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Abstract

Background: Behavior is an important indicator reflecting the welfare of animals. Manual analysis of video is the
most commonly used method to study animal behavior. However, this approach is tedious and depends on a
subjective judgment of the analysts. There is an urgent need for automatic identification of individual animals and
automatic tracking is a fundamental part of the solution to this problem.

Results: In this study, an algorithm based on a Hybrid Support Vector Machine (HSVM) was developed for the

automated tracking of individual laying hens in a layer group. More than 500 h of video was conducted with laying
hens raised under a floor system by using an experimental platform. The experimental results demonstrated that
the HSVM tracker outperformed the Frag (fragment-based tracking method), the TLD (Tracking-Learning-Detection),
the PLS (object tracking via partial least squares analysis), the MeanShift Algorithm, and the Particle Filter Algorithm
based on their overlap rate and the average overlap rate.

Conclusions: The experimental results indicate that the HSVM tracker achieved better robustness and state-of-the-
art performance in its ability to track individual laying hens than the other algorithms tested. It has potential for use

in monitoring animal behavior under practical rearing conditions.

Keywords: Computer vision, Laying hens, Locomotion tracking, Support vector machine

Background

The behavior of animals is an important indicator of their
welfare [1, 2]. Animal behavior is typically monitored
through manual observation which requires substantial
manpower and cannot always guarantee accuracy [3]. The
demand for methods to automatically monitor animal be-
havior and track their movement has recently been in-
creasing thereby promoting the initiation of related
research [4].

Previous studies of animal behavior have focused on
two main objectives, namely the identification of specific
behavior and the tracking of animal movement. With re-
spect to behavioral identification, the appearance of ani-
mals varies widely depending on their location which
renders image processing and interpretation very diffi-
cult [5]. Some researchers have identified the behavior of
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animal groups through visual techniques such as moni-
toring the weight distribution in poultry flocks [6, 7], the
spatial distribution of pigs [8, 9], the distribution of
broilers [10], and the trajectory of a flock of poultry [11].
Monitoring the behavior of a particular animal in a
group requires information obtained from tracking the
specific animal and this can be achieved by limiting the
animal’s activity to ensure that it remains in an appropri-
ate location without other animals in its vicinity. This idea
has been applied to monitor a pig’s weight [12] and back
fat levels [13] and to monitor a laying hen’s activities [14].
With respect to motion tracking, Computer Vision
Technology was first used in 1997 to track animal be-
havior [15]. In 1998, Sergean et al. [16] developed a
tracking system using color information and segmented
individual birds using contour information. Currently,
Ellipse Fitting is the most common approach used to
track laying hens. Fujii et al. [17] used a method based
on particle filters for tracking multiple hens. However,
the particle filters lost track of the hens when sudden
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quick movements were made. The method which was
proposed by Kashiha [18] had a superior performance
for tracking individual laying hens in an image area but
was unable to identify and track an individual laying hen
in a flock. To solve this problems, Nakarmi et al. [19] in-
stalled a RFID (Radio Frequency Identification) antenna
array at the bottom of a cage and attached RFIDs to the
feet of hens’ to determine their location for further
tracking in the distance image. Although this method
can achieve suitable tracking results, it is very limited in
its application. It is not conducive to practical applica-
tion and wearing the RFID can lead to discomfort for
the hens which in turn may alter their behavior.

To address the challenges discussed above, a new
laying-hen tracking algorithm, based on the Hybrid Sup-
port Vector Machine (HSVM) model has been proposed
as a method to track a single hen within a flock raised
under a floor system in real time with high robustness.
The objective of this experiment was to compare the
ability of this method to track individual laying hens in a
flock with 5 other commonly used algorithms.

Methods
Experimental pen design and setup
This study was approved by the Animal Care and Use
Committee of China Agricultural University (Beijing,
China). As tracking targets, six 20-week-old Hyline
Brown laying hens weighing an average of 1.4 kg were
selected for study. The hens were allowed a 2 wk
acclimation period before commencing data collection.
A 12 mx15 m pen (Fig. 1la, b) was constructed to
house the birds (Fig. 1c). On two sides of the pen, LED
lighting was used to illuminate the test area from 0500 h
to 2100 h every day to ensure that the intensity of illumin-
ation in the pen region was approximately 15-20 lux. The
hens were fed twice a day at 0900 h and 1700 h and their
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eggs were collected at 1700 h every day. Manure was re-
moved daily and the barn temperature was maintained
about 20 °C.

