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Abstract. Percolator is a widely used software tool that increases yield in shotgun
proteomics experiments and assigns reliable statistical confidence measures, such
as q values and posterior error probabilities, to peptides and peptide-spectrum
matches (PSMs) from such experiments. Percolator’s processing speed has been
sufficient for typical data sets consisting of hundreds of thousands of PSMs. With our
new scalable approach, we can now also analyze millions of PSMs in a matter of
minutes on a commodity computer. Furthermore, with the increasing awareness for
the need for reliable statistics on the protein level, we compared several easy-to-
understand protein inference methods and implemented the best-performing
method—grouping proteins by their corresponding sets of theoretical peptides and

then considering only the best-scoring peptide for each protein—in the Percolator package. We used Percolator
3.0 to analyze the data from a recent study of the draft human proteome containing 25 million spectra
(PM:24870542). The source code and Ubuntu, Windows, MacOS, and Fedora binary packages are available
from http://percolator.ms/ under an Apache 2.0 license.
Keywords: Mass spectrometry - LC-MS/MS, Statistical analysis, Data processing and analysis, Protein infer-
ence, Large scale studies
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Introduction

Percolator [1] has played a prominent part in the analysis
pipelines of shotgun proteomics experiments for the last

decade, as a post-processor of the results from database search
engines such as SEQUEST [2], MASCOT [3], X! Tandem [4],
andMS-GF+ [5]. Not only does Percolator provide a significant
boost in the number of statistically significant peptide-spectrum
matches (PSMs) or peptides, it also provides a consistent statis-
tical framework in which to interpret the search results. Because
Percolator’s running time is usually much lower than that of the
search engine, applying it as a post-processing step should be
the default choice when processing shotgun proteomics data. As
part of the continuous development and support of the Percola-
tor package, we present two major additions aimed at
supporting analysis of large scale proteomics studies.

First, as advances in technology continue to reduce the cost
and effort needed to carry out shotgun proteomics experiments,

the amount of data per study will keep rising steadily. Although
previous versions of Percolator are able to process the data
from the vast majority of current studies in a reasonable time
frame, the algorithm has some limitations for laboratories with-
out access to a high-performance computing facility. When
processing millions of PSMs, the majority of Percolator’s
processing time is spent on training support vector machine
(SVM) classifiers. In some settings, however, the performance
of the SVM as a function of the size of its training set plateaus
at a relatively low number of input PSMs [6]. Here, we use
Percolator’s semi-supervised learning algorithm to train SVMs
on a randomly selected subset of the PSMs and use the
resulting score vectors to evaluate the rest of the PSMs. This
random downsampling approach yields much shorter analysis
times without any loss in statistical power.

Second, we have investigated efficient ways to obtain
protein-level accuracy estimates. One of the major obstacles
was the question of how to deal with shared peptides and
protein grouping. An implementation of Fido [7], which has
been part of the Percolator package since 2012, addresses these
two issues but is too computationally expensive to apply toCorrespondence to: Lukas Käll; e-mail: lukas.kall@scilifelab.se

http://crossmark.crossref.org/dialog/?doi=10.1007/s13361-016-1460-7&domain=pdf
http://percolator.ms/


large-scale data sets. We therefore compared four straightfor-
ward and scalable protein inference methods: using the best-
scoring peptide, the two-peptide rule [8,9], the product of
peptide-level posterior error probabilities (PEPs), and Fisher’s
method for combining independent p values.

