDF-TrFE/CNT shell was reduced in the longitudinal direction and formed 
a wrinkled structure. In the stretching state, the wrinkled PVDF-TrFE/CNT shell was unwrinkled, resulting a 
constant of the electrical pathway of the CNTs. The thickness of electrospun PVDF-TrFE mats and CNT sheets 
were 30 um and 1 um, respectively (Supplementary Fig. S4). As a result, microdiameter STEF with an average 
diameter of 490 μ​m was fabricated using two types of stretchable electrodes, namely silver-coated nylon/PU fiber 
and PVDF-TrFE/CNT shell (Fig. 1e).

Electrical energy generation process of stretchable triboelectric fiber.  The electrical energy gen-
eration principle can be explained by the coupling between electrostatic and triboelectric effects32–36. At the initial 
state, the PVDF-TrFE mechanically contacts the silver-coated nylon. According to the triboelectric series, anion 
are bonded on the PVDF-TrFE surface by mechanical friction during the manufacturing process, resulting a 
generation of negative triboelectric charges on the PVDF-TrFE surface (Fig. 2a). When the fiber is stretched by 
external forces, the PVDF-TrFE and silver-coated nylon are separated because of the difference in Poisson’s ratio 
between the wrinkled PVDF-TrFE/CNT-shell and the silver-coated nylon/PU fiber (Fig. 2b). In the separated area 
between the PVDF- TrFE and the CNT, the CNT has a lower electric potential than the silver-coated nylon which 
produced a difference in electric potential by driving the electrons through the external loads. Eventually reaching 
equilibrium of electric potential (Fig. 2c). When the external force was removed, the STEF reversed to its initial 
position and the silver-coated nylon and PVDF-TrFE were brought into contact. As the PVDF-TrFE induced 
positive triboelectric charges on the silver-coated nylon, an electric potential difference between the CNT and the 

Figure 1.  Stretchable triboelectric fiber structure and morphology. (a) Schematic diagram of stretchable 
triboelectric structure. SEM image of (b) the silver-coated nylon yarn-wrapped PU fiber (scale bar: 200 μ​m);  
(c) electrospun PVDF-TrFE fibers (scale bar: 10 μ​m); (d) CNT sheet (scale bar: 2 μ​m); and (e) the final 
fabricated triboelectric fiber (scale bar: 200 μ​m).
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silver-coated nylon was generated. In consequence, the electrons flowed from the silver-coated nylon to the CNT 
(Fig. 2d) and kept screening the inductive charge until separation was again established (Fig. 2a).

When the silver-coated nylon/PU fiber was stretched, its diameter reduced from 440 μ​m at the initial state to 
350 μ​m at a strain of 50% (Supplementary Fig. S5). However, when the STEF was stretched, the diameter changed 
from 490 μ​m at the initial state to 480 μ​m at a strain of 50% (Supplementary Fig. S6).

The Poisson’s ratio of a rod can be estimated from the equation37:

ν = −
ε
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where ν​ is the Poisson’s ratio, ε​22 is the lateral strain, ε​11 is the axial strain, Δ​d is the changed diameter, d is the 
initial diameter, Δ​L is the changed length, and L is the initial length of the fiber. According to eq. (1), the Poisson’s 
ratio of the silver-coated nylon/PU fiber and the STEF was 0.41 and 0.04, respectively. The Poisson’s ratio of the 
silver-coated nylon/PU fiber was thus 10 times greater than that of STEF, and the changed diameter ratio (Δ​d/d) 
of the silver-coated nylon/PU fiber was higher than that of the PVDF-TrFE/CNT shell. As the result, a free space 
was formed after stretching between the silver-coated nylon and the PVDF-TrFE.

To confirm the explanation above and the voltage response generated from the STEF, a switching polarity test 
was conducted (Supplementary Fig. S7). An open circuit voltage of 50 mm fiber was measured by an oscilloscope 
when the fiber was stretched by hand. With the forward electrical connection, a voltage pulse with the positive 
potential of the CNT and the negative potential of the silver-coated nylon was generated in the longitudinal 
direction by stretching. The potential difference between the CNT and the silver-coated nylon reached up to 
240 mV when stretched and was later not observed when the STEF was hold at a strain of 50%. With the reversed 
electrical connection, the voltage pulse had the opposite tendency compared with the voltage pulse with forward 
connection; The short circuit problem is effectively prevented because the electrical insulating PVDF-TrFE mats 
are sandwiched between core and sheath electrodes. Although PVDF-TrFE is representative piezoelectric materials, 
piezoelectricity in the triboelectric fiber is negligible. The piezoelectricity of the PVDF-TrFE is only valid when the 
mats are contacted to top and bottom electrodes (when the dipole alignment is parallel to its thickness direction). 
However, in our case, the PVDF-TrFE mats lost its contact to core electrode in stretching state. Therefore, it can be 

Figure 2.  Electrical energy generation process of stretchable triboelectric fiber. (a) Initial state without 
applied strain; (b) the diameter of the silver-coated nylon/PU fiber decreases at high Poisson’s ratio of the PU 
fiber in stretching, causing separation between the silver-coated nylon/PU fiber and the PVDF-TrFE. The 
potential difference drives electrons from the CNT sheet to the silver-coated nylon; (c) the potential of the 
silver-coated nylon and CNT sheet reaches equilibrium; (d) the initial position is restored when the external 
force is removed. The electrons are driven back to the CNT sheet.
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concluded that not piezoelectricity but triboelectricity contributes to the power generation. Therefore, these results 
indicate that the voltage response was generated from the STEF, which supports the above explanation.

