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Abstract

Animal models of disease help accelerate the translation of basic
science discoveries to the bedside, because they permit experimental
interrogation of mechanisms at relatively high throughput, while
accounting for the complexity of an intact organism. From the
groundbreaking observation of emphysema-like alveolar destruction
after direct instillation of elastase in the lungs to the more clinically
relevant model of airspace enlargement induced by chronic exposure
to cigarette smoke, animal models have advanced our understanding of
alpha-1 antitrypsin (AAT) function. Experimental in vivomodels that,
at least in part, replicate clinical human phenotypes facilitate the

translation of mechanistic findings into individuals with
chronic obstructive pulmonary disease and with AAT deficiency.
In addition, unexpected findings of alveolar enlargement in
various transgenic mice have led to novel hypotheses of
emphysema development. Previous challenges in manipulating the
AAT genes in mice can now be overcome with new transgenic
approaches that will likely advance our understanding of
functions of this essential, lung-protective serine protease inhibitor
(serpin).
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Emphysema is a key component of the
common group of airflow diseases
collectively termed chronic obstructive
pulmonary disease (COPD) (1, 2). The
independent risk factors for developing
COPD are a history of smoking, advanced
age, and a history of asthma (3). Primarily
occurring in those exposed to cigarette
smoking (CS), emphysema has a strong
genetic component, with only a subgroup
of smokers developing emphysema (4). Of
the genetic factors, deficiency in alpha-1
antitrypsin (AAT) remains one of the most
common risk factors for developing
emphysema. Individuals with AAT
deficiency (AATD) are ninefold more likely
to develop emphysema compared with
those without this genetic deficiency, and

lung disease is the most common cause of
morbidity in individuals with AATD (5–7).
Chronic exposures to CS, AATD, and other
rare genetic diseases such as Marfan’s
syndrome (8) are associated with
emphysematous lung changes; these
changes have also been described in
individuals with severe caloric restriction
(9, 10), those of advanced age (11), and
those infected with HIV (12, 13). We briefly
discuss how each of these clinical scenarios
has been modeled in the laboratory to
better understand disease pathogenesis,
and vice versa, that is, how basic science
discoveries of emphysema-like phenotypes
in animal lungs have led to discoveries that
have informed our knowledge of human
clinical phenotypes (Table 1).

The discovery of AAT as a serum
antiprotease that is deficient in those
with severe emphysema (14) and the
identification of its antielastase properties
have been intimately linked to the
development of the elastase animal model
of emphysema. The instillation of porcine
pancreatic elastase or human neutrophil
elastase into the lungs of either mice or
hamsters culminated in the development of
emphysema, an observation that underlies
the most popular mechanistic paradigm,
that of a protease/antiprotease imbalance
leading to degradation of elastin fibers
that compose the lung matrix (15).
Validated by a similar phenotype in the
tight skin mouse (16), mice defective in the
fibrillin gene (17), the elastase model of
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emphysema remains popular because of a
relatively rapid development of airspace
enlargement, but it is criticized for the lack
of physiological relevance of its disease
course (18).

In contrast, CS exposure models have
been better received because of the relevance
of this environmental exposure to human
disease. However, studies using this model
require a relatively prolonged time, more
than 4 months of exposure to CS, and result
in a relatively mild phenotype. Numerous
reports have described acute events after CS
exposure, of which one of the earliest is
oxidative stress with loss of epithelial and

endothelial barriers, with leukocyte
adhesion to the lung microvasculature
within minutes after CS exposures (19).
Chronic experimental CS exposure leads to
mouse strain–specific and species-specific
levels of lung injury. In common inbred
strains of mice, such as C57Bl/6 and DBA2/J,
chronic CS exposure causes airspace
enlargement and is associated with various
degrees of inflammation, oxidative stress,
increased proteolysis, parenchyma cell
apoptosis, markers of cellular stress, and
elevated pulmonary static compliance (20).
However, the degree of large airway
pathology is relatively mild, only partially

replicating the chronic airway remodeling
seen in humans. Female sex and older age at
the time of exposure are also phenotype
modifiers in many mouse strains (21, 22).
Many investigators have reported that CS
exposure of larger animals, such as rats
(23) and guinea pigs (24), has several
advantages, including a more pronounced
airway response to CS.

