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Abstract

Microbial biofilms can colonize medical devices and human tissues,
and their role in microbial pathogenesis is now well established. Not
only are biofilmsubiquitous in natural andhuman-made environments,
but they are also estimated to be associated with approximately two-
thirds of nosocomial infections. This multicellular aggregated form
of microbial growth confers a remarkable resistance to killing by
antimicrobials and host defenses, leading biofilms to cause a wide
range of subacute or chronic infections that are difficult to eradicate.
We have gained tremendous knowledge on the molecular, genetic,
microbiological, and biophysical processes involved in biofilm

formation. These insights now shape our understanding, diagnosis, and
management of many infectious diseases and direct the development of
novel antimicrobial therapies that target biofilms. Bacterial and fungal
biofilms play an important role in a range of diseases in pulmonary and
critical care medicine, most importantly catheter-associated infections,
ventilator-associated pneumonia, chronic Pseudomonas aeruginosa
infections in cystic fibrosis lung disease, and Aspergillus fumigatus
pulmonary infections.
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Until more recently, the prevailing view
of infectious diseases was based on our
understanding of acute infections caused by
microorganisms grown in the laboratory as
planktonic (free-floating) cells in liquid
culture medium. It is only since the early
1980s that the role of biofilms in microbial
pathogenesis has become increasingly
apparent (1, 2). Bacteria and fungi can grow
as biofilms, a multicellular and sessile lifestyle
in which cells are aggregated within an
extracellular matrix rather than dispersed and
free-floating. Most biofilms are surface-
associated to biotic (e.g., epithelial or dental
surfaces) or abiotic surfaces, whereas others
can be untethered microbial aggregates that
colonize compromised tissue compartments
(e.g., sputum within the lumen of cystic
fibrosis airways). Such spatially confined

microorganisms typically cause slowly
progressive, localized and chronic disease,
rather than acute and invasive disease.
Biofilm growth on host tissues and medical
devices has thus emerged as a key mechanism
of virulence for opportunistic pathogens such
as Pseudomonas aeruginosa, staphylococcal
species, and the fungi Candida albicans and
Aspergillus fumigatus (Table 1).

Biofilm cells are physiologically distinct
from planktonic cells, with widespread
differences in gene and protein expression
patterns (3, 4). Most notably, this mode of
growth confers phenotypic traits that
promote microbial survival in hostile
environments and against antimicrobial
insults, including drugs and host immunity.
A hallmark of biofilm infections is thus
their recalcitrance to antimicrobial

treatments, leading to difficult-to-treat,
relapsing or incurable infections, or the
need to physically remove infected tissues
or medical devices. Biofilms have been
implicated in numerous subacute and
chronic infections, such as endocarditis,
catheter-associated infections, and chronic
bacterial infections in cystic fibrosis lung
disease (1, 2). With the increasing use of
indwelling catheters and medical devices,
it is estimated that up to 60–70% of
nosocomial infection are associated with
biofilms (5).

The Sheltered Life of Biofilms

The formation of a self-produced matrix,
also referred to as extracellular polymeric
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substances (EPSs), is a defining feature of
biofilms. It surrounds biofilm cells, provides
structural integrity to the microbial
community, promotes surface adhesion
and cell aggregation, and contributes to
antimicrobial and host resistance (6).
The matrix is typically composed of
exopolysaccharides, extracellular DNA,
and proteins, although its composition
varies significantly according to growth
conditions and among microbial species
(Table 2).

Exopolysaccharides are the major EPS
components in many microbial species, and
function as “molecular glue” to provide
adhesive and structural stability to the
matrix. These polymers are composed of
various polysaccharides, from sucrose-
derived glucans and fructans, cellulose,
often with mixtures of neutral and charged
polysaccharides. For example, P. aeruginosa
produces three exopolysaccharides:
Pel, a cationic polymer of partially
deacetylated N-acetylgalactosamine and
N-acetylglucosamine; Psl, a pentamer of
mannose, glucose, and rhamnose; and
alginate, an anionic polymer of uronic
acids. Pel and Psl are key to P. aeruginosa
biofilm formation by promoting adherence

to surfaces and other cells, and interacting
with extracellular DNA and host molecules
(7–9). Although alginate is overproduced
by mucoid P. aeruginosa strains frequently
isolated from chronic cystic fibrosis lung
infections, this EPS has no aggregative
properties.

