Table 4.
Species | K | Structure | Structurama | ||
---|---|---|---|---|---|
lnP | Pr(K|X) | ΔK | |||
Amietia sp. | 1 | −296.98 | 0.00 | NA | 0.00 |
2 | −169.80 | 0.00 | 1292.20 | 0.99 | |
3 | −171.84 | 0.00 | 12.22 | 0.01 | |
4 | −153.88 | 0.99 | 15.80 | 0.00 | |
5 | −172.26 | 0.00 | 2.67 | 0.00 | |
6 | −182.58 | 0.00 | NA | 0.00 | |
Ptychadena cooperi | 1 | −423.72 | 0.00 | N/A | 0.00 |
2 | −265.46 | 1.00 | 2725.83 | 1.00 | |
3 | −256.50 | 0.00 | 10.76 | 0.00 | |
4 | −255.52 | 0.00 | 6.82 | 0.00 | |
5 | −264.68 | 0.00 | 0.83 | 0.00 | |
6 | −277.18 | 0.00 | N/A | 0.00 | |
Ptychadena cf. neumanni 2 | 1 | −1471.56 | 0.00 | N/A | 0.00 |
2 | −1035.66 | 0.99 | 422.87 | 1.00 | |
3 | −797.20 | 0.00 | 182.78 | 0.00 | |
4 | −741.52 | 0.00 | 2.90 | 0.00 | |
5 | −745.58 | 0.00 | 0.95 | 0.00 | |
6 | −700.80 | 0.00 | N/A | 0.00 | |
Leptopelis gramineus | 1 | −1446.66 | 0.00 | NA | 0.00 |
2 | −1072.24 | 0.00 | 514.90 | 1.00 | |
3 | −978.90 | 0.00 | 2.69 | 0.00 | |
4 | −1018.82 | 0.00 | 0.68 | 0.00 | |
5 | −888.98 | 0.00 | 5.66 | 0.00 | |
6 | −869.12 | 0.99 | NA | 0.00 | |
Ptychadena erlangeri | 1 | −1303.78 | 1.00 | N/A | 1.00 |
2 | −1304.78 | 0.00 | 57.06 | 0.00 | |
3 | −1438.96 | 0.00 | 5.60 | 0.00 | |
4 | −1312.12 | 0.00 | 4.79 | 0.00 | |
5 | −1346.86 | 0.00 | 22.13 | 0.00 | |
6 | −1311.38 | 0.00 | N/A | 0.00 | |
Ptychadena cf. neumanni 1 | 1 | −1074.62 | 1.00 | N/A | 1.00 |
2 | −1034.38 | 0.00 | 62.15 | 0.00 | |
3 | −1032.80 | 0.00 | 10.43 | 0.00 | |
4 | −1033.88 | 0.00 | 0.70 | 0.00 | |
5 | −1035.16 | 0.00 | 1.81 | 0.00 | |
6 | −1035.86 | 0.00 | N/A | 0.00 | |
Tomopterna kachowskii | 1 | −513.10 | 0.99 | NA | 0.99 |
2 | −529.50 | 0.00 | 13.76 | 0.01 | |
3 | −628.72 | 0.00 | 0.70 | 0.00 | |
4 | −665.20 | 0.00 | 0.34 | 0.00 | |
5 | −719.50 | 0.00 | 2.65 | 0.00 | |
6 | −632.14 | 0.00 | NA | 0.00 |
For Structure, the probability of each K given the data (Pr(K|X)) was calculated using the ad hoc method described by Pritchard et al. [39]. The optimal number of K was also determined using the ΔK method of Evanno et al. [40]. For the Structurama we present the posterior probability assuming a gamma hyper-prior G(2.5,0.5)