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Abstract

Polymorphisms in toll-like receptor (TLR) and -defensin (DEFB) genes have been
recognized as potential genetic factors that can influence susceptibility to and severity of
periodontal diseases (PD). However, data regarding associations between these polymor-
phisms and PD are still scarce in North American populations, and are not available in HIV+
North American populations. In this exploratory study, we analyzed samples from HIV+
adults (n = 115), who received primary HIV care at 3 local outpatient HIV clinics and were
monitored for PD status. We genotyped a total of 41 single nucleotide polymorphisms
(SNPs) in 8 TLR genes and copy number variation (CNV) in DEFB4/103A. We performed
regression analyses for levels of 3 periodontopathogens in subgingival dental plaques (Por-
phyromonas gingivalis [Pg], Treponema denticola [Td], and Tannerella forsythia[Tf]) and 3
clinical measures of PD (periodontal probing depth [PPD], gingival recession [REC], and
bleeding on probing [BOPY)). In all subjects combined, 2 SNPs in TLR1 were significantly
associated with Td, and one SNP in TLR2 was significantly associated with BOP. One of
the 2 SNPs in TLR1 was significantly associated with Tdin Caucasians. In addition, another
SNPin TLR1and a SNP in TLR6 were also significantly associated with Td and Pg, respec-
tively, in Caucasians. All 3 periodontopathogen levels were significantly associated with
PPD and BOP, but none was associated with REC. Instrumental variable analysis showed
that 8 SNPs in 6 TLR genes were significantly associated with the 3 periodontopathogen
levels. However, associations between the 3 periodontopathogen levels and PPD or BOP
were not driven by associations with these identified SNPs. No association was found
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between DEFB4/103A CNV and any periodontopathogen level or clinical measure in all
samples, Caucasians, or African Americans. Our exploratory study suggests a role of TLR
polymorphisms, particularly TLR1and TLR6 polymorphisms, in PD in HIV+ North
Americans.

Introduction

Periodontal diseases (PD) modified by HIV, together with other oral infections, is considered
to be among serious complications of HIV infection, and may have implications not only for
oral health but possibly for systemic health as well [1-3]. Although the development of PD is
generally accepted to depend on the interaction between the host response and the resident
oral microbiota [4-6], new vistas into human genomics have opened in an attempt to decipher
whether specific genetic polymorphisms can explain host predisposition or susceptibility to PD
[6-11]. The components of innate immunity in PD include toll-like receptors (TLRs) [12,13]
and B-defensins [14-17]. It is, therefore, not surprising that polymorphisms in these innate
immune response genes (TLR and DEFB, respectively) have been extensively studied as poten-
tial genetic factors that may influence susceptibility to and severity of PD [12,18-28]. Although,
overall, these studies provide valuable information regarding these genetic associations, they
also present some important gaps: First, these studies were conducted primarily in European
populations [18-21,26-28]. To the best of our knowledge, data regarding associations between
these genetic polymorphisms and PD are still scarce in North American populations [22,24],
and are not available in HIV+ North American populations. Second, TLR1 and TLR6, singly
and as TLR1/2 and TLR2/6 heterodimers, seem to play a role in PD [29-32]. However, single
nucleotide polymorphisms (SNPs) in TLRI and TLR6 were not included in these studies.
Third, regarding genetic variation in DEFB and its association with PD, while most studies
[24,25,27] focused on specific SNPs in DEFBI, encoding human B-defensin 1 (hBD-1), only
one study [20] focused on copy number variation (CNV) in DEFB4, encoding hBD-2. Finally,
previous studies have focused on polymorphisms in either TLR [18,19,21-23,26,28] or DEFB
[20,24,25,27] genes. Here, it is important to mention that TLRs have been shown to mediate
the expression of hBDs in various tissues [33], and, therefore, the TLR-hBD interplay may be
one of the critical determinants of HIV-associated oral infections. TLR2 and TLR4 are involved
in hBD-2 induction [34-37] and TLR9 may also be involved [38]. TLR2 is also involved in
hBD-3 induction [39], and hBD-3 has been shown to regulate myeloid cell activity through
interaction with TLR1 and TLR2 [40-42]. Since myeloid cells play an important role in host
immune responsiveness in chronic stages of PD, a full understanding of the interplay between
TLRs and hBDs is crucial. Moreover, investigating the cumulative effect of polymorphisms in
TLR and DEFB on PD will provide a more comprehensive understanding of how these interre-
lated innate immune components influence the complex outcomes in PD and, maybe, other
inflammatory-mediated diseases. The present study takes the first step toward closing these
gaps.