The height of the cameras used to collect video
(Launch, LC5505E7-C83R) was set at 2.2 m. Videos were
operated from 0500 h to 2100 h. Over 500 h of video
were obtained during the subsequent 30 d. Ten 3-min
fragments out of the 500 h of video were randomly
chosen to validate the tracking algorithm and 778 im-
ages in the video fragments were randomly chosen and
manually labeled.

Initialization

The tracking algorithm consisted of three steps in-
cluding initialization, tracking and updating. For
initialization, the contour area of the target was manu-
ally marked and the rotation method was used to ob-
tain the size of the minimum outer rectangle of the
contour area. This minimum outer rectangle was rep-
resented as To{wg,hg,a0,¢o}, where wy corresponded to
the width of To, hy represented the height of Ty, ag
was the angle between T, and the x-axis, and co was
the center of Ty. This rectangle was the initial tracking
rectangle and the width and height of each sample was
consistent with it.

Binary HSVM model (HSVM,,)

The HSVM model consisted of a one-class model, a bin-
ary classification model and a regression model. Around
the initial tracking rectangle, the three types of HSVM
were sampled as follows. Firstly, the Binary Classification
Support Vector Machine (HSVM,) model was estab-
lished [20]. The binary model is often used for the
tracking-by-detection strategy [21, 22] used in object
tracking. However, this method results in a fuzzy bound-
ary between positive and negative samples. To handle
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Fig. 1 A schematic drawing and photograph of the experimental pen and observation objects. (@) Photograph (b) Schematic (c)
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this problem, the regression model aids in locating the
target more accurately to avoid drift.

For the HSVMb, the positive and negative samples
were expressed as {x; y;}, where y; €{+1,0} was the
label of sample x;. If y;=1, x; was a positive sample,
and xo denoted the sample in the initial tracking rect-
angle. 1(x;) denoted the location of sample x;, and
I(xy) denoted the location of T, The distance-based
rule was used to select training samples [21, 23]. If
[11(x)-1(x0)|| <d1, yi=1, and if dy < ||l(x))-1(x0)|| < d3,
yi =0, (Fig. 2a) where

dz\/m/,dlx/ié, (1)
2

d3:2\/ ‘)Vz-f—]‘lz(‘)V:W()7 H:ho)

To extract the histogram of orientation gradients, 50
positive and 50 negative samples were randomly se-
lected according to the above rules. In the HSVM, the
window size for the histogram of orientation gradient
was 16 x 16 pixels and the cell size was 4 x4 pixels.
One block consisted of 4 cells and strided each cell
once with 9 orientations. All of the samples selected for
feature extraction were normalized to the size of the
window. With the features and training pairs {x; yi},
the binary HSVM model was obtained. The confidence
score of a new candidate sample x; was calculated by:

conf(x) = Zdiyikb(xt,x) (2)

where a; was the Lagrange Multiplier and ky(x;, x) was
the Kernel Trick [24].

Regression SVM model (HSVM,)

For HSVM,, all of the samples satisfying d; < ||l(x)-
I(xo)|| < dy were selected as training samples (Fig. 2b).
The bounding box overlap area ratio was chosen to gen-
erate the regression function value y; of sample x;,
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which has been widely used to evaluate the accuracy
of object detection [23]:

_ area(x,nx;)

(3)

Vi = area(xoUx;)
where x, denoted the initial tracking rectangle. Following
this principle, 50 training samples were randomly selected
to obtain the regression HSVM model. For any candidate
in region x, its confidence score conf,(x) was calculated
as follows:

conf ,(x) = Z (ai-a} )k, (x], x) (4)

i

where a; and a; were the Lagrange Multipliers and k,(x{, x)
was the Kernel Trick [24].

One-class support vector machine (HSVM,)

The one-class HSVM was the third model. The one-
class model can be considered as an appearance model
and can distinguish between individual layers [24]. Con-
sequently, during the tracking stage, the confidence
score of the candidate samples, chosen according to the
tracking strategy used, was calculated using the HSVM
model after feature extraction. The candidate region cor-
responding to the highest score was the tracking result
of the current frame (Fig. 2c). After obtaining the track-
ing result for the current frame, we decided whether or
not it was necessary to re-sample for model re-training
in order to adapt to changes in target appearance.

