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Abstract

Application of model-based iterative reconstruction (MBIR) to high resolution cone-beam CT 

(CBCT) is computationally challenging because of the very fine discretization (voxel size <100 

µm) of the reconstructed volume. Moreover, standard MBIR techniques require that the complete 

transaxial support for the acquired projections is reconstructed, thus precluding acceleration by 

restricting the reconstruction to a region-of-interest. To reduce the computational burden of high 

resolution MBIR, we propose a multiresolution Penalized-Weighted Least Squares (PWLS) 

algorithm, where the volume is parameterized as a union of fine and coarse voxel grids as well as 

selective binning of detector pixels. We introduce a penalty function designed to regularize across 

the boundaries between the two grids. The algorithm was evaluated in simulation studies 

emulating an extremity CBCT system and in a physical study on a test-bench. Artifacts arising 

from the mismatched discretization of the fine and coarse sub-volumes were investigated. The fine 

grid region was parameterized using 0.15 mm voxels and the voxel size in the coarse grid region 

was varied by changing a downsampling factor. No significant artifacts were found in either of the 

regions for downsampling factors of up to 4×. For a typical extremities CBCT volume size, this 

downsampling corresponds to an acceleration of the reconstruction that is more than five times 

faster than a brute force solution that applies fine voxel parameterization to the entire volume. For 

certain configurations of the coarse and fine grid regions, in particular when the boundary between 

the regions does not cross high attenuation gradients, downsampling factors as high as 10× can be 

used without introducing artifacts, yielding a ~50× speedup in PWLS. The proposed 

multiresolution algorithm significantly reduces the computational burden of high resolution 

iterative CBCT reconstruction and can be extended to other applications of MBIR where 

computationally expensive, high-fidelity forward models are applied only to a sub-region of the 

field-of-view.

1. Introduction

Modern cone-beam CT (CBCT) systems utilize a variety of digital x-ray detectors, such as 

amorphous silicon flat panel detectors (a-Si FPDs), charge-coupled devices (CCDs) and 

complementary metal-oxide-semiconductors (CMOS). These sensors offer very fine pixel 

sizes (150 µm and less), enabling high resolution clinical and preclinical imaging at a level 
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of detail not accessible to conventional CT. Examples of emerging high resolution 

applications include: (i) small animal imaging (Clark and Badea 2014, Boerckel et al 2014), 

(ii) breast CBCT (Boone et al 2001, Yang et al 2007, O’Connell et al 2010, Shen et al 2013), 

in particular for detection of micro-calcifications, (iii) otolaryngology, dental, and head and 

neck imaging (De Vos et al 2009, Hodez et al 2011, Xu et al 2012), and (iv) extremities 

imaging (Tuominen et al 2013, Nishiyama and Shane 2013, Carrino et al 2014, Marinetto et 
al 2016), with potential use in quantitative assessment of bone microarchitecture.

The small size of the sensing elements in high resolution detectors conventionally 

necessitates an increase in imaging dose to maintain the contrast-to-noise ratio sufficient for 

clinical tasks. This increase in patient exposure may be mitigated by model-based iterative 

reconstruction (MBIR), which was previously shown to yield improved resolution-noise 

tradeoffs as compared to conventional FBP at similar or even lower dose levels (Thibault et 
al 2007, Wang et al 2014). Application of MBIR to high resolution CBCT imaging is 

however challenged by the computational burden of iterative algorithms. Whereas analytical 

methods typically require only one backprojection operation, each iteration of MBIR 

generally requires at least one forward and one backprojection. Furthermore, since MBIR 

relies on a data fidelity term that matches image estimates to the measured data, a complete 

transaxial region of support for the image volume must be reconstructed to capture all 

contributions from the object for each ray path. Thus, region-of-interest (ROI) 

reconstructions that are often straightforward to implement using analytical methods cannot 

be realized in standard iterative algorithms. The requirement to reconstruct the entire field of 

view (FOV), typically as large as 20×20×20 cm3, using very fine voxels (≤ 75 µm), can 

make the application of MBIR to high resolution imaging prohibitively slow because the 

speed of the projection and backprojection operators is generally proportional to the number 

of voxels.

Projection operators can be accelerated by optimized implementation on parallel hardware 

using graphical processing units (GPUs) (Keck and Hofmann 2009, Brokish et al 2010, 

Papenhausen et al 2011, Pratx and Xing 2011) or distributed computing (Liu et al 2013). 