Many Staphylococcus species produce
deacetylated poly-N-acetylglucosamine
(PNAG) polysaccharide (also known as
polysaccharide intercellular adhesin),
which mediates cell-to-cell adherence
and is involved in in vitro and in vivo
biofilm formation (10–12). Similarly,
C. albicans biofilms contain numerous
exopolysaccharides, including b-1,3-
glucans, a-mannans, and b-1,6-glucans,
which confer structural integrity to the cell
wall and biofilm matrix (13, 14). In vitro
studies suggest that these molecules exist in
a mannan–glucan complex, with different
structural features than their cell wall
counterparts (14). Exopolysaccharides
found within biofilms of the mold A.
fumigatus include galactomannan,
galactosaminogalactan (GAG, a
heteropolysaccharide composed of a-1,4-
linked galactose, N-acetylgalactosamine,
and galactosamine) and a-1,3-glucan

(15–17). GAG mediates hyphal adhesion
to biotic and abiotic surfaces, maintains
matrix integrity, and is critical for
A. fumigatus biofilm formation (18–20).
As with PNAG and Pel, deacetylation of
hexosamine sugars is required for the
adhesive function of GAG (21).

A hallmark of biofilms is their
remarkable resistance to killing, or tolerance
to a wide range of antimicrobials, host
defenses, and environmental stress
conditions, allowing them to persist in
hostile natural and host environments.
Biofilm cells can survive 100 to 1,000 higher
concentrations of antimicrobials and
biocides than planktonic cells (22). Notably,
this tolerance is phenotypic and reversible
when biofilm cells are dispersed and
resume a planktonic state (23). Multiple
mechanisms contribute to the antimicrobial
tolerance of bacterial and fungal biofilms
(24–26). Exopolysaccharides within the
biofilm matrix can bind or repel
antimicrobials through charge and
hydrophobic interactions, and limit their
intracellular penetration. For example,
b-1,3-glucans in C. albicans biofilms
sequester azoles (27, 28), while diffusion of
positively charged aminoglycosides can be
limited by P. aeruginosa exopolysaccharides
(8, 29).

The altered physiological states
of biofilm cells also have profound
effects in mitigating antimicrobial activity (30).
Biofilm growth generates microenvironments
that create physiologically heterogeneous
cell populations, with different growth
and metabolic states, or cells under
nutrient or oxidative stress (31, 32).
Metabolically quiescent cells or those
expressing adaptive stress responses
(such as the stringent response in
P. aeruginosa and Escherichia coli) are
less susceptible to antimicrobial killing
(30, 33, 34). Finally, gram-negative
bacteria and fungi have been reported to
overexpress antimicrobial efflux pumps.
The relative contribution of these
mechanisms to biofilm antimicrobial
tolerance varies for individual organisms
and antimicrobials.

Microbes growing in biofilms readily
evade the host immune system through
multiple different mechanisms. In vitro
studies suggest that biofilm microorganisms
are less readily recognized by the immune
system (35–37), and are resistant to
neutrophil phagocytosis and killing
(38–40). For example, the P. aeruginosa

Table 1. Major pathogens causing biofilm infections

Major Organisms Biofilm-Associated
Infection

Staphylococcus aureus and coagulase-negative
Staphylococcus species

Catheter-associated infections

Pseudomonas aeruginosa Pulmonary disease
Candida species Catheter-associated infections
Aspergillus fumigatus Pulmonary disease