Although each of these methods is efficient to compute,
they each offer specific pros and cons. Savitski et al. [10]
showed that on large-scale data sets, taking the best-scoring
peptide as the representative of a protein was superior to
incorporating information from lower-scoring peptides. How-
ever, this approach is unsatisfactory because the method dis-
cards all information but the best-scoring PSM for each protein.
A simple way to combine evidence at the peptide level is the
widely used two-peptide rule. This approach requires evidence
for a second peptide to support a protein inference, thereby
preventing so-called Bone-hit wonders^ (i.e., cases where a
single, potentially spurious PSM yields a spurious protein
detection). An alternative that takes into account even more
evidence is to compute the product of peptide-level PEPs. This
procedure takes into account all peptides within a protein and
provides some protection against one-hit wonders [11]. The
method also has the benefit that correctly inferred proteins are
not strongly affected by incorrectly inferred peptides because
these typically contribute a multiplicative term that is close to
1.0. However, a concomitant drawback to using the product of
PEPs is that it is not clear how to scale the resulting product to
take into account protein length. Also, it is not obvious a priori
that the independence assumption implicit in taking the product
applies in this case. The latter concern also applies to Fisher’s
method, which is a classic technique for combining indepen-
dent p values [12]. Like the product of PEPs, Fisher’s method
takes into account all peptides of a protein, penalizing one-hit
wonders on the basis of their many accompanying incorrect
peptide inferences [13–15]. This last characteristic can, how-
ever, also be a disadvantage, as many incorrect peptide infer-
ences can overrule a minority of correct peptide inferences.
Unlike the product of PEPs, Fisher’s method explicitly ac-
counts for the number of p values being combined and hence
normalizes for protein length.

Methods
We downloaded three sets of spectra, two from large-scale
studies on human samples with several millions of spectra
and one smaller-scale study on yeast samples.

The first large-scale set comprises 2212 runs on 17 adult
tissues, seven fetal tissues, and six hematopoietic cell types
with a total of ∼25 million spectra [16]. The samples were
analyzed on an LTQ Orbitrap Velos and Elite (Thermo Scien-
tific) equipped with an Easy-nLC II nanoflow LC systems
(Waters). We will refer to this set as the Kim data set.

The second large-scale set was taken from a study aimed at
studying variation of protein abundance in humans [17]. It
consists of 561 runs on 51 samples from lysates of
lymphoblastoid cell lines, resulting in ∼9 million spectra. The

peptides were labeled with TMT 6-plex to enable quantification.
The analysis took place on an LTQ Orbitrap Velos (Thermo
Scientific) equipped with an online 2D nanoACQUITY UPLC
system (Waters). We will refer to this set as the Wu data set.

For verification of the accuracy of protein-level false
discovery rate (FDR) estimates we additionally downloaded
92, 974 spectra from three injections of yeast cells grown to
mid-log phase, collected on an LTQ Orbitrap Velos (Thermo
Scientific), as described in Moruz et al. [18]. We will refer to
this set as the Bhm_yeast^ set.

Converting the RAW files to two separate files in the MS1
and MS2 formats [19], respectively, was done with
ProteoWizard [20] with vendor peak picking for the MS2
spectra and all other options left at their default values. Next,
we assigned high-resolution precursor masses and charges
using information from the precursor scans with Hardklör
[21] followed by Bullseye [22], both with the default parame-
ters, through the Crux 2.0 package interface [23].

For the Kim data set, the data was searched against the
human Swiss-Prot and Swiss-Prot+TrEMBL databases (http://
www.uniprot.org/, accessed: November 12, 2015) concatenated
with a database of common contaminants (source: http://
maxquant.org/contaminants.zip, accessed: April 17, 2015)
using the Tide search engine, again through the Crux interface.
We used semi-tryptic searches and Tide’s default fragment
tolerance. The other search parameters were kept the same as
in [16] (10 ppm precursor window, up to two missed cleavages,
up to two oxidations of methionine per peptide, variable acety-
lation of N-termini), except that we did not include variable
modifications for the cyclization of N-terminal glutamine.

For the Wu data set, we searched the spectra against the IPI
Human database ver. 3.74 (http://www.ebi.ac.uk/IPI, accessed:
May 22, 2014) using the Tide search engine through the Crux
interface. We used Tide’s default fragment tolerance, and the
other search parameters were kept the same as in [17] (10 ppm
precursor window, up to two missed cleavages, up to two
oxidations of methionine per peptide, variable TMT labeling
(229.16293 Da) of lysine and N-terminal amino acids).