Previously, to provide a comprehensive view of PD in the era of highly active antiretroviral
therapy (HAART), we characterized an urban, predominantly African American HIV+ cohort
according to select immunologic and virologic markers, the presence of subgingival pathogens,
dental care utilization, and oral health behaviors [43]. We evaluated PD by using distinct clini-
cal measures, i.e., periodontal probing depth (PPD), gingival recession (REC), clinical attach-
ment level (CAL, i.e., PPD+REC), and bleeding on probing (BOP) [2,43]. In addition, we
collected subgingival dental plaque samples and quantified DNA levels of specific pathogens
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associated with severe PD, i.e., Porphyromonas gingivalis (Pg), Treponema denticola (Td), and
Tannerella forsythia (Tf) [43]. Thus, our study provided a detailed and extensive characteriza-
tion of PD that includes the immunological framework of the cohort [44]. To minimize the
potential misclassification from using categories (i.e., mild, moderate, and severe; or chronic
vs. aggressive), we characterized the distinct clinical measures of PD as continuous variables.
This methodology has allowed us to explore the relationship between HIV and PD more com-
prehensively [2,43,45]. A potential limitation of our study was that the inclusion of a compari-
son group was not feasible. However, the focus of our original study was to address the
interrelationships among clinical, microbial, and immunological factors, and how they are rele-
vant to studying PD in HIV+ adult subjects. It should be noted that this in-depth, singular
focus resulted in important epidemiological and methodological findings that can help frame
future HIV-related studies in the post-HAART era [44].

The aim of our present exploratory study was to analyze associations between genetic poly-
morphisms in both TLR and DEFB genes and periodontopathogen levels and clinical measures
of PD in our well-characterized HIV+ cohort [2,43,45]. A long-term goal is to provide an
understanding of the biological role of TLR-hBD in PD in HIV+ individuals. For our aim, we
evaluated a total of 41 SNPs in 8 TLR genes (TLRI, 2, 3,4, 6, 7, 8, and 9) [46] and CNV in
DEFB4/103A, encoding hBD-2/hBD-3. In addition to linear regression, frequently presented as
an optimal method in genetic association studies [47], we employed instrumental variable (IV)
analysis [48-50] as a complementary, not comparative, analytic approach. In this approach, a
genetic variant is treated as an instrument that is assumed to be associated with an outcome
only through its association with an exposure (or risk factor or intermediate variable) (Fig 1).
This instrument can then be exploited to obtain causal inferences about the effect of an expo-
sure on an outcome [49,50].

We found that a total of 5 SNPs in TLRI, TLR2, and TLR6 were significantly associated with
2 periodontopathogen levels and one clinical measure of PD.

Materials and Methods
Study design and participants

In our retrospective study, adult subjects receiving primary HIV care from 3 outpatient HIV
clinics in Cleveland, OH, were recruited and monitored for PD status in a research study con-
ducted between May 2005 and March 2009 [2]. Subject recruitment process has been described
elsewhere [43,45]. Inclusion criteria were: medication-compliant adult subjects, age 18 or
older, who were taking HAART for < 2 years at baseline. Exclusion criteria included evidence

[C]
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Fig 1. Diagrammatic Representation of Instrumental Variable Analysis. Instrumental variable models use associations C and A to estimate the
relationship between an exposure/risk factor and an outcome (B). Note that the instrument is not supposed to have a direct effect on the outcome, hence
this line (C) is dashed. Abbreviations: Pg, Porphyromonas gingivalis; Td, Treponema denticola; Tf, Tannerella forsythia; PPD, periodontal probing depth;
BOP, bleeding on probing.