One difference between the HSVM, and the first two
models was that it used the entire tracking result region
of each previous frame as the training sample. The con-
fidence score of a candidate sample x; was calculated as
follows:

conf ,(x) = Zaiko(xi,x) (5)

where a; was the Lagrange Multiplier and k,(x;, x) was
the Kernel Trick [24].

Fig. 2 Example of sampling by the three types of support vector machines. (@) SVMy, (b) SVM, (c) SVM,,
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After obtaining these three sub-models, the confidence
score of a candidate sample x; was calculated by

Conf(x) — (Wa*confna(x)+wr*confn,(x)+wb*confnb(x))/

Wot+W,+wp

(6)

where confn,(x), confn,(x), and confn,(x) were the re-
sults after normalizing conf,(x), conf.(x), and conf(x)
into the range [0,1]. w,, w,, and wy,, corresponded to the
weights of each sub-model, respectively. The weights of
each sub-model determined the relative contribution of
each HSVM. HSVMD, adopted the binary classification,
and was robust to changes in bird pose and therefore it
worked the best for monitoring preening and flapping of
wings for example. HSVMr effectively solved the drift
problem. It had the best results for when the test hens
were close to each other. HSVMo was not sensitive to a
fast-changing background and therefore had good per-
formance to monitor sudden movements from the hens
[24]. Considering the adaptation of the different support
vector machines to different scenarios and the results of
repeated attempts, w,, w, and w;, were set to 0.3, 0.6,
and 0.1.

Tracking

In the tracking phase, the candidate samples were ob-
tained around the tracking object. The model scoring
was applied to select the best tracking results. The spe-
cific process was as follows:
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(a) The tracking result of the previous frame was set as
the initial target area T,{w,, h,, a,, and c,} of the
current frame.

(b)c, was set as the center of rotation. The target area
was rotated h times in clockwise and
counterclockwise directions, respectively. Each
rotation was deflected by k degrees. If the
coordinate of point X was (x,y) before the rotation,
it became (x}y’) after the rotation and the mapping
formula was

y' = (x—x0) X sin (ao + (-1)'h x k) + (r-%)
X cos(ao + (-1)'hx k) +y, (7)

x' = (x—x9) X cos(ao + (-1 x k)—(y—yo)
X sin <a0 + (-1)'h x k) + %o (8)

where the coordinate of ¢y was (xo,yo). If the
rotation direction was clockwise, i=1; otherwise
i=2.
There were a total of 2xh + 1 candidate regions.
After the features were extracted from these regions,
the HSVM model was used to calculate their
confidence score. The candidate region with the
highest score was chosen as the best tracking
region T,{w,,h,,a,,c,}, with respect to the angle. In
the current experiment, h was set to 5 and k was
set to 3;

(c) T, was expanded m times to obtain the shift search
area T {wm,hm,am,Ccm}, where w, = mxw,hy, =
mxh,,a, = ag,and ¢, = ¢,. The search box Tg{wsy, hg,

/)
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Fig. 3 Schematic diagram of the tracking process. The tracking object is indicated by an ellipse; the blue box represents the best tracking area of
the current step; the orange box represents the location of the tracking box in previous steps; the red dashed boxes represent the candidate
regions. The best region is selected from the candidate regions
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a,, s} was used to search the entire shift search
area, where the initial value of the search box was
Ws = W,, hg = h,, and a, = a,. If the coordinate of c,
was (X,,¥a.) and the coordinate of ¢, was (xg,ys), then

xs=-0.1x W x cosa, +0.1 x H X sina, +x, (9)

¥, =-0.1 x W x sina,-0.1 x H x cosay +y,  (10)

The search box maintained the same size and
angle during the search process, while displacing it
by M and N steps in the indicated direction along
the width and height of the search area, respectively.
When the search box was moved i times along the
width and j times along the height, w;, h,, and a;
remained unchanged, and the coordinates of c, were

calculated as follows:
)
/MxWaxi) x Cosda
1
I e - (m-1)
< (m-1) x 5 X H,+ /

1
x = (—(m—l) x5 X W, + 1

> X sina, + x,

(11)