The target protein sequences were reversed to construct a
decoy protein database, and separate searches were done on the
target and decoy protein database for input to Percolator 3.0.
We calculated protein-level FDR estimates using the picked
target-decoy strategy for all methods [10]. Unless stated other-
wise, Percolator was run with the default parameters, which
includes target-decoy competition on the PSMs.

Subset Training

By default, Percolator’s semi-supervised learning algorithm ran-
domly splits the list of PSMs into three subsets (i.e., the cross-
validation bins) and trains three separate SVM classifiers, each
trained on two of the three subsets and tested on the remaining
subset. Each SVM classifier produces a scoring vector, which
can then be used to calculate a new score for each PSM based on
its feature set. The final scores are thus calculated using the
classifier for which the PSM was in the test set.
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To implement subset training, we used a downsampling
strategy in which we randomly sample a subset of the PSM.
Subsequently, we applied Percolator’s normal training algo-
rithm to this subset, resulting in three SVM classifiers in the
same fashion as mentioned above. For each PSM, including
those not selected for training, we then calculated its score as
the average of the scores from each of the three SVMs. This
strategy involves some overlap between training and test sets
because PSMs selected as part of the training subset will be
evaluated by two SVM classifiers, which were trained on this
particular PSM, and will only avoid problems of overfitting
when the strategy is carried out on large data sets. This strategy
was adopted for simplicity of implementation. In a future
version of the code, we will implement a scheme in which we
downsample each cross-validation bin individually.

Preliminary results showed that including target and decoy
PSMs belonging to the same spectrum together during the
selection of the random subset gave more stable performance
than sampling without taking this distinction into account.
Therefore, this strategy was applied in the random sampling
process.

Protein Inference Method Calibration Benchmark

We assessed the accuracy and stability of FDR estimates on the
hm_yeast data set by using a sample and entrapment database,
as previously described [14]. The goal of this approach is to
provide a ground truth regarding the correctness of peptide and
protein inferences made by the algorithm under investigation
[24]. The sample database contains the protein sequences of
interest, whereas the entrapment database consists of proteins
in which the peptide sequences in the sample database are
shuffled. We search against the concatenated database of the
sample and entrapment database, and subsequently assume that
any match to the sample database is a true positive and any
match to the entrapment database is a false positive.

The assumption that any match to the sample database is a
true positive is not necessarily true because the peptide or
protein could have been inferred through an incorrect PSM.
The purpose of the entrapment database is to attract the major-
ity of these incorrect target PSMs, thereby ensuring that the
majority of PSMs, peptides and proteins matching to the sam-
ple database are correct. The larger the entrapment database,
the higher the probability that an assumed true positive (i.e., a
match to the sample database) is actually true. For example,
using an entrapment database nine times the size of the sample
database means that we will underestimate the true amount of
false positives in the entrapment FDR by ∼11% on the PSM
level. However, under the assumption that many of the proteins
in the sample database are in fact present, this underestimation
is far lower on the protein level because correct proteins in the
sample database will conceal incorrect PSMs matching to it.

Here, the yeast Swiss-Prot database (http://www.uniprot.
org/, accessed: March 15, 2016) was taken as the sample
database, and the entrapment database was nine times the size
of the sample database. Furthermore, we artificially added

shared peptides between the sample and entrapment database
by keeping 4% of the sample peptides unshuffled in the
entrapment database. This corresponded to the shared peptide
rate in the original Swiss-Prot yeast sample database.

The Tide search engine was used to obtain PSMs, again
through the Crux interface.We did a full-digestion search using
trypsin (including cleavage suppression by proline) with no
miscleavages, specifically chosen to prevent unintended shared
peptides between the sample and entrapment databases. The
minimum andmaximum peptide lengths were, respectively, set
to 7 and 50 amino acids. All other parameters were left at their
default values. The procedure for the decoy model was identi-
cal to the one mentioned above for the Kim and Wu data sets.

Protein Inference Method Performance Benchmark

The Kim and Wu data sets were used as an indication of the
performance on large-scale data by comparing the number of
identified protein groups for different protein-level FDR thresh-
olds for each of the protein inference methods. In addition, to
assess the performance for differently sized data sets, we looked
at the number of inferred protein groups for random subsets of
the Kim data set. Unlike in our resource-saving downsampling
described above, we this time reduced the size of the evaluated
sets, as our interest this time was to test the performance of the
inference procedures on smaller sets of peptides.