However, for large-FOV high resolution CBCT data, both approaches suffer from latency of 

data transfer – either between host computer and GPU or between computational nodes in a 

distributed network. Furthermore, while such methods improve the baseline speed of the 

projection operator, the performance gains remain dependent on the size of the FOV and 

resolution. The benefits of parallelization diminish when the number of required processes 

exceeds the number of available computational nodes due to e.g. very fine discretization of 

the FOV.

One approach to overcome the decreased performance of MBIR in high resolution 

applications relies on the observation that while iterative reconstruction of an isolated high 

resolution ROI is not possible, the model of the volume can be altered so that a fine 

parameterization is only used in the ROI. Some versions of such multiresolution schemes 

forego the traditional square voxel basis functions and employ a sparse representation of the 

volume using heterogeneous voxels, wavelets (Frese et al 2002, Degirmenci et al 2015) or 

meshes (Brankov et al 2004, Sitek et al 2006). Here we will focus on traditional voxel bases, 

where multiresolution reconstruction can be realized by using voxels of different size to 
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parameterize different subvolumes (i.e. coarse grid regions and fine grid regions) in the 

image. These bases are straightforward and map well to physical memory in computing 

hardware.

Early examples of multiresolution methods include those that enable application of the 

iterative algorithm to a limited internal high resolution ROI and use an analytical method for 

the surrounding volume. The full FOV is first reconstructed with an analytical method. The 

ROI subvolume is set to zero and the surrounding volume is reprojected. The resulting 

sinogram is subsequently subtracted from the measured data to isolate the line integrals 

through the ROI. The line integrals of the ROI are then iteratively reconstructed (Ziegler et 
al 2008, Stearns et al 2007). An additional step consisting of smoothing of the reprojected 

coarse grid line integrals was found to yield reduced noise in the ROI reconstruction 

(Rashed et al 2007). However, artifacts attributable to edge degradation and beam-hardening 

artifacts in the initial FBP were found in the iteratively reconstructed ROI obtained using 

this general approach (Hamelin et al 2010).

A multiresolution approach where subvolumes with different levels of discretization are 

reconstructed using an iterative algorithm was proposed in (La Rivière 2007). The fine and 

coarse grids are jointly reconstructed using a maximum-likelihood (ML) algorithm applied 

in an alternating scheme, updating one grid while holding the other fixed. In contrast to this 

alternating optimization, simultaneous optimization of both coarse and fine grids using 

general purpose optimization algorithms was developed in (Hamelin et al 2007, Yu et al 
2009). Similar to our work, this approach relies on a natural factorization of the line 

integrals into the projections of the fine and coarse grids, yielding a joint objective function 

for the entire volume. This formulation was also applied to reduce metal artifacts by 

applying high fidelity forward models (finer parameterization of metallic edges and 

polychromatic beam modeling) only in ROIs containing metallic objects (Van Slambrouck 

and Nuyts 2010, 2012).

This work investigates the application of multiresolution reconstruction in the context of 

extremity CBCT, in particular for visualization and quantitative assessment of bone 

microarchitecture. In this application, the fine trabecular detail (≤ 75 µm) needs to be 

reconstructed at very high resolution only over a relatively small ROI, covering e.g. the 

subchondral bone in the knee joint. The surrounding anatomy (cartilage, ligaments, muscle, 

fat, etc.) can be reconstructed at lower resolution over the larger FOV. We introduce a new 

multiresolution MBIR algorithm based on the penalized-weighted least squares (PWLS) 

framework (Sauer and Bouman 1993) with a separable paraboloidal surrogates (SPS) 

optimizer (Erdoğan and Fessler 1999b, Elbakri and Fessler 2002). We propose a penalty 

function specifically designed to provide regularization across the boundaries between fine 

and coarse voxel grids. We extend the multiresolution framework to include the possibility 

of regional binning of the projection images, resulting in variable pixel size in addition to the 

variable voxel size. We focus our evaluation on the tradeoffs between artifacts in the fine 

grid ROI and voxel size and regularization applied in the surrounding coarse grid region.
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2. Methods

2.1. Multiresolution PWLS

The conventional forward model for a transmission tomography system, assuming a 

voxelized object representation, is given by:

(1)

where ȳi denotes the mean of the ith measurement, gi represents the system gain (including 

bare beam fluence and detector sensitivity for measurement i), μ is a vector of voxel 

attenuation values, and A is the forward projection operator. To formulate an objective 

function for model-based reconstruction, a noise model needs to be chosen. For quantum-

limited projection data with negligible contribution of electronic noise, Poisson noise is 

often assumed. For systems with non-negligible contributions of electronic noise (such as 

the FPDs used in extremity CBCT) and when the projection data is post-processed with 

artifact correction algorithms prior to reconstruction (e.g. beam hardening and scatter 

correction), a more general Gaussian noise model is often more appropriate, leading to a 

weighted-least-squares objective. We adopt the Gaussian model and PWLS in this work as 

better suited for the statistics of FPD CBCT projection data. However, the multiresolution 

methodology presented here could be incorporated into any forward model and easily 

generalized to MBIR algorithms based on the Poisson noise model. PWLS reconstruction 

(Sauer and Bouman 1993) employs the following objective function:

(2)

where l denotes the vector of line integrals li = −log yi/ gi. The traditional choice for W is a 

diagonal weighting by the inverse variance, approximated using the measurements: wi = yi. 

The second term (R) is a roughness penalty specified by the finite differencing operator C 
(Fessler 1997) and the potential function ψ. Here, C is a matrix and applies the 6 nearest-

neighbor pairwise voxel difference (excluding diagonal neighbors). K is the total number of 

pairwise differences in the volume (K ~6 × number of voxels) and ψ is the quadratic 

penalty.

The above system model and reconstruction objective is general and permits many options 

for the parameterization of the image volume. We will use this framework and define 

forward projection and differencing operators for a multiresolution representation of the 

object. Specifically, we choose to represent the total volume μ as a union of a set of fine grid 

voxels μF and a set of coarse grid voxels μC:

(3)
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The ratio of the coarse grid voxel size to the fine grid voxel size defines a downsampling 

factor ημ. The linearity of the forward projection operator permits definition of the following 

multiresolution projector A, consisting of coarse and fine forward projectors AC and AF:

(4)

Integrating (3) and (4) into (1), we may rewrite the forward model as:

(5)

where operator ∘ denotes the Hadamard (element-wise) matrix product. This forward model 

provides a convenient mathematical form for the development of iterative reconstruction 

algorithms that treat the reconstructed volume as a sum of non-overlapping regions, each 

with its own distinct forward model. In this work, we focus on forward models with different 

discretization of the image volume; however, this kind of decomposition has also been used 

in reconstruction methods that parameterize the object into known foreground components 

and an unknown background (Stayman et al 2012) for reconstruction in the presence of 

objects known to be in the FOV (eg, high-density surgical implants).

In addition to the large memory footprint of the reconstructed volume, projection datasets 

acquired with high-resolution flat-panel detectors can also be prohibitively large (up to 

~3000×3000 pixels and ~1000 projections). Thus, we extend the multiresolution approach to 

include multiresolution binning of projection data. The binning ratio ηy is defined as the 

ratio of the coarse pixel size to fine pixel size. As illustrated in Figure 1, we assume that the 

binning is applied (via appropriate pre-processing) in such a manner that the fine grid 

regions of the volume are projected entirely onto the fine, natively sampled (unbinned) 

regions of the projection image. The forward projector now comprises AFN (fine grid voxels 

to native pixels), ACN (coarse gird voxels to native pixels) and ACB (coarse grid voxels to 

binned pixels):

(6)

where lN and lB denote the line integrals associated with native and binned pixels, 

respectively.

Using the above multiresolution definitions, the data fidelity term in equation (2) is nearly 

complete. It remains to define the weighting matrix:

(7)
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with the corresponding diagonal inverse variance weights, WB and WN,which represent the 

measurement weights of the binned and native pixels, respectively. Such weighting can 

accommodate, for example, reduced noise in the binned measurements.

Implementation of the regularization term in the multiresolution PWLS of equation (2) 

requires specification of how the differencing operator C acts across the boundary between 

fine and coarse grid voxels. We propose the following general multiresolution penalty:

(8)

where we have defined augmented coarse and fine image vectors, μ̃c and μ̃F, respectively. 