NxH,xj

1 _ .
y = (—(m—l) x5 X W, + 1)/M><Wa><i) % sina,

1
—(m-1) x = x H (mfl)/
+ ( (Wl )XQ,X att NxHgxj

) X cosa, + Y,
(12)

Thus, there were a total of MxN regions. After
extracting the features of these regions and scoring them
using the HSVM model, the candidate region with the
highest score was selected as the best region, with re-
spect to displacement (which was an initial target region
of tracking). In this study, m=1.2, M =5, and N =5.

The steps (b) and (c) were alternated until the two ad-
jacent quasi-tracking areas coincided. At this time, the
corresponding tracking box became the tracking area of
this frame image (Fig. 3).

Because histogram of orientation gradient feature ex-
traction is relatively time-consuming, the displacement
and angle of laying hens were tracked separately. Firstly,
the algorithm tracked the change in the angle and subse-
quently the change in the displacement, and was iterated
until there was no more movement. In this way, the
number of sampling iterations was effectively reduced.
This method had no significant impact on the final re-
sults and effectively improved the real-time performance
of the algorithm. For instance, in an iterative process,
the number of sampling iterations of the tracking strat-
egy was MxN + 2H + 1, while this number increased to
(MxN)x(2H + 1) if the displacement and angle were
tracked simultaneously.
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Updating
Because a hen uses a non-rigid body motion, its appear-
ance may change significantly during movement, espe-
cially if it turns, or if some of its body is partially
obscured. To accommodate the hens’ changing appear-
ance during movement, the model must be updated.

The degree of change in appearance had to be calcu-
lated after the end of each frame of video tracking to de-
termine if it required updating [24]:

<xcura ) xj>

d ) =1-
(xcurvvxl) maX“xcurH.Hx/H

(13)

‘ Set the track object manually ‘
1
Select training samples and extract
feature

1
Train SVMb, SVMr and SVMo,
respectively
F

+
Set the former frame tracking result as
the current best area
F

based on the current best area

Calculate the scores of the samples

4
‘ Get the rotation candidate samples ‘
‘ after feature extraction ‘

3
Set the sample getting the highest score
as the current best rotation area

Get the displacement candidate
samples based on the current best
rotation area

Set the current
best displacement
area as the
current best area

Calculate the scores of the samples
after feature extraction

Set the sample getting the highest score
as the current best displacement area

i
Calculate the distance between the
current best displacement area and the
current best area

f the distance is
smaller than a
preset value

Y

+
Set the current best displacement area
as the tracking result

¥
Use the tracking result to calculate the
d(xcur, xj) according eq13

If d(Xcur, X;) is less than
a pre-set value

N
+ Y

Resample and retrain ‘

!

If the frame is
the last frame

Y
end

Fig. 4 The flow chart of the HSVM tracker
A\
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In the above formula, x.,, was the characteristic value
of the tracking result of the current frame and x; was the
characteristic value of the previous tracking results of
each frame.

If d(Xcup X;) Was less than a pre-set value (0.05 in our
experiment), the data was re-sampled and then retrained
for the model. The re-sampling rules were as follows:

(a) For the binary HSVM, the image area corresponding to
the image tracking box was taken as a positive sample
to be inserted into the queue of 40 positive samples
using the first-in-first-out strategy. Sometimes the
target was blocked for a considerable duration of time
and all of the positive samples corresponded to the
blocked target. This could have resulted in drift
problems. This problem was solved by reserving the 10
initial positive samples. In addition, 50 negative samples
were randomly selected to replace all of the former
negative samples.

(b)For the regression HSVM, the sampling method for
positive samples was the same as the method for the
binary HSVM. For negative samples, 20 negative
samples were randomly selected to replace the original
negative samples.
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(c) For the one-class HSVM, the sampling method for posi-
tive samples was the same as the method for the binary
HSVM. The whole algorithm process is shown in (Fig. 4).

Results and discussion

The two most important criteria for the evaluation of
algorithm tracking methods are real-time operation
and robustness. The HSVM was implemented in
OpenCV on a personal computer with a 3.50GHz
Intel® Core™ i2-4150. It achieved an average speed of
about 9.1 frames per second.