Table 2. Key characteristics of biofilms

Key steps in surface-attached
biofilm formation:

d Surface attachment to biotic and/or abiotic
surface

d Production of matrix including exopolysaccharide
Mechanisms to increase resistance
to host defenses:

d Concealment or down-regulation of pathogen-
associated molecular patterns or antigens

d Resistance to phagocytic activity, host
antimicrobial defenses, and NET killing

Mechanisms to increase resistance
to antimicrobial drugs:

d Physiologic heterogeneity in biofilms, leading to
subpopulations that are metabolically quiescent,
slow growing, or that have induced stress
responses

d Limited diffusion or sequestration of
antimicrobials by biofilm matrix

d Increased expression of antimicrobial efflux
pumps

Definition of abbreviation: NET = neutrophil extracellular trap.
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exopolysaccharide Psl reduces
opsonophagocytosis by inhibiting surface
complement deposition, and promotes
intracellular bacterial survival, while
alginate protects against phagocyte
activation, uptake, and killing (41, 42).
Staphylococcus epidermidis PNAG also
hinders antibody binding and opsonic
killing (43). Similarly, b-glucans in
C. albicans biofilm matrix act as decoy
molecules that prevent efficient microbial
recognition by neutrophils, leading to
impaired oxidative burst and neutrophil
killing (37, 38). GAG in A. fumigatus
biofilms conceals b-glucans from
recognition by Dectin-1, an innate immune
pattern recognition receptor, and protects
hyphae from neutrophil extracellular traps
(19, 20). Finally, biofilm growth is also
associated with down-regulation of flagellin
expression and motility in bacteria such as
P. aeruginosa. Because flagellin is a ligand
for Toll-like receptor 5, a major innate
immune pattern recognition receptor, and
flagellar motility facilitates host cell
invasion and phagocytosis, loss of flagellar
motility in biofilm cells promotes
immune evasion (44).

The biofilm environment facilitates
polymicrobial interactions (45), cooperative
metabolic functions (46), and cell–cell
communication (47). Because many
biofilms are polymicrobial, microbial
interactions that are cooperative or
antagonistic may significantly affect
microbial virulence, host interactions,
and antimicrobial resistance (48).

Diagnosis of Biofilm Infections

Because biofilm infections have no definitive
diagnostic marker, their recognition can be
challenging. They are typically defined
on the basis of a combination of
microbiological, clinical, and microscopic
features: localized and difficult-to-eradicate
infections, and/or detection of microbial
biofilms on direct examination of infected
tissues (49). Biofilm growth can also
impede microbiological diagnosis as
microorganisms are not readily recovered
for culture without physical disruption
of surface-attached biofilms. Sampling of
in vivo biofilms is thus difficult, and
traditional diagnostic methods often
lack sensitivity and specificity (50).

Furthermore, in vitro antimicrobial
susceptibility tests are of limited value in

predicting activity against biofilms.
Conventional antimicrobial susceptibility
assays test the activity of antimicrobials
against microorganisms in the planktonic,
not biofilm, state. Although antimicrobial
susceptibility assays for biofilm-grown
bacteria have been developed (51, 52),
they have not been found to predict
microbiological or clinical outcomes when
evaluated in patients with cystic fibrosis
infected with P. aeruginosa (53, 54).
Standardized antimicrobial susceptibility
assays for fungal biofilms have not yet been
developed.

Biofilm Formation in
Experimental Model Systems

Given the dearth of in vivo biofilm models
and our limited ability to probe a microbial
growth phenotype that is lost on ex vivo
culturing, our understanding of how
biofilms form and behave in the human
body remains limited (55). Our current
knowledge is largely extrapolated from
in vitro systems (e.g., microtiter plates,
continuous flow chambers), which best
model the formation of surface-attached
biofilms (56). Although biofilms take on
distinct characteristics in different growth
environments and experimental systems,
they typically share the following features:
attachment to surrounding surfaces (biotic
or abiotic), or self-aggregation; production
of an extracellular matrix; and reversion
to a planktonic phenotypic state on
dispersion or release from biofilms.