These vectors include boundary voxel values from the adjacent ROI that have been 

resampled to the appropriate voxel grid. That is, we use D, an interpolating operator that 

downsamples fine grid voxels neighboring the μF/μC boundary to coarse grid voxels, to 

allow application of a coarse pairwise voxel difference operator (Fessler 1997), Cc, across 

the boundary of the coarse and fine ROIs (Figure 2). Alternately, we use U, an operator that 

upsamples the coarse grid voxels on the μF/μC interface, to apply a fine pairwise voxel 

difference operator, CF, across the ROI boundary in the opposite direction. In this work, we 

choose D to be a binning operation that computes the mean over fine voxels, and U to 

upsample from coarse to fine voxels using linear interpolation. We have two regularization 

parameters, βF and βC, that control the penalty strengths for the fine and coarse grid ROIs, 

respectively. The sets, KC and KF, are rows of C̃μ̂ which enumerate all pairwise voxel 

differences contributing to the penalty terms for the coarse and fine ROIs, respectively.

Eq. (8) amounts to applying the conventional penalty to a region (fine or coarse grid) that 

was virtually expanded to include boundary voxels from the other region, which were 

appropriately resampled using interpolation. This procedure is general and can be applied to 

arbitrary boundaries, except perhaps for highly degenerate cases were interpolation is not 

applicable (e.g. ROIs consisting of a single voxel).

The objective function in (2) can be optimized using the SPS approach (Erdoğan and Fessler 

1999b, Elbakri and Fessler 2002). We note that the same data-fit surrogate as in Eq. 17 of 

Elbakri and Fessler (2002) can be used here, with the standard projector operator replaced 

by the multiresolution projector. Crucially, the surrogate in the SPS algorithm is separable 

across voxels, i.e. the update for each voxel depends on the surrounding volume only 

through the line integrals of the previous iterate of the reconstruction. This yields a 

multiresolution algorithm that allows independent updates of the fine- and coarse-grid ROIs, 

as detailed in Table 1. Similarly, the separable surrogate for the penalty of (Erdoğan and 

Fessler 1999a) can be applied directly to the multiresolution objective, as the construction of 

the surrogate is independent of discretization. The algorithm presented in Table 1 can be 
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easily generalized to an ordered subset form in a manner analogous to (Erdoğan and Fessler 

1999b).

2.2. Experimental Setup for Simulation Studies

The proposed multiresolution approach was evaluated in a simulation study. The primary 

goal of the study was to evaluate the impact of different coarse voxel downsampling factors 

and the effect of regularization strength in the coarse and fine grid volumes on image 

artifacts in the fine grid region. Fig. 3 shows the digital phantom used in simulations. The 

phantom included soft tissues (emulating fat and muscle) and two bone regions. The bones 

consisted of a cortical shell and fine trabecular features based on a segmented micro-CT 

image. The attenuation values of the simulated tissues corresponded to effective beam 

energy of 60 keV, which approximates that of the 90 kVp (4 mm Al, 0.3mm Cu added 

filtration) spectrum of a dedicated extremity CBCT at our institution (Siewerdsen et al 2004, 

Zbijewski et al 2011). The digital phantom used 0.075 mm voxels and simulated projections 

were generated on a 0.194 mm pixel grid. A bare beam fluence of 105 photons per detector 

pixel was assumed and Poisson noise was added to the projections. Simulated detector pixels 

had 100% efficiency. System geometry emulated the extremities CBCT scanner: source-axis 

distance (SAD) of 436 mm and source-detector distance (SDD) of 560 mm.

In the multiresolution reconstruction, the regularization strength of the interior fine grid ROI 

βF was fixed at 103 based on visual assessment of spatial resolution. 60 subsets were used. 

The reconstructed voxel size in the fine grid ROI was 0.15 mm, whereas the voxel size in the 

coarse grid region was varied by changing the downsampling factor ημ from 1 (i.e., the same 

voxel size for μF and μC) to 10 (i.e., 10× larger voxels for μC). In cases where detector 

binning was considered in addition to a multiresolution volume representation, the binning 

factor (ηy) applied to the simulated projections was kept equal to the volume downsampling 

factor. The forward and back-projection operators in the simulation and reconstruction used 

an in-house GPU implementation of separable footprints algorithm using trapezoidal 

functions (Long et al 2010). The separable footprint algorithm is voxel-driven and thus can 

easily accommodate arbitrary ROI shapes. However, our current implementation of the 

projector relies on GPU texture memory and thus only handles rectangular volumes. Non-

rectangular fine grid ROIs were simulated using a minimum bounding box and masking 

operations.