Several concerns about the CS model
do persist, however, including the ability to
accurately translate findings from another
species to human disease, the difficulty of
testing concurrent neoplastic risk from
tobacco smoke exposure, and the difficulty

Table 1. Reviewed animal models of emphysema

Strain Lung Phenotype Potential Mechanism

Naturally occurring strains
Tight skin mice (82–84) Entire lung alveolar enlargement 4 d after

birth suggestive of defect in postnatal
alveolar maturation

Abnormal incorporation of mutant gene–
duplicated fibrillin into microfibrils that
renders them susceptible to elastolytic
degradation

Pallid mice (26, 27, 85, 86) Entire lung alveolar enlargement and elastin
loss 8–10 mo after birth that can be
exacerbated by CS, higher pulmonary
compliance

Partial AAT serum deficiency, organelle
defect, defect in AAT secretion

Exaggerated pathophysiological processes
Caloric restriction (42, 87) Reduction in alveolar number and surface

area with 2 wk of two-thirds caloric
reduction and reversal with diet restoration

Apoptosis and regeneration

Overexpression of inflammatory cytokines
(e.g. IL-13) (68, 88)

Conditional overexpression of IL-13 in the
lung, which induces airspace enlargement

Th2-type cytokine–induced inflammation
associated with apoptosis and matrix
proteolysis, as well as increased mucus
secretion

VEGF inhibition (59, 60) Alveolar enlargement and loss of elastic
recoil within 1 mo after VEGF blockade

VEGF blockade leading to endothelial
apoptosis

Klotho (45, 46) Alveolar enlargement by 4 wk of age Premature aging and airway apoptosis
SMP30 (47, 48) Enhanced 2-mo CS-induced alveolar

enlargement
Vitamin C metabolism; lack of protection
from oxidative stress and apoptosis
induced by CS and aging

TR (51) Enhanced 6-mo CS-induced alveolar
enlargement and weight loss in C57BL/6J
background

TERT component TR deletion; short
telomeres cause defects in epithelial repair.

Humanized PiZ AAT mouse (36) CS exposure–exaggerated lung injury in
PiZ-expressing mice

AAT polymers are directly pathogenic to the
lung; CS-induced oxidative stress worsens
AAT polymerization

Cigarette smoke injury
Rat (23, 89, 90) Alveolar enlargement after 2 mo of CS

exposure
Inflammation, oxidative stress, and apoptosis

Guinea pig (24) Alveolar enlargement and gas trapping after
3 mo of CS exposure

Inflammation and oxidative stress

Mouse (91, 92) Alveolar enlargement with 6 mo of CS in
C57BL/6, DBA/2, and A/J strains

Inflammation, oxidative stress, and apoptosis

Viral and bacterial antigens
Poly(I:C)1CS (65) Alveolar enlargement after 2 wk of CS

followed by poly(I:C), but not with LPS
Poly(I:C) induction of IFNa/b, IL-12/IL-23
p40, and IFNg

LPS (64) Increased alveolar size with 3 mo of LPS LPS induction of chronic inflammatory
processes and recruitment of macrophages
and CD81

Definition of abbreviations: AAT = alpha-1 antitrypsin; CS = cigarette smoke; IFN a/b = interferons alpha/beta; Poly(I:C) = polyriboinosinic:polyribocytidylic acid;
LPS = lipopolysaccharides; TERT= telomerase reverse transcriptase; TR= telomerase RNA; VEGF = vascular endothelial growth factor.