Mechanical propertyandenergy generation performance of the stretchable triboelectric 
fiber.  The elastic property of the STEF is shown in Fig. 3a. The stretch/release cycles showed the elastic recov-
ery resulting in less than 1.68% residual deformation for strains up to 50%. The hysteresis between the stretching 
and releasing stress–strain curve represented a 26% energy loss for 50% strain.

To analyze the STEF performance with external stimuli, we experimentally used a linear motor to obtain an 
accurate performance with strain and frequency. At one end of the 3 mm fiber was fixed on the shelf and the other 
end was attached to the linear motor. The open circuit voltage and short circuit current was measured. The voltage 
response with applied strain ranging from 10% to 50% at a frequency of 10 Hz is shown in Fig. 3b. The generated 
voltage increased with strain from 13 mV at a strain of 10% strain to 24 mV at a strain of 50%. The current response 
with applied strain ranging from 10% to 50% at a frequency of 10 Hz was shown in Supplmentary Fig. S8a.  
The generated current increased with strain from 3 nA at strain of 10% to 8 nA at a strain of 50%. The inte-
gral transferred charges of the positive peak (Supplementary Fig. S9a) also showed an increase with strain from 
5.5 pC at 10% to 10 pC at 50%. In general, the triboelectric generator performance increased with varying distance 
between the electrode and the triboelectric material38. When the distance between the electrode and surface of 
the triboelectric material increased, the number of inductive charges in the electrode decreased. As a result, the 
integral transferred charges and the triboelectric performance increased with increasing distance. According to 
eq. (1), there is a correlation between the distance silver-coated nylon and PVDF-TrFE and applied strain due to 
the Poisson’s ratio difference. When the maximum strain was applied, it showed the sensitivity of the triboelectric 
performance.

When we move in daily life, the frequency of human motion is below 10 Hz. To be able to detect human 
motion and to generate electrical energy from it, it was required to measure the triboelectric performance at 
low frequency below 10 Hz. The voltage output with varying frequency ranging from 3 to 10 Hz at a strain of 
50% is presented in Fig. 3c. The voltage response increased with frequency from 9 mV at 3 Hz to 24 mV at 10 Hz 
at a strain of 50%. The current response with varying frequency ranging from 3 to 10 Hz at a strain of 50% was 

Figure 3.  Mechanical property and energy generation performance of the stretchable triboelectric fiber. 
(a) Stress–strain curve of a triboelectric fiber after repeated stretching to different maximum strain from 10% to 
50% and then released. The voltage response was measured for (b) varying strain ranging from 10% to 50% with 
a frequency of 10 Hz and (c) varying frequency from 3 Hz to 10 Hz at an applied strain of 50%. (d) The stability 
of the performance generated from the triboelectric fiber during 10,000 cycles to a maximum strain of 50% and 
at a 10 Hz frequency.
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presented in Supplementary Fig. S8b. The current response increased with frequency from 2 nA at 3 Hz to 8 nA 
at 10 Hz at a strain of 50%. In general, the distance change between the silver-coated nylon and PVDF-TrFE is 
constant for a given applied strain and different applied frequency. The integral transferred charges of the posi-
tive peak were almost constant at 10 pC for different applied frequency (Supplementary Fig. S9b). Although the 
triboelectric performance increased with both strain and frequency, the strain and frequency could be measured 
by combining both the triboelectric performance and resistance change of the silver-coated nylon/PU fiber due 
to the resistance change which indicated the strain of the fiber (Supplementary Fig. S2a). When we measure both 
triboelectric performance and the resistance, the strain and frequency was determined using the voltage response 
graph with strain and frequency (Supplementary Fig. S10).

The stability of the STEF as a sensor is a critical issue for practical application. The STEF showed highly stable 
triboelectric performance during repeated deformation. An alternating voltage was generated for up to 10,000 
stretching cycles at a strain of 50% and frequency of 10 Hz (Fig. 3d). The voltage response was constant during 
10,000 cycles without distortion.