In addition to varying the coarse voxel size, the regularization strength βC in the coarse 

region was also varied. Since image downsampling imparts a degree of smoothing, the effect 

of a specific βC value will differ between reconstructions with different coarse voxel sizes. 

To facilitate comparison of the effects of regularization across a range of voxel sizes 

(downsampling factors), a normalization that accounts for the effects of sampling was 

applied to the quadratic penalty (Yu et al 2013). Following the derivation by Yu, for 

quadratic penalties:

(9)
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where Δki is the distance between neighboring voxels k and i. Eq. (9) implies that within a 

neighborhood where the change in underlying attenuation volume is smooth, the action of 

the penalty (for a fixed penalty strength) scales approximately as square of the voxel size or, 

equivalently, as square of ημ. Henceforth, reconstructions are compared across a range of ημ 

in a manner that accounts for additional blur due to downsampling by using the following 

normalized penalty strength, denoted as β:

(10)

In our studies we varied β from 0 (no regularization) to 108 for each value of ημ.

To assess the artifacts in the fine grid region, a small (3 mm × 3.8 mm) ROI, μart, was 

selected in a uniform area of soft tissue adjacent to two bone edges (Fig. 3), where initial 

evaluation indicated pronounced streaking in reconstructions with high downsampling and 

regularization of the coarse grid region. To quantify artifacts, reconstruction of noiseless 

projection data were generated for each set of parameters of the multiresolution 

reconstruction. Root mean squared error (RMSE) was calculated in the ROI between the 

noiseless multiresolution reconstruction and a truth image that was obtained by 

downsampling the digital phantom (0.075 mm voxels) to the voxel size of the fine grid 

region (0.15 mm):

(11)

where μ̂artj are voxels in the artifact ROI of the noiseless multiresolution reconstruction, μartj 
are the corresponding voxels in the downsampled digital phantom and N is the total number 

of voxels in μart.

Increase in regularization strength and increase in voxel downsampling both impart 

resolution loss and noise reduction in the coarse grid region. The noise in μC (denoted as 

SDc) was used as a metric quantifying the cumulative effect of coarse discretization and 

regularization. The noise was measured as RMSE between a flat region in the coarse grid 

subvolume of a noisy reconstruction, denoted as μnoise (Fig. 3), and the same region in the 

truth image.

2.3. Physical Study using an Anthropomorphic Knee Phantom on a Benchtop CBCT

An anthropomorphic lower extremity phantom was scanned on a CBCT test bench (Zhao et 
al 2014) simulating a dedicated extremity CBCT (SAD=435.7 mm, SDD=559.2 mm). The 

detector was a PaxScan4030CB (Varian, Palo Alto, CA) operated at 1.5 fps and 0.194 mm 

pixel size. The x-ray source was a rotating anode DU694 x-ray tube with 14° anode angle, 

enclosed in EA10 housing (Dunlee, Aurora, IL). The scan consisted of 360 projections 

acquired over 360° at 90 kVp (+0.2 mm Cu, 2 mm Al), with 0.4 mAs per projection.
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The total reconstructed volume was 18×18×18 cm3. The irregularly-shaped fine grid ROI 

contained a region of subchondral bone identified using an initial Feldkamp-Davis-Kress 

(FDK) analytical reconstruction and consisted of 31,623,168 voxels of 0.15 mm size. There 

were 26,505,888 voxels of 0.6 mm size in the coarse grid region (ημ = 4). Multiresolution 

detector binning with ηy = 4 was applied, with the region of fine pixels in each view 

matching a forward projection of the subchondral bone mask. Regularization strengths were 

set to βF = 10−0.5 and βC = 104.

2.4. Analysis of Runtime and Memory Footprint

To estimate the savings in computation time and memory consumption provided by the 

multiresolution method, benchmarking was performed for a 12×12×12 cm3 volume. This 

volume is smaller than the one used in the anthropomorphic phantom experiments of Sec. 

2.3. This is because a fine grid reconstruction of the entire grid was needed for 

benchmarking. The memory available on the GPU used in the experiments was not sufficient 

to fit a fine voxel grid larger than 12×12×12 cm3. Note however that this size of the volume 

is sufficient to cover a typical knee joint on the extremity CBCT system.