doi:10.1371/journal.pone.0164075.9001
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of a history of cardiovascular disease or Type I or II diabetes mellitus, fewer than 20 teeth,
uncontrolled systemic illnesses, diagnosis or treatment of cancer in the past 5 years, pregnancy,
and need for antibiotic prophylaxis prior to dental care as per the American Dental Association
and other guidelines [43,45]. IRB approval was obtained from University Hospitals Case Medi-
cal Center (UHCMC); all subjects signed a written UHCMC IRB-approved informed consent
document.

Periodontal disease measurements and definition

PPD, REC, and BOP were determined at 6 sites/tooth by one dentist (LTV) as previously
described [2,43]. Consistent with our previous report, PD was defined as the percent of teeth
with > 1 of 6 sites meeting or exceeding the following thresholds: PPD > 5 mm and REC > 0
mm [43]. BOP was defined as the percent of teeth with > 4 of 6 sites exhibiting BOP [2]. We
did not include CAL as a variable into our analyses, because we were unable to process this
data for 28% (32/115) of our subjects due to a lack of data management and budgetary
resources. We acknowledge that classification of PD has proven to be problematic. PD is chal-
lenging to define clinically, and all classification systems produced to date have their imperfec-
tions and their critics [51,52]. The use of different case definitions has a great impact on the
prevalence and extent rates of PD [53,54], and thus can influence the results and associations
presented in studies, including our own. We also collected and pooled subgingival dental pla-
que samples from 8 pre-determined sites, based on the study by Fleiss et al. [55], and then
quantified DNA levels of Pg, Td, and Tf by real-time PCR in units of log genome copy number/
ug total DNA as previously described [43].

Genetic analysis

DNA was extracted from 200 pl of packed blood pellets from study subjects using the QIAamp
96 spin blood kit (QIAGEN, Valencia, CA, USA). A total of 41 SNPs in 8 TLR genes (TLR1, 2,
3,4, 6,7, 8and 9) were genotyped using Illumina’s GoldenGate genotyping assay system com-
bined with VeraCode Technology (Illumina Inc., San Diego, CA, USA). These SNPs were
located in promoter regions, 5'-untranslated regions (UTR), exons, introns, and 3’-UTR (S1
Table). A detailed description of how these SNPs were selected has been provided elsewhere
[46]. Allelic discrimination was performed using a BeadXpress Reader (Illumina Inc., San
Diego, CA, USA) according to the manufacturer’s instructions.

For the determination of DEFB4/DEFB103A CNV, the real-time quantitative PCR assay
was used as described [56]. Reference genes TBP (TATA-Box Binding Protein, GenBank acces-
sion #AL031259) and DEFBI (encoding hBD-1, GenBank accession #NT_023736), specific
primer sets producing only one specific product of ~150 bp at 54°C annealing temperature,
reaction mix, and conditions were used as described [56], and the Bio-Rad CFX96TM system
(Bio-Rad Laboratories, Hercules, CA, USA) was used for the PCR analysis. Each sample was
run in triplicate. Data were analyzed by the comparative Ct method, and the copy numbers
were calculated as described [56]. We have assessed the reliability and validity of this assay
using 151 multi-population samples, which included 46 well-characterized samples from 5
diverse populations from the Coriell Cell Repositories [57].

Statistical analysis

Minor allele frequencies (MAF) were calculated using PLINK v1.07. Pairwise linkage disequi-
librium (LD) between SNPs of a TLR gene or 2 genes that are nearby (TLRI and TLR6 [12 kb],
TLR7 and TLR8 [10 kb]) was determined for both Caucasians and African Americans using
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SHEsis (http://analysis.bio-x.cn/myAnalysis.php). Strong LD was defined by high values for
both I/ (>0.8) and r* (>0.5) parameters [58].