Demonstration of kinematic sensing textile.  When human motion is measured, the information on 
the direction of motion is crucial for the monitoring system. The STEF suggested building block of application 
in kinematic sensing textile which can detect not only the magnitude but also its direction. To demonstrate its 
potential for textile processing, kinematic sensing textile was fabricated by plain weaving 11 individual fibers of 
50 mm length (Fig. 4a). Each STEF was coated with elastomeric styrene-butylene-styrene to insulate the other fib-
ers. When the textile was stretched in the x-, y-, and diagonal directions at a strain of 50% by hand, we measured 
the voltage response of the x- and y-axis fibers (Fig. 4b). When the textile was stretched in the x- or y-direction, 
the voltage response in each direction was detected from the respective fibers (Fig. 4c). Additionally, the voltage 
response from the x-axis fiber in stretching in the x-direction was higher than that in diagonal stretching as the 
strain in longitudinal stretching was higher than that in diagonal stretching. This kinematic sensing textile shows 
regular voltage response during not only stretching but also bending test (Supplementary Fig. S11). When the 

Figure 4.  Demonstration of a kinematic sensing textile. (a) Optical image showing 50 mm triboelectric fibers 
woven into the wristband of a glove(scale bar: 3 mm). (b) Schematic diagram of the experimental setting and 
(c) voltage response of the x- and y-axes of the triboelectric fiber in a textile when strain was applied in the x-, 
y- and diagonal directions.
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textile was bent and released, the voltage response detected from the respective fibers. This successfully demon-
strated the accurate motion sensor, and it is possible to predict the direction of motion using two perpendicular 
triboelectric fibers, as these independently detect the perpendicular axis of the strain.

Discussion
Stretchable triboelectric fiber was developed by wrapping a multishell triboelectric fiber—made by wrapping 
silver-coated nylon, electrospun PVDF-TrFE mats, and CNT sheet—around PU fiber. The Stretchable triboe-
lectric fiber can be used as a strain sensor by measuring triboelectric performance and resistance change of the 
silver-coated nylon/PU fiber. The Stretchable triboelectric fiber showed good sensitivity and stability, and strain 
could be detected up to 50% at various frequencies up to 10 Hz. Furthermore, the kinematic sensing textile con-
sisting of Stretchable triboelectric fiber could detect the direction of strain. This work demonstrates the new tri-
boelectric mechanism of a self-powered strain sensor, and extends the application of fiber-based generators and 
smart textiles to detect human motion.

Methods
Sample fabrication of stretchable triboelectric fiber.  To wrap the polyurethane (PU) fiber with sil-
ver-coated nylon (PN# 260151011717, 117/17 2-ply, StatexShieldex,USA), each end of the fiber was attached to a 
rotating motor. The 15 wt% PVDF-TrFE solution (70:30, Piezotech,France) was prepared by mixing 1.5 g PVDF-
TrFE in 2.55 g dimethylacetamide (Sigma Aldrich, USA) and 5.95 g acetone (Sigma Aldrich, USA). The 10 wt% 
Styrene-butylene-styrene solution (Sigma Aldrich, USA) was prepared by mixing 1 g Styrene-butylene-styrene in 
9 g chloroform (Sigma Aldrich, USA). The solutions were stirred for 24 h at room temperature. A voltage of 20 kV 
was applied between a syringe needle (15 kV) and a collector of aluminum foil (−​5 kV) at a distance of 20 cm using 
high-voltage DC power supplies (Wookyong TECH, Korea). The polymer solutions were fed at a rate of 4 μ​l/min  
using a syringe pump (KD Scientific, USA). As-prepared electrospun PVDF-TrFE mats on the aluminum foil 
were cutina rectangular form of 1 cm ×​ 10 cm. A silver-coated nylon/PU fiber was applied on the edge of the 
electrospun PVDF-TrFE mats and manually rolled. The CNT sheets were drawn from a CNT forest fabricated by 
the CVD method. To wrap the fiber with CNT sheets, each end of the fiber was attached to the rotating motor. 
The CNT sheet drawn from the CNT forest was attached onto the fiber with an angle of 45° between the fiber and 
the CNT sheet. When the motor was rotated in constant velocity, the overall PVDF-TrFE fiber was wrapped with 
CNT sheets.

Structure characterization and triboelectric performance measurement.  To show the STEF mor-
phology, we used field-emission scanning electron microscopy (FESEM, Hitachi S4700, Japan) (at 15 kV). The 
electrical measurements were conducted using a digital multimeter(Model 187, Fluke Corporation, USA). The 
10 mm silver-coated nylon/PU fiber and the PVDF-TrFE/CNT shell were attached to vernier calipers and the 
resistance was measured at intervals of 5% strain. The mechanical test was performed with a universal testing 
machine (UTM, INSTRON 5966, INSTRON, USA). The mechanical measurements were performed after several 
training runs and the initial force of 50 mN to measure the initial STEF length was established. The triboelectric 
performance was measured using an oscilloscope (MOS9104A, Agilent Technologies, USA). For the extension 
test of the STEF, a linear motor (TV50009/S503/BAA60, TIRA, Germany) was used to control the stroke and 
frequency.
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