Fine grid ROIs with 0.15 mm voxels and varying volume (5×5×5 cm3 to 12×12×12 cm3) 

were considered. For each fine grid ROI, the remainder of the FOV was parameterized using 

a coarse grid over a range of upsampling factors (ημ = 1,2,4). Since computation times for 

projection and backprojection vary and can be dependent on implementation, we considered 

the computational cost associated with projection-backprojection pairs. Average total 

projection-backprojection times were obtained separately for each fine grid volume (denoted 

as tf) and for coarse grid volumes covering the entire FOV (tc) at the various coarse grid 

voxel sizes. Furthermore, for each fine grid ROI, the projection-backprojection time for a 

volume equal in size to the fine grid ROI, but parameterized using coarse voxels was 

measured (tΔ). The coarse grid projection-backprojection times were computed with and 

without projection binning. The estimate of projection-backprojection time for a given 

multiresolution parameterization (defined by a combination of fine grid volume size and 

upsampling factor) is tf + tc − tΔ, assuming that projection and backprojection times are 

linear with the number of voxels. The validity of this assumption was confirmed for the 

range of volume discretizations considered here for both projection and backprojection 

operations. The reconstruction speedup was computed as the ratio of the average measured 

time for a projection-backprojection pair of our multiresolution implementation to the same 

average measured time using only the fine grid (ημ = 1).

Each PWLS iteration requires storing the following variables: the current image μ, 

derivatives of data fit and regularization surrogates, L̇ and Ṙ, the curvatures of data fit and 

regularization surrogates, dj and r, and the measured projections. (Here we ignored potential 

memory savings due to ordered subsets that may be offset by increased memory transfer 

times.) Memory footprint was thus calculated as the size of the projection dataset plus five 

times the size of the image volume, assuming all volumes are kept in memory. The memory 

footprint could be reduced by reusing the arrays associated with some of the variables, 

however at the expense of increased data transfer latency.
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3. Results

3.1. Digital Phantom Study

Figure 4 illustrates the convergence properties of multiresolution PWLS reconstruction as a 

function of the downsampling factor. For each value of ημ, we computed root-mean-square 

difference (RMSD) between the volume estimate at the nth iteration and a nearly converged 

estimate (approximated by the solution after 200 iterations). RMSD computed within the 

fine grid ROI (dashed line) and within the coarse grid ROI (solid lines) are shown separately. 

50 iterations of multiresolution PWLS were sufficient to achieve an RMSD of less than 10−4 

mm−1 with this stable solution in both ROIs and across all values of ημ. The RMSD 

behavior in μF was the same across all downsampling factors. Convergence was generally 

faster in μC than in μF, even at ημ = 1 (equal voxel size in both grids), likely because the 

phantom contains fewer high-frequency structures in the coarse grid ROI. The convergence 

rate in μC increases with higher downsampling. This behavior is intuitive since coarser grids 

(with fewer parameters to estimate) generally have better condition numbers, leading to 

faster convergence. Overall, the number of iterations needed to arrive at a stable solution in 

multiresolution PWLS is determined by the convergence rate in fine grid ROI and is thus 

independent of ημ. The crucial advantage of using higher downsampling is in improved time 

per iteration. Based on this analysis, 50 iterations of multiresolution PWLS were used 

throughout this study.

Figure 5 shows a comparison of multiresolution PWLS reconstructions [without projection 

binning in (a) and with projection binning in (b)] across a range of downsampling factors 

and normalized regularization strengths. Note that reconstructions with matched β but 

unmatched ημ use different βC, as given by Eq. 12. The case of ημ = 1 corresponds to the 

same voxel size in μF and μC, but different values of βF and βC. A zoomed ROI is shown for 

each reconstruction that covers the fine grid ROI. Note that an increase in coarse grid 

regularization increases streak artifacts in the fine grid region. The artifacts become 

pronounced at large values of the downsampling factor. Additionally, when detector pixels 

are binned [Fig. 5 (b)], noticeable streak artifacts are apparent in the coarse grid near the 

ROI boundary in the case where ημ = 10. The right-most column in Fig. 5 (a) and (b) shows 

a difference image computed between the case of ημ = 10 and a reference image at ημ = 1 

(for this computation, the coarse grid voxels for ημ = 10 were upsampled using nearest 

neighbor interpolation). Even for this high downsampling factor, there is no distortion in the 

trabecular features contained in the fine grid ROI μF (note that the same fine grid 

regularization strength βF is applied in the downsampled and reference reconstructions).