Surface attachment is the first and
necessary step for the formation of surface-
associated biofilms, and a critical
determinant of abiotic surface colonization.
The initial attachment, a reversible
nonspecific adhesion, is largely determined
by interactions between microbial adhesion
factors or appendages, and the abiotic
surface atomic structure and chemical
composition. Irreversible attachment
follows and is usually mediated by specific
protein adhesin–receptor interactions, as
well as the synthesis of EPS components
(57). Surface proteins, such as LecA and
LecB lectins in P. aeruginosa (58, 59),
fibronectin-binding proteins (60), protein A
(61) or Bap (62) in Staphylococcus aureus,
or the glycosylphosphatidylinositol-linked
cell wall proteins (e.g., Hwp1) and
agglutinin-like sequence proteins Als1 and
Als3 in C. albicans (63), promote cell

surface contact during biofilm formation.
In gram-negative bacteria, cell appendages
such as flagella, pili, or fimbriae mediate
adherence to biotic and abiotic surfaces
(64, 65). After these initial adhesion events,
the elaboration of biofilm matrix by
microorganisms serves to increase surface
adherence and stability.

Numerous studies have described
in vitro biofilm formation to be a tightly
regulated and stepwise process governed by
cell–cell signaling (e.g., quorum sensing in
P. aeruginosa and S. aureus), intracellular
signaling [e.g., cyclic-di-GMP and
(p)ppGpp], and biofilm-specific
transcriptional factors (57, 66, 67). Cyclic-
di-GMP has emerged as an intracellular
secondary messenger critical to the
transition from motile planktonic to sessile
adherent biofilm lifestyles in a wide range
of bacteria (68). In particular, cyclic-
di-GMP down-regulates bacterial motility
while up-regulating EPS production to
promote bacterial surface adherence and
biofilm formation. In vitro biofilms such as
those observed in P. aeruginosa can also
take on complex architecture, with a
“mushroom-like” structure when biofilms
are cultured under continuous flow
conditions (66). Whether this ordered
process occurs during in vivo biofilm
formation remains to be determined, as
such ordered structures are not observed
in human samples (55).

Biofilms: A Microbial Reservoir
for Nosocomial Infections

Microbial biofilms are ubiquitous in natural
and human-made environments, and likely
encompass the majority of bacteria in their
natural habitats. Most water distribution
systems are colonized with biofilms (69) and
this may contribute to the nosocomial
transmission of P. aeruginosa, for example
(70). Contaminated surfaces in health-care
settings are also increasingly recognized as
a reservoir for transmission for pathogens
such as P. aeruginosa, Acinetobacter
baumannii, and S. aureus, particularly
within the intensive care unit (ICU)
(71, 72). Common biocides such as
chlorhexidine and triclosan are ineffective
at killing biofilm bacteria, including
P. aeruginosa and S. aureus (73), and
biofilms have been recovered from sanitized
hospital surfaces (72). The ability of biofilm-
living organisms such as Acinetobacter to
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survive desiccation for weeks likely further
contributes to their propensity to transmit
within health-care settings (74).

Concepts in Antibiofilm
Strategies

Conventional antimicrobial drugs have
limited activity against biofilms, and great
effort has been invested in developing
treatments that specifically target biofilms
by inhibiting biofilm formation, disrupting
established biofilms, or enhancing the
activity of conventional antimicrobials (25).
To counter surface-attached biofilm
formation, many studies have focused on
the development of novel biomaterials with
surface modifications that alter biophysical
cell–surface interactions or prevent biofilm
growth. This avenue of research has led to a
wide range of novel surfaces coatings with
antimicrobials, cationic antimicrobial
peptides, or metal nanoparticles being
applied to medical devices such as
indwelling catheters and endotracheal
tubes (75). For example, bismuth thiols or
silver-containing molecules have potent
antibiofilm activity and have been
extensively studied for their potential
clinical use.