One Hyline Brown hen was chosen from the 6 obser-
vation objects as the tracking target. HSVM was com-
pared with 5 other algorithms including Frag [25], TLD
[26], PLS [27] (these three algorithms can all be down-
loaded from the homepage of the original author),
MeanShift, and the Particle Filter Algorithm (these two
are widely used classical algorithms). Each of these algo-
rithms were used to track the target hen in the experi-
mental video. Three experiments with 3 different
randomly-selected tracking targets were conducted and
the 6 algorithms were compared in these 3 experiments.
The results are shown in (Fig. 5).

Fig. 5 Experimental results of the six algorithms: (@) HSVM; (b) TLD; (c) Frag; (d) Particle filter; (e) MeanShift; (f) PLS
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To assess the robustness of the algorithm, the overlap
rate (OR) was used to quantify the tracking accuracy.
The overlap rate was calculated as:

_ area(R,NR;)
~ area(R,\JR)) (14)

where R; represented the results of the tracking and R,
represented the ground truth.

-
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The overlap rates were calculated for the 6 aforemen-
tioned algorithms (Fig. 6). The vertical axis of the statis-
tical graph represented the overlap rate. Higher overlap
scores indicated more accurate tracking while an overlap
rate of 0 indicated that the algorithm completely lost the
tracking targets. Figure 6a shows that for most frames,
HSVM maintained an overlap rate of approximately 0.8.

An aggregation of the laying hens occurred during the
430th—600th frames. The hens’ mutual occlusion sent
the overlap rate on a downward trend but the algorithm
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self-adjusted to recover an overlap rate of approximately
0.8. Figure 6b shows the statistical graph for the TLD
algorithm.

The overlap rate curve dropped significantly at the be-
ginning, indicating that the drift of the tracking box in-
creased until the tracking box missed the target. The
tracking box only rebounded to the target for a short
period of time in the middle part of the frames. Figure 6¢
shows the graph for the Frag algorithm. The overlap rate
curve decreased until the overlap rate was approximately
0.4 because the target hen kept changing its direction of
movement. The curve then maintained this value for
some time. After the 430th frame, the overlap rate curve
declined again until the tracking box missed the target
because of the aggregation of hens.

The Particle Filter Algorithm lost and retrieved the
target frequently during the tracking process. As a result,
the value of its overlap rate varied between 0 and 0.5, as
shown in Fig. 6d, but it quickly recovered the target hen
each time it lost it. Figure 6e shows that the MeanShift
Algorithm tracking boxes expanded easily when the tar-
get hen got close to other laying hens resulting in the
decline of the overlap rate curve. When the hens aggre-
gated around the 430th frame, the tracking box simply
expanded instead of losing the target. Therefore, after
the 430th frame, the overlap rate curve did not suffer an
obvious drop. The tracking box lost the target and
stayed on the flock of hens when the target hen left the
flock. Subsequently, the tracking box was transferred to
other laying hens until the target hen and tracking box
coincided again. The overlap rate curve of the PLS algo-
rithm showed relatively stable performance, overall, and
the value of overlap rate was approximately 0.6. Even so,
the curve began to decline around the 430th frame until
the tracking box lost the target.

From the figures described above, each algorithm
adapted to different situations in the movement of laying
hens. The average overlap rate is shown in Table 1 ac-
cording to the different scenarios in the 778 images.

Table 1 shows that HSVM obtained a higher average
overlap rate than the other algorithms both with respect
to the total average overlap rate and for the different

Table 1 Average overlap rate for the six algorithms conducted
for different scenarios

Average overlap rate HSVM  TLD Frag Particle MeanShift PLS
Filter

Change of direction 079 023 036 0.36 040 0.55
Two hens mutual 078 003 039 0.37 0.37 0.61
occlusion

Preening 075 005 033 0.21 0.36 0.62
Multi hens mutual 068 009 017 0.27 0.18 0.23
occlusion