Figure 6a investigates the trade-off between the strength of artifacts in μF, measured using 

equation (11), and the cumulative effect of regularization and downsampling in μC, 

represented by the level of noise in the coarse grid region. The results are very similar for 

cases with and without detector binning; for clarity, results are shown only for 

reconstructions with detector binning.

For all downsampling levels, the artifact metric exhibits a plateau accross a range of low-to-

moderate noise levels (standard deviations of 10−4 to 10−3 mm−1 compared to muscle 

attenuation value of ~2×10−2 mm−1). In this regime, regularization strength in μC can be 
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adjusted without introducing significant artifacts in the fine grid ROI. The RMSE rapidly 

increases at lower noise levels, corresponding to increased smoothing in μC. The graphs in 

Figure 6 (a) are largely overlapping, indicating that the magnitude of the artifacts is a 

function of the overall blur in the coarse grid ROI, regardless of whether the blur results 

from downasampling or regularization. Consequently, when a lower value of the 

downsampling factor is used, there is more room to adjust the regularization in the corase 

grid ROI, i.e. βC can be varied over a broader range of values without introducing artifacts in 

the fine grid region. If the corase grid region is of clinical interest, this ablity to tune the 

resolution-noise tradeoff in μC when the downsapling factor is relatively low may be relevant 

for optimizing the performance of the reconstruction.

Figure 6 (b) illustrates the artifacts in the fine grid region using a zoom on the artifact ROI 

(μart). As the normalized penalty strength (β) and ημ increase, streaking becomes apparent. 

The more downsampling, the lower the value of normalized β where the streaking becomes 

pronounced.

Further examination of Figure 6 (a) reveals a slight increase in RMSE at the lowest 

regularizations (highest noise levels) in the presence of downsampling (ημ ≥ 4). This is 

attributed to bias in the forward projection of μC introduced by sharp edges in the coarse 

discretization of fat-muscle interfaces of the phantom. This effect is diminished when 

sufficiently high levels of regularization are applied in the coarse grid region, blurring the 

discretization-induced sharp intensity transitions. The artifact due to sharp edges in weakly 

regularized μC is visible as a pronounced cross-hatch pattern at ημ ≥ 4 and low β values in 

Figure 6 (b). Note that a similar, but much less conspicuous pattern is visible at ημ = 1, 

where it is likely to represent a combination of various discretization artifacts that are often 

present in noiseless reconstruction of digital phantoms with sharp edges.

3.2. Effect of the Location of the Fine Grid ROI

Examination of Fig. 5 suggests that the most pronounced artifacts in the fine grid ROI 

emerge from areas where the interface between μF and μC crosses regions of high contrast 

and sharp intensity transitions. The appearance and magnitude of the artifacts will depend on 

the location of the fine and coarse grid ROIs, as illustrated in Figure 7 for a case with both 

voxel downsampling and projection binning. Here, the boundaries of μF (marked with an 

orange dashed line) were designed to avoid cortical bone boundaries and other high contrast 

gradients. The downsampling factor was set to 10, which leads to severe artifacts in the 

reconstructions of Fig. 5 (5th column). With the fine grid ROI conforming to the bone 

boundaries, however, no streaking artifacts are visible in the space between the two bones. A 

strong mismatch in the magnitude of noise in μC and μF is apparent at higher values of 

normalized regularization strength. Similarly to Fig. 5, the right-most column of Fig. 7 

investigates a difference image between the downsampled case and the reference image at ημ 

= 1 (equal voxel size in the coarse and fine grids). No visible distortions in the trabecular 

structure were introduced using multiresolution reconstruction.
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3.3. Multiresolution CBCT Reconstruction of an Anthropomorphic Knee Phantom

Figure 8 shows a reconstruction of an anthropomorphic knee phantom acquired on the 

CBCT test bench. Fig. 8 (a) illustrates the boundaries of the fine grid ROI. Four-fold 

downsampling of the volume and projections was employed. The multiresolution PWLS 

used 3.36% of the number of voxels and 17.7% of the number of detector pixels compared 

to a full FOV fine grid reconstruction. No artifacts arise from downsampling, and high-

resolution trabecular features are visible in the fine grid ROI [outlined with orange dashed 

line in Fig. 8 (b)–(d)]. The resulting multiresolution image can be stored in less than 0.5 GB, 

whereas for the full-field fine grid image, approximately 7 GB would be required.