Results
Percolator Works Well on Downsampled Data

We used the Kim data set to evaluate the robustness of Perco-
lator’s SVM classifier to reductions in the size of the training
set. The Tide searches of the complete Kim data set against the
human Swiss-Prot database resulted in 73 million target and
decoy PSMs. Post-processing the full data set with Percolator
resulted in 7,928,454 significant PSMs and 298,301 unique
target peptides at a q value threshold of 0.01. To characterize
the performance of the SVM learning procedure when training
on subsets of the PSMs, we evaluated performance using
training subsets of 100,000, 500,000, 1,000,000 and
5,000,000 PSMs from the Kim data set, using the subset
training procedure outlined in the Methods section. For each
training subset size, we calculated the mean and standard
deviation over 10 randomized runs of the number of PSMs
and peptides with q value below 0.01.

This experiment showed that using subsets as small as
100,000 PSMs (0.14%) for SVM training did not significantly
reduce the number of inferred peptides and PSMs (Fig. 1). The
standard deviation of inferred PSMs across the randomized
runs for a fixed subset size did seem to increase slightly when
taking increasingly smaller subsets, but this effect was small.
By using a subset of 500,000 PSMs to train the SVM, Perco-
lator’s runtime for producing peptide-level results was reduced
from almost a full day to less than 10 min. Furthermore, the
memory consumption dropped from almost 100 GB to just 30
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GB, allowing analysis of this type of large-scale data to be done
on commodity computers.

Protein-Level FDR Estimates are Poorly Calibrated
when Shared Peptides are Retained

We assessed the accuracy of decoy-based FDR estimates de-
rived using four protein inference methods—best-scoring pep-
tide, two-peptide rule, product of PEPs, and Fisher’s
method—by analyzing the hm_yeast set. The assessment
employed our previously described sample/entrapment strate-
gy [14], which involves comparing the q values reported based
on the decoy model, the Bdecoy FDR,^ to the fraction of
entrapment proteins in the set of inferred target proteins, which
we call the Bentrapment FDR.^

First, we compared the four protein inference methods while
retaining shared peptides. We grouped proteins that had the
same set of inferred peptides, and also added proteins whose
inferred peptides formed a strict subset of this set to each group
[25,26]. We performed the experiment three times, varying the
peptide-level FDR threshold (10, 5, and 1%) used during the
protein grouping procedure.

This experiment showed that the decoy models based on the
reversed protein database systematically produce liberal (anti-
conservative) FDR estimates (Fig. 2). Fisher’s method and the
product of peptide-level PEPs are too liberal for small thresh-
olds but manage to provide better estimates above ∼3% and
∼1% protein-level FDR for the 10 and 5% peptide-level FDR
thresholds, respectively. For the two-peptide rule, not enough
decoy proteins remain to assess if the FDR estimates will

become more accurate at some point, and the best-scoring
peptide approach produces dramatically liberal estimates for
all thresholds. Taking stricter peptide-level thresholds general-
ly improved the accuracy for Fisher’s method and the product
of PEPs. Going down to 5% peptide-level FDR still produced
anti-conservative protein-level FDR estimates in the region
below 1% protein-level FDR, but going further down to 1%
peptide-level FDR actually produced reasonable, though still
slightly anti-conservative, estimates in that region.

We also investigated the accuracy of the FDR estimates
calculated by Fido, as implemented in the Percolator package,
which would still be a viable alternative for smaller data sets.
Fido makes use of shared peptides and protein grouping, but
contrary to the protein grouping procedure outlined above, only
groups proteins with exactly the same inferred peptides. It
relies on its Bayesian inference engine to solve the issue of
proteins whose peptides form a strict subset of the set of
inferred peptides of another protein. Furthermore, Fido esti-
mates FDRs by its Bayesian inference engine rather than using
a decoy FDR, although the decoy FDR curve is in fact used to
calibrate its parameters. Fido’s FDR estimates proved to be
better calibrated in the region below 1%protein-level FDR than
the other four methods, but showed divergence from accurate
estimates for higher protein-level FDRs, both in conservative
and anti-conservative direction.