Linear regression analysis was performed on all 41 SNPs for each of the 3 periodontopatho-
gen levels (Pg, Td, Tf) and the 3 clinical measures (PPD, REC, BOP) using PLINK v1.07. All
covariates included in the initial iteration of the regression models are shown in Table 1. Back-
ward stepwise regression was used when selecting significant covariates for each model. Ini-
tially, all subjects were included in a single analysis, adjusting for self-identified race.
Regression analysis was repeated after stratifying for race, analyzing Caucasians and African
Americans separately. SNPs were coded under an additive genetic model, and then under a
dominant genetic model [46]. For all SNP association tests, the significance threshold o was
determined by using SNPSpDlite [59]. SNPSpDlite calculates a multiple testing correction for

Table 1. Characteristics of the Study Cohort*.

Characteristic n (%) Mean (SD)
Age (years)' 41(9.6)
Race’

Caucasian 38 (33%)

African American 69 (60%)

Other/Not known 8 (7%)
Gender'

Male 88 (77%)

Female 27 (23%)
Education®

High School/GED or more 55 (48%)
Smoking"

Ever smoked 73 (64%)

Number of years smoked 14 (12.0)
BMI (kg/m?)T 27 (7.5)
History of HTNT 31 (27%)

HIV clinical measures
Baseline CD4+ T-cell count (cells/pl) 504.6 (324.1)
Baseline viral load (copies/ml)’r 16519 (48717)
Nadir CD4+ T-cell count (cells/ul)’ 159 (133.0)
Time since first seropositive (months)* 108.2 (83.6)
HAART duration (months)’ 52.5 (55.1)
Periodontal measures
PPD > 5 mm (% teeth > 1 site/tooth) 36.1 (24.3)
REC > 0 mm (% teeth > 1 site/tooth) 55.4 (31.1)
BOP > 4 sites/tooth (% teeth) 47.4 (20.1)

Microbial measures
(log genome copy number/ug DNA)

Porphyromonas gingivalis 3.69 (2.6)
Treponema denticola 3.93(2.3)
Tannerella forsythia 4.77 (2.1)

*Abbreviations: GED, general educational development; BMI, body mass index; HTN, hypertension;
HAART, highly active antiretroviral therapy; PPD, periodontal probing depth; REC, gingival recession; BOP,
bleeding on probing.

TCovariates included in the initial iteration of the regression models.

doi:10.1371/journal.pone.0164075.t001
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SNPs that are in LD with one another, by calculating the LD correlation matrix for given SNPs,
then estimating the number of independent tests within the sample. This is an alternative to
the more conservative Bonferroni correction, which assumes all tests are independent. Thus,
the significance threshold, o, for all SNP association tests was 0.001 (effective number of inde-
pendent tests = 35). The additive and dominant models were tested separately, with the same
significance threshold (0.001) applied to both sets of results.

To determine whether a statistically significant relationship existed between a periodonto-
pathogen level and a clinical measure, preliminary linear regression analysis on all samples was
conducted in R (http://www.r-project.org/). Again, backward stepwise regression was used to
select only those covariates which significantly contributed to the model. If a significant rela-
tionship (p<0.001) was identified between a given periodontopathogen level and clinical mea-
sure, only then was the pair included in the IV analysis.

Instrumental variable analysis was used to test the hypothesis that a given TLR SNP may be
driving the relationship between each periodontopathogen level and clinical measure pair
[60,61]. Each of the 41 SNPs was tested as an I'V, while a periodontopathogen level was treated
as the exposure and a clinical measure as the outcome. We performed IV analysis using a
2-stage method comprising 2 regression stages: the first-stage regression of the exposure on the
IVs, and the second-stage regression of the outcome on the fitted values of the exposure from
the first stage. The IV analysis was performed using the ivreg function within the AER package
(http://CRAN.R-project.org/package=AER). Two p values were generated: the first p value
(pa) describes the relationship between the TLR SNP (IV) and the periodontopathogen level
(exposure), and the second p value (pg) describes the mechanistic relationship between the per-
iodontopathogen level (exposure) and clinical measure (outcome) (Fig 1). Both p values <0.05
were considered significant.