CONFERENCE REPORT

S312 AnnalsATS Volume 13 Supplement 4| August 2016



of modeling the unique elements of the
human immune system. Nevertheless, with
the increasing availability of regents and
transgenic approaches in species besides
mice, these models may become more
attractive in the future for the preclinical
validation of various targets and
mechanisms. For example, nonhuman
primates have been used recently to model
human CS exposure (25). Studies of AAT in
CS models have led to several important
discoveries. For example, the relative levels
of circulating AAT in particular mouse
strains (26) and in the pallid mouse (27)
are associated with distinct patterns of
emphysema distribution and inflammation,
oxidative stress, and apoptosis. These
models can be useful in studying why the
classical distribution of emphysema in
individuals with AATD involves the whole
lobule (panlobular), with a predisposition
to the lower lobes of the lung. However,
the multiple other systemic comorbid
abnormalities that occur in the pallid
mouse or in other mouse strains that
develop spontaneous airspace enlargement,
such as the blotchy (28) or beige mouse
(29, 30), have reduced their usefulness in
studying AAT biology.

A recent report characterized a new
model of emphysema created by inbreeding
C57Bl/6 mice, which led to spontaneous
airspace enlargement (31). These mice
exhibited a mild degree of endogenous
AATD and diffuse bullous emphysematous
changes evident from 4 weeks of age
followed by lung inflammation, which was
not evident until late, at 56 weeks of age
(31). Because no major systemic
abnormalities were reported, these mice
may prove useful in studying the role of
AATD in airspace enlargement. However,
determining a true loss of function of
AAT in mice has been challenging
because there are three to five encoding
genes (Serpina1a-1e) (32, 33), and efforts
to generate individual knockouts,
including the embryonically lethal
Serpin1a-null mouse (34), have been
unsuccessful. Nevertheless, new
technologies for creating targeted mutant
mice such as CRISPR-Cas9 will likely
resolve this issue by offering easier target
design and more efficient genomic
modification over traditional methods.

CS has been found to decrease AAT
activity in the lungs via oxidation of the
molecule (35), which may induce a
functional state of AATD. In addition,

transgenic overexpression in mice of the
most common human mutant AAT to
cause severe emphysema, PiZZ (36),
has yielded important insights into the
proinflammatory properties of AAT
polymers (37). This humanized transgenic
mouse model suggest that in patients
with AATD and emphysema, the lack of
functional AAT is not the only cause of
lung pathogenicity and that abnormal
circulating AAT polymers are also driving
detrimental inflammatory responses.
Furthermore, protective effects of AAT gain
of function have been demonstrated after
either gene therapy using the well-tolerated
adeno-associated virus to transduce
human AAT (38, 39) or AAT protein
augmentation therapy via intravenous
injection (40, 41) or inhalation. Because
AAT protein augmentation improved
inflammation or airspace enlargement
in mouse models of CS exposure, it is
conceivable that supplementation therapy
may be useful in select patients without
AATD but with emphysema.

Other animal models have been created
to model the clinical phenotypes associated
with emphysema, such as that induced by
caloric restriction, advanced age, or HIV
infection. Of these, caloric restriction has
resulted in a reversible phenotype (42) that
lacks true destruction of the alveoli. In this
context, the caloric restriction model may
be useful in understanding the mechanism
of autophagy and reversible cell injury that
is caused by a lack of cell maintenance
program rather than by alveolar destruction
along with the role of AAT in these
processes, because AAT levels are increased
or unchanged during starvation (43, 44).
Several models (e.g., the Klotho mutation
mouse [45, 46], the senescence marker
protein-30–null mouse [47, 48], the
senescence-accelerated mouse [49], and the
telomerase-null mouse [50, 51]) have
deepened our understanding of the role of
premature senescence in the development
of emphysema. Although serpins such as
plasminogen activator inhibitor-1 have
been implicated in regulating senescence
(52), little is known about the role of AAT
in this process. Finally, little progress has
been made in animals in modeling the
effect of HIV on the human lung (53). Such
investigations will shed light on the impact
of AAT on HIV-associated loss of gas
transfer surface, which has been described
independently of CS history and greatly
resembles the radiographic hallmarks of

emphysema (54). A potentially important
role for AAT is also hinted at by findings
of low AAT levels (55) and increased
fragments of AAT (56), suggesting
excessive proteolysis in the plasma of
HIV-infected patients (55). Furthermore,
the reported protective effects of AAT
against HIV replication and pathogenicity
(57) (58) encourage future studies of
augmentation therapy for this condition,
especially when it affects the lung.