Eliminating Shared Peptides Improves Calibration

We hypothesized that these calibration problems arise from the
peptides that are shared between different proteins in the
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Figure 1. SVM training on downsampled data retains the performance achieved using the full data set. From the full Kim data set of
73 million target+decoy PSMs, we evaluated subset sizes of 100,000, 500,000, 1,000,000, and 5,000,000 PSMs to train the SVMs,
repeating this for 10 randomized sets, and scored all 73 million PSMs using the resulting support vectors. The figure plots, as a
function of data set size, the ratio of significant peptides (left) and PSMs (right) at a q value threshold of 0.01 over the same number
when using the full training set of 73 million PSMs. The number of significant PSMs and unique peptides does not drop significantly,
even for subsets of 100,000 PSMs
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database. Accordingly, we next considered an approach that
discards shared peptides, retaining only those that are unique to
a single protein. To reduce the effect of fictitious shared pep-
tides that correspond to protein fragments or other truncated
protein forms, we used the approach to handling shared pep-
tides from Nesvizhskii et al. [27]. Here, proteins are mapped to
their theoretical proteolytically digested peptides, rather than
their experimentally discovered peptides, and two proteins, A
and B, are merged into a group if protein A’s peptides are a
superset of protein B’s peptides or vice versa. We then retain
the peptides that are unique to a protein group rather than to a
single protein. A side effect of this change is that in contrast to
the procedure used in Fig. 2, we do not have to apply any
peptide-level FDR threshold because all protein grouping is
done before the data is observed.

We applied this approach to several protein databases and
showed empirically that including the protein grouping step
increases the number of protein entities (i.e., single proteins or
protein groups) with a peptide uniquely identifying it. The
experiment involved performing a fully tryptic digestion, with
no missed cleavages, of three human protein databases—Swiss-
Prot, Swiss-Prot+TrEMBL, and Ensembl—considering

peptides with lengths of 6–50 amino acids. TrEMBL and
Ensembl contain many proteoforms and therefore benefit sig-
nificantly from this particular protein grouping approach in
terms of number of identifiable protein entities (Table 1). Note
that, unfortunately, some protein groups will remain unidentifi-
able because all their peptides are shared by at least two different
protein groups. The in-silico protein digestion and subsequent
grouping required only 15 s for the Swiss-Prot database and
4 min for the Swiss-Prot + TrEMBL database.

Having eliminated the shared peptides, we returned to our
sample/entrapment strategy for estimating the accuracy of
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Figure 2. Retaining shared peptides leads to poor calibration of the decoy model for all the tested protein inference methods. The
figure plots reported q values from the decoymodel, the decoy FDR, against the fraction of entrapment proteins in the set of identified
target proteins, the observed entrapment FDR using a peptide-level FDR threshold of 10% (a), 5% (b), and 1% (c). Dotted lines
correspond to y = 1.5x and y = 0.67x. For a peptide-level FDR threshold of 10%, all five methods produce anti-conservative FDR
estimates, with Fisher’s method and product of PEPs achieving reasonable accuracy above 3% decoy FDR. For the stricter
thresholds of 5% and 1%, the FDR estimates of those two methods are anti-convervative for very low FDRs, but quickly become
conservative for higher FDRs. In comparison, the FDR estimates produced by Fido are better calibrated in the very low FDR range,
but show rather erratic behavior by suddenly switching fromconservative to anti-conservative estimates around 6%entrapment FDR

Table 1. Protein Grouping Increases the Number of Inferable Protein Entities

Swiss-Prot Swiss-Prot
+TrEM

Ensembl

Protein sequences 20,201 69,714 101,933
Peptide sequences 586,424 664,801 672,519
Proteins with protein-specific peptides 19,938 52,834 49,871
Protein groups 20,104 58,605 68,370
Protein groups with protein

group-specific peptides
19,978 54,292 58,929
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protein-level FDR estimates. In this new setting, all four
methods now gave accurate protein-level FDR estimates
(Fig. 3a). Zooming in on the low FDR region (Fig. 3b) showed
that the protein-level FDR estimates break down somewhere in
the [0.001,0.01] range, presumably due to the low density of
decoy proteins in that region. From these results, it became
clear that taking only unique peptides, together with the protein

grouping approach from Nesvizhskii et al., would be the most
robust choice, regardless of the protein inference method.