To analyze the effect of CNV on each of the 6 measures of PD, linear regression analysis was
performed in R. Two different approaches were used to include CNV in the regression model:
binary or categorical. Using a cutoff at the median (CNV = 5), CNV was recoded as a binary
variable where 1 = CNV > 5,0 = CNV < 5 (reference group). To create the categorical variable,
CNV was divided into CNV < 5, CNV =5 (reference group), and CNV > 5. For each model,
binary or categorical, backward stepwise regression was used as before to select only those
covariates which significantly contributed to the model at the o = 0.05 level.

Results

Study subjects, minor allele frequencies, and linkage disequilibrium
patterns

The cohort characteristics, including demographics, HIV infection correlates, and PD mea-
surements of the study subjects (n = 115), are presented in Table 1. The majority of the subjects
were African Americans, with a predominance of males. The MAF of all 41 TLR SNPs in all
subjects combined are presented in S2 Table. MAF ranged from 0.01 to 0.50, which concurred
with those reported by our group for another HIV cohort, with similar race and gender distri-
bution, from the same geographic area [46]. The pairwise strong LD patterns of TLR genes for
both Caucasians and African Americans are presented in S3 Table. Caucasians showed a higher
overall extent of LD than African Americans.

Regression analysis of SNPs

In all subjects combined, 2 SNPs in TLRI (-2192T>C, 1805G>T) were significantly associated
with Td (Table 2), and one SNP in TLR2 (597T>C) was significantly associated with BOP
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Table 2. Association Between Periodontopathogen Levels and TLR SNPs*.

Group Periodonto-pathogen Gene rs number SNP Amino acid Allele Test B p value
All samples Td TLR1 rs5743595 -2192T>C - C Add 1.27 0.0012
Dom 1.80 0.0012

rs5743551 -7202G>A - A Add -0.95 0.002
rs5743618 1805G>T Ser602lle G Add -1.11 0.0012
TLR6 rs5743795 -1401G>A - A Add 1.39 0.004
Dom 1.48 0.004
Caucasian Pg TLR6 rs1039559 -502T>C - C Add -2.10 0.0012
Td TLR1 rs5743551 -7202G>A - A Add -1.57 0.0012
rs5743618 1805G>T Ser602lle G Add -1.56 <0.0012
African American Td TLR1 rs5743618 1805G>T Ser602lle G Add -1.72 0.009
TLR2 rs4696480 -16934T>A - T Dom -1.37 0.006
TLR6 rs5743810 745T>C Ser249Pro T Add -1.81 0.003
TLR8 rs5744077 28A>G Met10Val G Add -1.74 0.003
rs5744080 645C>T His215His C Add -1.37 0.008
Tf TLR1 rs5743618 1805G>T Ser602lle G Dom -1.51 0.002
TLR8 rs1548731 +3121T>C - T Add 0.86 0.004
rs5744077 28A>G Met10Val G Add -1.22 0.008

*Abbreviations: Td, Treponema denticola; Pg, Porphyromonas gingivalis; Tf, Tannerella forsythia; Add, additive genetic model; Dom, dominant genetic
model.
3Significant after the correction for multiple testing (a = 0.001).

doi:10.1371/journal.pone.0164075.t002

(Table 3). One of the 2 SNPs in TLR1 (1805G>T) was significantly associated with Td in
Caucasians (Table 2). In addition, another SNP in TLR1 (-7202G>A) and a SNP in TLR6
(=502T>C) were also significantly associated with Td and Pg, respectively, in Caucasians
(Table 2).

In addition to the aforementioned TLR SNPs, which were significant after the correction for
multiple testing (o = 0.001), there were SNPs that were associated with the periodontopathogen
levels (Table 2) and clinical measures (Table 3) at a lower significance level of 0.002-0.01.

Table 3. Association Between Clinical Measures of PD and TLR SNPs*.