In addition to models of elastase and
CS exposure, other models of emphysema
have evolved from “bench” observations
highlighting specific mechanisms of lung
injury that replicate emphysema-like
phenotypes in small animals. Among
these are the vascular endothelial growth
factor receptor (VEGFR) blockade models
(59, 60), which led to the discovery of
apoptosis as a central mechanism of
emphysema development. These models
revamped the vascular hypothesis of
emphysema (61), which has been further
cemented by observing a similar
emphysematous phenotype after apoptosis
induction specifically in lung microvascular
endothelial cells (62, 63). The occurrence
of airspace enlargement after repetitive
exposures to certain LPS levels (64), the
synergistic effect of coexposure to tobacco
and viral antigens (65, 66), and models of
autoantigen exposures (67) highlighted
the importance of immune responses to
emphysema pathogenesis. To this list of
models one must add those that were
developed via transgenic manipulations of
multiple genes (e.g., for IL13, see Reference
68; for IFNg, see Reference 69; for matrix
metalloproteinase-1 (MMP1), see Reference
70; and so forth, as reviewed in Reference
71), which points to potential genes with
susceptibility to, or which are putative
therapeutic targets for, emphysema.
Similar to the elastase model, these
“nonphysiological” models of emphysema
have advanced our understanding of the
pathogenesis of airspace enlargement and
parenchyma destruction that may be
applicable to both AATD and nondeficient
states and have revealed novel aspects of
AAT biology. For example, the use of LPS
in an elastase-deficient model led to the
understanding that several immune
modulatory effects of AAT occur
independently of its antielastase function
(72). The beneficial effects of AAT
supplementation in the VEGFR model (73)
increased the interest in defining the
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antiapoptotic and vascular-protective
effects of AAT in the lung and elsewhere,
for example, in vasculitides. The endothelial
cell antiapoptotic effects of AAT (73, 74)
have been found to extend to CS-induced
apoptosis (75), explained, at least in
part, by inhibition of executioner
caspases (76) or possibly by increasing
vascular endothelial growth factor
abundance (77) or inhibition of calpain
activity (78). These previously unsuspected
intracellular effects of AAT led to
investigations into the trafficking
of AAT across alveolar units, from its
abundant intravascular localization to
intraendothelial cell uptake, followed by
secretion across the epithelium (79). This
actively regulated process was found to be

highly influenced by CS exposure (79–81)
and, at least in part, to engage specific
receptors of the scavenging receptor family
that also participates in the clearance of
lipoproteins (80).

In conclusion, animal models of
disease have led to rapid progress in our
understanding of emphysema pathogenesis
in both individuals with AATD and
AAT-sufficient individuals and have
unveiled pleiotropic functions of AAT.
There is a need to further improve
these models, including developing AAT
loss of function using modern gene-
editing technologies, establishing COPD
exacerbation models that better replicate
human disease, and incorporating more
efficient end points of disease activity

assessment with improved throughput
and sensitivity such as imaging and
respiratory function measurements.
When appropriately validated and
extrapolated to human conditions,
lessons learned from animal models of
emphysema will spur the development
of improved diagnosis for those at risk for its
development. Animal models will also allow
us to optimize AAT supplementation
therapy and expand it to conditions
other than AATD that could benefit
from its ability to tame chronic
inflammation, modulate immune
responses, and confer vascular protection.n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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