All frames 075 011 028 0.30 0.28 040
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particular scenarios. The value of the overall average
overlap rate was 35 % higher than the highest value
among the other algorithms. When tracking a single tar-
get in a multi-hen mutual occlusion situation (the most
challenging scenario), HSVM’s average overlap rate was
68 %, which was 41 % higher than the highest value
attained for the other algorithms. HSVM was relatively
stable with the average overlap rate maintained between
68 and 79 % across the specific cases and the overall
average. The PLS algorithm attained the best perform-
ance among the contrast algorithms because the PLS
was able to model the correlation of target appearance
and class labels due to its capacity for both dimensional-
ity reduction and classification [27]. The value of the
average overlap rate for the changing of direction, two
hens’ mutual occlusion, and preening scenarios was 55,
61 and 62 % respectively. However, PLS performed
poorly in handling the heavy occlusion, which can easily
and quickly change the appearance of targets [28]. In the
situation of multiple hens’ mutual occlusion, PLS lost
the target hen for some frames resulting in a drop in the
average overlap rate to 23 %. For the situation of mul-
tiple hens’ mutual occlusion, the best performance (ex-
cluding that of HSVM) was achieved by the Particle
Filter Algorithm, whereby the average overlap rate only
reached 27 %.

The TLD algorithm used the optical flow method to
track the object, which meant the following three condi-
tions had to be satisfied. First, the change of luminance
in the different frames should be very small. Secondly,
the content of two adjacent frames should change very
slowly. Finally, the projections of nearby image points
were nearby points and shared similar speed [29]. The
lighting in our hen house was not uniform and could
not be kept stable. Moreover, hens often made sudden
and quick movements such that the average overlap rate
of TLD was only 11 %. The reason is that the true target
was blurred, and it was difficult for the TLD to distin-
guish it from the background [30].

The MeanShift tracker had the advantage of low com-
plexity, but it also failed with fast motion, illumination
changes, cluttered background and occlusion [31, 32].
The average overlap rate of the MeanShift tracker was
only 17 % higher than that of TLD. The Particle Filter
Algorithm tracked the object by predicting its location
in the next frame. It worked well when the object was
briefly blocked. However, if the occlusions lasted for a
longer duration, the tracking was more likely to fail [33].
Furthermore, the Particle Filter Algorithm lost the target
during quick or sudden movements [17]. Thus, the aver-
age overlap rate of the Particle Filter Algorithm was
similar to that of the MeanShift tracker. The Frag can
cope with many different situations due to the use of
local appearance models [34]. But Frag performed poorly
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Fig. 7 Visualization results of the histogram of orientation gradient feature used in the HSVM track

in this experiment because it could not handle drastic
appearance changes [35-37], so the average overlap rate
of Frag was only 28 %.

Figure 6 and Table 1 demonstrate that our HSVM
tracker was superior to the classical methods and exist-
ing state-of-the-art methods, with respect to better
coverage and robustness on the testing sequences.

HSVM owes its success to the following aspects. First,
the algorithm used histogram of orientation gradient fea-
tures to detect laying hens and this effectively described
the contour of the laying hens. Secondly, a new type of
tracking strategy that accounted for the laying hens’ dis-
placement and their body angle improved the tracking
accuracy. Third, although the histogram of orientation
gradient feature extraction was time-consuming, the al-
gorithm still had a good real-time performance by opti-
mizing the tracking process and reducing the number of
sampling iterations.

Although the HSVM algorithm showed impressive po-
tential, there are still areas that need improvement. The
histogram of orientation gradient feature was based on
the object edge gradient (Fig. 7). Thus, if the tracking
object is significantly occluded for a long time, the
HSVM algorithm may also lose track of the object. In
this experiment, the stocking density was not too high,
and this situation happened only a few times in the vid-
eos. In further research, the stocking density will be

increased to explore approaches to improve the robust-
ness of the algorithm.

Conclusions

In this paper, a laying hen tracking algorithm based on
the HSVM was developed to track a single hen within a
flock of hens under a floor system. The experimental re-
sults showed that the algorithm achieved better robust-
ness and real-time performance than other comparable
algorithms, indicating that HSVM has a substantial prac-
tical value in the field. Because it does not require the
support of a sensor, the HSVM had better application
prospects. With the tracking approach, we can classify
the laying hens’ behavior to achieve automatic recogni-
tion. To improve the average overlap rate in future work,
we will investigate a method to adjust the size of the
tracking box based on the size change of the moving
tracking targets.
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