Group Clinical measure Gene rs number SNP Amino acid Allele Test B p value
All samples REC TLR6 rs2381289 4224C>T - T Dom 13.26 0.007
BOP TLR2 rs3804099 597T>C Asn199Asn T Add 8.89 0.0012

Dom 14.66 <0.001?
TLR9 rs187084 -1486C>T - C Add -7.31 0.010
Caucasian PPD TLR4 rs10759932 -1607T>C - C Dom 18.12 0.005
REC TLR2 rs1898830 -15607A>G - G Add 12.92 0.006
Dom 15.87 0.006
BOP TLR9 rs352139 +1174G>A - A Dom 20.57 0.004
rs352140 1635G>A Pro545Pro A Add -12.98 0.006
African American REC TLR6 rs2381289 4224C>T - T Dom 19.66 0.005
BOP TLR2 rs3804099 597T>C Asn199Asn T Dom 14.70 0.004

*Abbreviations: REC, gingival recession; PPD, periodontal probing depth; BOP, bleeding on probing; Add, additive genetic model; Dom, dominant genetic
model.
aSignificant after the correction for multiple testing (a = 0.001).

doi:10.1371/journal.pone.0164075.t003
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These p values may be indicative of suggestive associations, which require further validation
and/or larger sample sizes. Comparing the results presented in Table 2 and Table 3, no TLR
SNP was common to both periodontopathogen levels and clinical measures. The TLR2 SNPs
were not in LD, and the TLR6 SNP LD patterns differed between Caucasians and African
Americans (S3 Table).

Instrumental variable analysis

Preliminary linear regression analysis on all samples showed that all 3 periodontopathogen lev-
els were significantly associated with PPD and BOP (p<0.001), but none was associated with
REC (p>0.02) (54 Table).

Instrumental variable analysis using all 41 TLR SNPs (IVs), the 3 periodontopathogen levels
(exposures), and PPD and BOP (outcomes) showed that 8 SNPs in TLRI (n =2), TLR2 (n = 1),
TLR4(n=1), TLR6 (n=1), TLR8 (n = 2), and TLRY (n = 1) were significantly associated with
the 3 periodontopathogen levels (Pg, 2 SNPs; Td, 6 SNPs; Tf, 1 SNP) (p,<0.05) (Fig 1, S5
Table). These p, values suggest that there is a relationship between these 8 IVs and 3 expo-
sures. However, none of the periodontopathogen levels were associated with PPD or BOP after
accounting for the effects of these SNPs (pg>0.1) (Fig 1, S5 Table). These pg values suggest
that the relationship between the 3 exposures and 2 outcomes is not driven by these IVs.

Distribution and association of CNV

The distribution of integer DEFB4/103A copy numbers in all samples and the 2 racial groups is
shown in Fig 2. No difference was observed in the median and mean copy numbers in all sam-
ples (5.0 and 4.9, respectively), Caucasians (5.0 and 5.0, respectively), and African Americans
(5.0 and 4.9, respectively). Linear regression analysis using a binary (CNV > 5, CNV < 5) or

II |I |‘ “ |‘ |I (]| (1|
2 3 - 5 6 7

8 9

mALL
m AFA
CA

DEFB4/1034 CNV

Fig 2. Distribution of DEFB4/103A CNV in All Samples, African Americans (AFA), and Caucasians (CA).

doi:10.1371/journal.pone.0164075.9002
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categorical (CNV < 5, CNV =5, CNV > 5) model did not show any association between CNV
and any periodontopathogen level or clinical measure in all samples, Caucasians, or African
Americans (p>0.05, data not shown).

Discussion

In this exploratory study, utilizing samples from HIV+ North American subjects, we found
that a total of 5 SNPs in TLRI (n = 3), TLR2 (n = 1), and TLR6 (n = 1) were significantly associ-
ated with 2 periodontopathogen levels (Table 2) and one clinical measure of PD (Table 3).