Selection of a Protein Inference Strategy

Finally, we compared the number of inferred proteins as a
function of the observed entrapment FDR for the different
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Figure 3. Using only protein-unique peptides gives accurate estimates of the protein-level FDR. (a) The figure plots the decoy FDR
against observed entrapment FDR. All four methods produce accurate FDR estimates. (b)A logarithmic plot of the region [0.001,0.1]
with the same axes as in (a)
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Figure 4. Comparison of protein inference methods. (a) The figure plots the number of accepted protein groups against the
observed entrapment FDR for the hm_yeast set. Fisher’s method, the product of peptide-level PEPs, and the best-scoring peptide
approach all perform about equally, whereas Fido and the two-peptide rule are much less sensitive. We used a peptide-level
threshold of 5% for Fido in this plot, but thresholds of 10% and 1% gave very similar results. (b) A plot of the number of accepted
protein groups against the decoy FDR for theWudata set. The product of peptide-level PEPs and the best-scoring peptide approach
perform best, whereas the two-peptide rule and Fisher’s method inferred far fewer protein groups. (c) (d) Same axes as in (b) but for
the Kim data set, searched using the Swiss-Prot (c) and Swiss-Prot+TrEMBL (d) databases. The best-scoring peptide approach
inferred the most protein groups for both databases
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inference methods. For the hm_yeast data set, Fido and the
two-peptide rule were clearly performing worse than the others
(Fig. 4a). We then repeated the assessment on the much larger
Wu and Kim data sets, using the IPI database for the Wu set
and two different databases (Swiss-Prot and Swiss-
Prot+TrEMBL) for the Kim set. Even for such large-scale data,
all four protein inference methods took less than a minute of
processing time because of their simplicity. We looked at the
number of inferred protein groups at 1% reported protein-level
FDR (Fig. 4b–d). For the Wu data set, the multiplication of
PEPs and the best-scoring peptide approach performed best.
Fisher’s method inferred far fewer protein groups than the other
three methods, possibly due to incorrect peptides dragging
down the p value of correct protein groups. For the Kim data
set, the best-scoring peptide approach inferred the most protein
groups for both databases with a 3–5%margin over the second-
best method. Although the many proteoforms in the TrEMBL
database caused a large drop in the number of protein groups
for all methods, the relative ranking of methods was consistent
in both sets of results.

Finally, we looked at the number of inferred protein groups
for random subsets of the Kim data set (Fig. 5). For small data
sets, all methods except the two-peptide rule perform about
equally. However, as the data sets get larger, the best-scoring
peptide approach starts to show its advantage. Overall, we
concluded, in agreement with Savitski et al. [10], that the
best-scoring peptide approach yielded the best overall perfor-
mance. We therefore implemented this protein inference meth-
od in the latest Percolator package.

Discussion
Wedemonstrated that Percolator 3.0 can calculate accurate protein-
level FDRs on a human proteome-scale study, in this case 73
million PSMs, in a matter of minutes on a commodity computer.

The downsampling approach for SVM training on a subset
of the PSMs shows great stability even when only sampling a
tiny fraction, as small as 100,000 PSMs (i.e., 0.14% of the
original set of 73million PSMs). The Kim data set might not be
as representative for other types of studies that have greater
heterogeneity, but it seems likely that the downsamping strat-
egy will work well as long as the selected subset of PSMs
contains a sufficient number of positive training examples.