Interrupting bacterial signaling
pathways that coordinate gene functions
implicated in biofilm formation is also
a compelling approach. For example,
inhibitors of (p)ppGpp (76, 77), cyclic-di-
GMP (78), and quorum sensing (79)
signaling show promising antibiofilm
activity in vitro in multiple bacterial species
and could lead to novel therapeutic
strategies to prevent biofilm formation.

Various structural components of the
biofilm matrix are also potential targets
for enzyme-based therapies. For example,
PelA and PslG, glycosyl hydrolases from
P. aeruginosa, disrupt established
P. aeruginosa biofilms and enhance biofilm
susceptibility to antibiotics and neutrophils
(80). b-1,3-Glucanase targets C. albicans
b-1,3-glucan–rich EPS and increases
fluconazole activity in vivo (28). Finally,
Sph3, a glycoside hydrolase that degrades
GAG, inhibits the formation of adherent A.
fumigatus biofilms and disrupts preformed
fungal biofilms in vitro (18). DNA can be
an important matrix component of biofilms
formed by many microbial species
including P. aeruginosa (81), S. aureus (82),
C. albicans, and A. fumigatus (83). In both

fungal species, degradation of extracellular
DNA with recombinant DNase destabilizes
biofilm structural integrity and increases
antifungal activity against biofilms in vitro
(84, 85).

Although similar observations have
also been made in bacterial biofilms in vitro
(81, 86), these effects vary by experimental
conditions, and the role of extracellular
DNA and DNase therapy in vivo remains
equivocal. Inhaled recombinant DNase I
(dornase alfa) is routinely used in the
management of cystic fibrosis lung disease,
but primarily for its mucolytic properties.
Although disruption of biofilms in vivo
carries the potential risk of causing
disseminated disease, this approach may
be considered in combination with
conventional antimicrobial therapy that
will effectively target microorganisms
released from biofilms.

Biofilm-Associated Infections

Indwelling Catheter–Associated
Infections
Catheter-associated infections are frequent
complications of central venous catheter use
in the ICU and are associated with increased
cost, length of ICU stay, and mortality.
In vitro experimental systems provide a
good model of catheter-associated biofilms,
showing that microbial cells adhere to
abiotic surfaces under static or continuous
flow, and form surface-attached biofilms
that resist host immunity and
antimicrobials. Once dispersed from
biofilms, organisms may disseminate to
cause bloodstream infections and further
colonization (87, 88).

Catheter-associated infections are most
commonly caused by skin commensal
bacterial organisms (e.g., coagulase-negative
Staphylococcus species and S. aureus),
although enteric gram-negative bacilli and
opportunistic fungi (predominantly
Candida species) are encountered in
immune-compromised and ICU patients
(89). The ability to form biofilms on abiotic
surfaces is likely a major mechanism of
virulence for commensal organisms such
as S. epidermidis and Candida species in
catheter-associated infections (90, 91).

Strategies to prevent catheter-
associated infections have focused on
surfaces coated with antimicrobials and
antiseptics to inhibit microbial adhesion
and biofilm formation. For example,

catheters coated with chlorhexidine–silver–
sulfadiazine or minocycline–rifampin
have reduced bacterial colonization and
bloodstream infections (92). Catheters
impregnated with amphotericin B are also
effective against C. albicans biofilm
infections in animal models and avoid the
systemic toxicity of this compound (93).

The treatment of catheter-associated
infections relies on two principles:
disruption of biofilms, and antimicrobial
treatment to eliminate viable organisms. At
present, disruption of biofilms is largely
limited to the removal of colonized
catheters, and this is recommended
whenever feasible because of the limited
activity of antimicrobials in eradicating
established biofilms. Although clinical and
in vivo efficacy data are limited, antibiotic
lock therapy, which consists of instilling
high concentrations of antibiotic within the
catheter to eradicate the adherent biofilm,
may be used as adjuvant therapy to salvage
permanent indwelling catheters in some
situations (94). Although C. albicans
biofilms show in vitro resistance to
echinocandins, these drugs display excellent
activity in vivo, where they can disperse
preformed catheter-associated biofilms
(95), enhance immune recognition and
fungal killing (27, 96–98), and completely
eradicate catheter-associated infections
(99). This antibiofilm effect is likely
mediated through depletion of b-1,3-glucan
from the biofilm matrix by these
competitive inhibitors of b-1,3-glucan
synthase. Although the clinical efficacy of
echinocandins supports their use as the
treatment of choice for C. albicans biofilm
infections, current guidelines nonetheless
recommend removing the infected catheter
whenever possible (100).