TLR1 gene and/or protein expression may be upregulated in PD [29,32], and TLR1/2 het-
erodimer signaling may be involved in inflammatory response in PD [30,31]. To date, no
report is available regarding the role of TLRI SNPs in PD. We found that TLRI -2192C,
—7202A, and 1805G alleles were significantly associated with Td (Table 2). The information
regarding the functional relevance of —2192T>C is limited. The —2192C allele may be protec-
tive for atopic asthma [62]. In that report, PBMCs of atopic asthma patients carrying —2192C
showed increased expression of TLR1 mRNA and protein, increased production of proinflam-
matory cytokine TNF-o and Ty1 cytokines IL-12 and IFN-v, and decreased production of Ty2
cytokine IL-4 after stimulation with TLR1/2 ligand Pam3CSK4 [62]. —7202G>A and
1805G>T were functionally relevant in sepsis, tuberculosis, leprosy, and candidemia, where
—7202A and 1805G were associated with lower NF-«B activation and signaling, and decreased
inflammatory cytokine production, including that of IL-6 (references cited in [46]). The lipoo-
ligosaccharide of Td has been shown to bind to gingival fibroblasts, and this binding is medi-
ated by the co-receptor CD14 [63]. Furthermore, stimulating fibroblasts with Td
lipooligosaccharide significantly increased the secretion of IL-6 [63]. CD14 and IL-6 are
known to be involved in the inflammatory process of PD [64,65]. Thus, our finding that TLR1
—-2192C, -7202A, and 1805G alleles are significantly associated with Td is noteworthy, and
may be considered as a starting point in identifying the contribution of TLRI variation to PD.

TLR2 gene and/or protein expression may be upregulated [12,29,32], not affected [66], or
downregulated in PD [67]. Soluble salivary TLR2 may be considered a potential prognostic or
periodontal health maintenance marker for chronic periodontitis [64]. We found that TLR2
597T allele was associated with BOP (all samples, p<0.001; African Americans, p = 0.004)
(Table 3). BOP has long been considered an indicator of a subgingival inflammatory response
to bacterial pathogens; there was a direct relationship between BOP and subgingival endo-
scopic biofilm and calculus indexes [68]. In our study, the levels of Pg, Td, and Tf DNA in sub-
gingival plaque were highly correlated with BOP (S4 Table). Others have reported that the
mRNA levels of TLR2 in human gingival fibroblasts were positively correlated with the number
of Pg in subgingival plaque [69]. This Pg-induced TLR2 expression may be partially dependent
on TNF-o [69].

Most previous studies did not include 597T>C [12,19,22,23]. One study, conducted in 2
Northwest European populations, did include this SNP [21] but found no association with PD.
Being a synonymous SNP (Asn199Asn), the molecular mechanism of 597T>C is not clear.
The 597T allele may have a role in protection against Mycobacterium tuberculosis (Mtb), M.
leprae [70,71], and the lymphatic filariasis nematode Wuchereria bancrofti [72], which harbors
an intracellular symbiotic bacterium Wolbachia. It may be that 597T>C is in LD with a highly
polymorphic (GT)n dinucleotide repeat within intron-2 that affects gene regulation [71]. How-
ever, the (GT)n repeat polymorphism was not previously associated with PD [18]. In addition,
597T>C is in LD with a 22-bp insertion-deletion polymorphism (A22 [-196 to —174]) in the
5'-UTR [72]. Located in close proximity to the NF-xB and SP1 transcription factor binding
sites, TLR2 A22 is a functional polymorphism [72]. We did not study the (GT)n repeat and
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A22 polymorphisms, but they could form the basis of a future study. Given that HIV/AIDS
continues to disproportionately affect African Americans, evaluating the functional and clinical
effects of 597T>C in further studies is highly relevant.

TLR6 protein may be upregulated in PD [29], and TLR2/6 heterodimer signaling may be
involved in inflammatory responses in PD [31]. However, as is the case for TLRI SNPs, the
role of TLR6 SNPs in PD has not yet been determined. We found that TLR6 —502C allele was
significantly associated with Pg in Caucasians (Table 2). The functional relevance of this SNP
could be due to the fact that it is in strong LD with non-synonymous 745T>C (-502C-745T)
(S3 Table). Others have found 745T protective in tuberculosis patient studies and associated
with lower NF-«B signaling, decreased production of IL-6 in whole blood stimulated with
TLR2/6 ligand PAM2 and Mtb lysate [73], and increased production of IFN-y in whole blood
stimulated with Bacillus Calmette-Guérin as well as PBMCs stimulated with TLR1/6 lipopep-
tide ligands [74]. In addition, —502T>C is in strong LD with 4224C>T (S3 Table), located in
the 3’-UTR. It is well known that the 3'-UTR significantly determines the stability, localization,
translation, and degradation of mRNA [75].