The most successful protein inference method turned out to
be the one where proteins were grouped by their theoretical
peptide sets and only the best-scoring peptide was considered.
In this approach, the score assigned to a protein essentially
ignores the majority of the PSMs, something that may feel quite
unsatisfactory. On the other hand, including evidence from
other, lower-scoring peptide inferences is difficult because it
often involves lumping incorrect peptide inferences into correct
protein inferences. This problem can clearly be seen in the poor
performance of Fisher’s method for combining p values on the
Wu and Kim data sets. Setting peptide-level thresholds can
actually bring Fisher’s method up to par with the best-scoring
peptide approach (data not shown). However, this modification
does not produce significantly more protein inferences, while
introducing an extra parameter that needs to be set correctly.

With regards to the discarded shared peptides, large-scale
studies give us the luxury of deep coverage, therefore inferring
many peptides that are unique to a protein. This mitigates the
problem of ignoring shared peptides and makes the task of
protein inference much simpler and intuitive.

The protein grouping method employed here still suffers
from the problem that an inference of a protein group leaves
open the question of which proteins in the group are actually
correct. Here, we interpreted it using the null hypothesis that all
proteins in the group are incorrect (i.e., an inferred protein
group means that we expect at least one of the proteins to be
correct) but we are agnostic about which one. Compared with
the conventional protein grouping approach, which is based on
inferred peptides instead of the full set of theoretical peptides,
the groups produced by our method are much smaller. For the
Swiss-Prot database, virtually all protein groups contained only
one protein and for the Swiss-Prot + TrEMBL database they
typically contained just one or two proteins. Consequently,
ambiguity about which specific proteins are present is much
rarer. Furthermore, if genes, rather than proteoforms, are the
entities of interest, using databases with few proteoforms such
as Swiss-Prot should do the job.

We have not extensively tested our new protein inference
functionality on smaller data sets. However, based on the
results for the hm_yeast set and the small random subsets of
the Kim set, we believe that the estimated FDRs will remain
accurate and that it is unlikely that any of the other evaluated
protein inference methods will identify many more proteins.
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Figure 5. Sample size dependence of protein inference
methods. We plotted the average number of accepted protein
groups at 1% protein-level FDR over triplicate random subsets
of using different subset sizes of the Kim set matched to the
Swiss-Prot database. The number of PSMs was reduced from
the original 73million PSMswith factors of two until 18 K PSMs.
Fisher’s method, the product of peptide-level PEPs and the
best-scoring peptide approach all perform about equally until
200 K PSMs. Above this number of PSMs, the best-scoring
peptide approach outperforms all the other methods
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The construction of the entrapment database in this study
should be considered as a rather crude approximation of true
experimental settings and could be improved upon in future
work. Although our approach does conserve homologs by
shuffling peptide rather than protein sequences, the method
only allows for simulation of fully-tryptic peptides without
missed cleavages. Furthermore, the mechanism that creates
shared peptides between sample and entrapment database does
not attempt to model homology. In our approach, the shared
peptides are randomly distributed over all proteins, whereas in
practice we can expect some portion of proteins to share
multiple peptides and many proteins to have no shared peptides
at all. The rate of shared peptides—4%, modeled after the
Swiss-Prot yeast database—is also a good approximation of
the shared peptide rate of the Swiss-Prot human database.
However, the shared peptide rate in the Swiss-Prot+TrEMBL
database is much higher, with over 60% of the peptides being
shared by at least two proteins. Modeling this level of redun-
dancy could result in significantly different outcomes.

For our largest evaluated data set, the 73 million PSMs of the
Kim data set, the combined runtime for Percolator 3.0 (i.e., from
PSMs to protein-level FDRs) was 10 and 15 min for the Swiss-
Prot and Swiss-Prot+TrEMBL database, respectively. We real-
ize that other parts of the shotgun proteomics analysis pipeline
might still have significantly higher computing requirements
than Percolator, but fortunately these can often readily be
parallelized as the runs can be analyzed independently. Howev-
er, as we have pointed out elsewhere, obtaining significance
measures per run or data set and combining them afterwards is
not at all straightforward and should be handled with great
caution [28]. This new version of Percolator allows the user to
easily obtain statistical significancemeasures on aggregated data
from a great number of runs without running this risk.
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