Endotracheal Tube Colonization and
Ventilator-Associated Pneumonia
Ventilator-associated pneumonia is a major
nosocomial infection associated with
significant morbidity and mortality.
Biofilms readily grow on the surface of
endotracheal tubes, and bacterial
colonization occurs within hours of
endotracheal intubation (101). On
aerosolization of biofilms during
mechanical ventilation or disruption during
tracheal suctioning, bacteria are released
and can cause pneumonia (102, 103).
Biofilms formed on endotracheal tubes,
although not sufficient to cause ventilator-
associated pneumonia, are likely the major
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microbial reservoir (104–106). In a study of
patients undergoing mechanical ventilation,
biofilms were detected by scanning electron
microscopy in 72 of 75 endotracheal tubes.
In 50% of ventilator-associated pneumonia
cases, the same pathogens were identified in
the bronchoalveolar lavage fluid and
endotracheal tube biofilms, and this
occurrence was associated with treatment
failure (107).

Studies using both culture-based
and culture independent methods show
that endotracheal tube biofilms are
polymicrobial and are composed of many
of the organisms found within the
oropharyngeal and enteric flora (101,
107–109). This observation suggests that
retrograde colonization or aspiration of
secretions into the subglottic area is a
significant route for bacterial colonization
of the distal endotracheal tube (102, 103,
110). Members of the oral flora (e.g.,
Streptococcus and Prevotella species) are
most common, but ESKAPE organisms
(Enterococcus faecium, S. aureus, Klebsiella
pneumoniae, A. baumannii, P. aeruginosa,
Enterobacter spp.) are also frequently
recovered from endotracheal tube biofilms
(101, 107, 110).

Coaggregation and other cooperative
interactions between various microbes may
promote biofilm formation and enhance
antimicrobial resistance, as observed with
dental biofilms (111). Although oral
commensal organisms are traditionally
considered nonpathogenic, experimental
studies of polymicrobial infections
challenge this idea. For example,
interactions between oral commensal
organisms and P. aeruginosa may cause
increased virulence in lung infections (112).
Moreover, ventilator-associated pneumonia
caused by oral commensal organisms in the
context of polymicrobial infections are
likely underestimated by current standard
microbiological approaches.

As with vascular catheters, strategies
that incorporate materials into endotracheal
tube biomaterials to inhibit bacterial
adhesion and/or biofilm formation have
been tested clinically (113). Most
promising and extensively studied, silver-
coated endotracheal tubes are associated
with significantly reduced biofilm
formation, bacterial lung colonization, and
risk of ventilator-associated pneumonia
(114, 115). Other approaches include
endotracheal tube surfaces coated with
antiseptics (116) or metal nanoparticles

(117). Although potentially promising, the
lack of cost-effectiveness and safety data on
some of these devices still precludes their
routine use.

Chronic Bacterial Lung Infections in
Cystic Fibrosis
Patients with cystic fibrosis (CF) suffer from
abnormal mucociliary clearance and other
impaired host defenses caused by mutations
in the cystic fibrosis transmembrane
conductance regulator gene. This leads to
chronic lung disease characterized by
persistent bacterial infections of the airways
and destructive lung inflammation (118).
P. aeruginosa is the major pathogen in
adult patients with CF and causes lifelong
chronic airway infections that resist
eradication by the host immune system
and antibiotic therapy. The chronic,
noninvasive, and drug-recalcitrant nature
of chronic infections with P. aeruginosa is
attributable primarily to its growth as
biofilms (1, 2, 119).