All 3 periodontopathogen levels were significantly associated with PPD and BOP (S4
Table). In our I'V analysis, a total of 8 SNPs were significantly associated with the 3 periodonto-
pathogen levels, the majority with Td (p4 values, S5 Table). However, the relationship between
each periodontopathogen level and clinical measure pair was not driven by associations with
these identified SNPs (pg values, S5 Table). Instrumental variable analysis is being increasingly
employed in epidemiology to investigate the potential causal effects of an exposure [60,61].
However, major limitations of this analysis result from the strict assumptions that need to be
satisfied for the method to be reliable [49,50]: Although TLR SNPs were associated with the
periodontopathogen levels (exposures), they may be “weak instruments”-such an IV explains a
relatively small proportion of variance in the exposure. It may also be that there is limited statisti-
cal power. Insufficient statistical power is a common characteristic of many I'V analysis studies
and, therefore, a careful selection of instruments plus an adequate sample size are deemed neces-
sary for this method to be able to make reliable conclusions. It is also possible that pleiotropy,
where one genetic variant has multiple functions, may be occurring. Among the 5 significant
SNPs in this study, 3 (TLRI -=7202G>A, 1805G>T; TLR6 —502T>C) were associated with HIV
status in our previous study conducted on another similar HIV cohort [46]. Our study subjects,
particularly African Americans, may have population stratification, as the contribution of Euro-
pean ancestry to African-American populations can vary substantially (3% to >30%) [46].
Finally, while we tested for common confounders, it is possible that hidden confounding from
unmeasured variables may have affected the analysis. Despite these limitations, 6 of the 8 SNPs
from our IV analysis should be investigated further, as they were also significantly or suggestively
associated with the periodontopathogen levels or clinical measures of PD (S5 Table).

We did not find an association between DEFB4/103A CNV and any of the measures of PD
in any analysis (data not shown). This result seems contrary to the only report available, which
found an association between low DEFB4 CNV and severe form of periodontitis [20]. There
could be a number of reasons for this difference: First, Jaradat et al. [20] analyzed the associa-
tion between DEFB4 CNV and generalized chronic periodontitis severity, classified as slight-
to-moderate and severe subgroups. We, on the other hand, evaluated PD by its component
parts (the 3 selected clinical measures of PD) because they may represent different biological
processes contributing to PD [43]. To minimize the possibility of misclassification by catego-
rizing data, we defined and analyzed all PD data as continuous variables. Using this approach,
we have uncovered associations between PD measures and markers of cardiovascular disease
risk [2] as well as PD measures and HIV-related immunological markers in the era of HAART
[45]. Second, using different methods, it has been found that DEFB4/103A genes consistently
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vary from 2 to 12 copies per diploid genome, with a median or mean copy number of 4 in most
populations [57], including the one analyzed by Jaradat et al. [20]. In our study, the median
and mean copy number was 5 in all population groups. This could be related to the relatively
small sample size (n = 115)-a factor that may have also contributed to the lack of association.
Finally, our study was not designed to measure the hBD-2/hBD-3 protein concentrations.

In conclusion, our exploratory study provides new insights into the association of genetic
variation in TLR with PD measures in HIV+ North Americans. To the best of our knowledge,
this is the first study to analyze the role of TLRI and TLR6 SNPs in PD; therefore, we cannot
directly compare our findings to other studies. The mechanisms by which the aforementioned
TLR SNPs, singly, in haplotypes, or in heterodimers, influence PD need to be further eluci-
dated. Analysis of mRNA and protein levels of the TLR variants, and investigation of interac-
tions of the TLR variants with adapter molecules and subsequent recruitment of downstream
targets are needed to define the biological mechanisms that underlie these genetic associations.
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