P. aeruginosa biofilm growth is
associated with widespread changes in gene
expression and with up-regulation of
exopolysaccharide production, whereas
acute virulence genes (e.g., type III
secretion) and motility are down-regulated
(4, 120, 121), leading to bacteria that cause
less cytotoxicity and invasion of host
cells (41). These experimental results are
consistent with the clinical observations
that patients with CF harbor chronic
pulmonary infections with P. aeruginosa
for decades without developing invasive
disease (119), in contrast to patients with
P. aeruginosa acute pneumonia, who may
succumb within days.

Unlike catheter-associated biofilms or
experimental models of surface-attached
biofilms, P. aeruginosa forms untethered
biofilm aggregates within the sputum in CF
airways. Bacteria form similar biofilm
aggregates within high-density gels when
bacterial motility is restricted, and
conditions associated with CF sputum
and chronic inflammation, including the
presence of neutrophil elastase, DNA,
and amino acids, are sufficient to
promote biofilm aggregate formation (41,
122, 123). Importantly, this nonattached
biofilm growth also confers resistance to
antibiotics and neutrophil killing in vitro
(41). Unfortunately, the lack of an in vivo
lung infection model still limits our
understanding of P. aeruginosa biofilms
in CF.

The treatment of P. aeruginosa chronic
lung infections is significantly hampered
by biofilm-mediated multidrug tolerance.
Inhaled antibiotics (e.g., tobramycin) are
routinely used to treat CF lung disease and
are associated with improved pulmonary
outcomes (124). Yet, despite achieving high
pulmonary concentrations, they do not
eradicate chronic P. aeruginosa infections.
Novel compounds, such as antimicrobial
peptides (125) or metal nanoparticles (126),
show promising in vitro activity against
P. aeruginosa biofilms but still remain far
from clinical use.

Aspergillus fumigatus Pulmonary
Infections
The importance of biofilm formation in
the pathogenesis of A. fumigatus, a
ubiquitous filamentous fungus, has only
begun to emerge. A. fumigatus causes
invasive respiratory infections in
immunocompromised patients but also
colonize the airways of patients with
chronic pulmonary diseases such as CF.
Histopathologic studies of human tissues
and of animal models of invasive and
chronic pulmonary infections have
demonstrated that A. fumigatus grows as
biofilms composed of a multicellular
aggregation of hyphae embedded within
an extracellular matrix (16, 127).
Experimental studies have demonstrated
that biofilm growth contributes to fungal
virulence by promoting adherence of
hyphae to host cells (19, 128) and
enhancing resistance to killing by
antifungals (129) and the host immune
system (20). The formation of
pulmonary biofilms by A. fumigatus
may thus contribute to the high failure
rate of antifungal therapy in the
treatment of invasive aspergillosis.
Further preclinical evaluation of
antibiofilm strategies will be required to
understand their full potential to
improve outcomes in invasive and
chronic A. fumigatus infections.

Table 3. Implications for clinical care

d Biofilm infections are difficult to diagnose
by conventional sampling and
microbiology methods

d Biofilm infections are likely to relapse or fail
to respond to antimicrobial therapy

d Conventional antimicrobial susceptibility
testing does not predict clinical and
microbiological responses to treatment
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Conclusions

Although biofilm infections are common
and cause clinically significant and
potentially fatal infections, our
understanding of their role in
pulmonary infections is still evolving
(Table 3). Emerging evidence suggests
that biofilms may also be implicated in
other persistent infections such as those
caused by mycobacteria and

nontypeable Haemophilus influenzae.
Treatment of biofilm infections is
hampered by the limited antimicrobial
activity of current antibacterial and
antifungal drugs. The quest for effective
antibiofilm therapies has already led to
the discovery of novel materials and
drugs with promising in vitro and in
vivo activity, but considerable work
remains until these discoveries enter
the clinic. n
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