3.4. Computational Cost of Multiresolution PWLS

Figure 9 summarizes the investigation of computational savings provided by multiresolution 

PWLS. As expected, the speedup factor (compared to reconstruction using fine grid voxels 

throughout the entire FOV) can be as high as a 5× – 10× when the fine grid ROI is a 

relatively small fraction of the total size of the FOV. Most of the speedup is from image 

downsampling, rather than detector binning, which is to be expected with the voxel-driven 

forward projection method used here.

Fig. 9 (b) examines the reduction in memory footprint provided by multiresolution PWLS. 

As anticipated, the memory savings are enhanced when projection binning is used in 

conjunction with volume downsampling. For a fine grid ROI of a similar size as the one used 

in the anthropomorphic knee phantom of Sec. 3.3, the memory footprint reduction is 

approximately 20% compared to reconstruction using only the fine grid voxels.

4. Discussion and Conclusions

We developed a PWLS reconstruction algorithm implementing a multiresolution voxelized 

parameterization of the object. The algorithm was evaluated for application in accelerated 

iterative reconstruction of finely sampled ROIs (voxel sizes <100 µm) from high resolution 

extremity CBCT projection data. It was assumed that the fine grid region is of the primary 

clinical interest and thus the investigation was focused on mitigation of artifacts in the fine 

grid region and quantification of the reconstruction speedup.

Streaking artifacts found in the fine grid ROI are likely caused by inconsistencies between 

the simulated forward projections of the coarsely and finely sampled ROIs. Artifact 

magnitude is thus a function of the cumulative blur due to downsampling and regularization 

of the coarse grid region. For example, downsampling factors as high as 10× were used 

without introducing visible streaking in the fine grid region by applying a relatively weak 

regularization in the coarsely sampled sub-volume. However, the tradeoff was that the μC 

exhibited a “blocky” appearance, which could limit the diagnostic utility of the coarsely 

sampled region. This may however be acceptable if the clinical interest is primarily in the 

fine grid ROI and achieving maximal speedup is a priority (and the coarsely sampled region 

may be reconstructed separately by other means using parameters suitable to soft-tissue 

visualization).
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Additional memory savings can be attained when the multiresolution representation is 

augmented with binning of projection data. This work evaluated a scenario where projection 

binning was applied to pixels receiving the line integrals that traversed only through μC. This 

approach results in similar performance with respect to artifacts in the fine grid region as the 

method using only volume downsampling. In the coarse grid region, however, streaks 

tangential to the ROI boundary were found when using high levels of projection binning (ηy 

= 10) in conjunction with volume downsampling. The artifacts are hypothesized to emerge 

from mismatches in simulated projections of some of the coarse grid voxels located close to 

the ROI boundary. Such voxels are projected both on the binned and native pixels, 

depending on whether a given line integral traverses through μF for each projection angle. 

Since this inconsistency is not present for μF voxels, the fine grid ROI was unaffected.

The simulation study of Sec. 3.1 involves an ROI boundary that crosses through high 

contrast bone regions, resulting in a challenging scenario for multiresolution PWLS. Sec. 3.2 

illustrates that both types of streaking artifacts discussed above can be effectively mitigated 

using a fine grid ROI that conforms to high contrast edges.

Overall, the optimal value of the downsampling factor will depend on the location of the fine 

and coarse grid regions and on the clinical application (i.e. whether both ROIs are of clinical 

interest, or only the finely sampled sub-volume). The results indicate that downsampling 

factors of ~4× are possible without perceptible artifacts in either of the ROIs. At this level of 

ημ, the regularization strength in the coarsely sampled sub-volume can be adjusted over a 

relatively broad range without adversely affecting the fine grid region. For a typical knee 

volume, this downsampling corresponds to more than 5-fold acceleration of the iterative 

reconstruction. The current execution time for the multiresolution reconstruction of the knee 

phantom of Figure 8, obtained with ημ = 4, is ~2 min per iteration (or ~100 min for the 

complete reconstruction of 50 iterations) using an un-optimized MATLAB-CUDA 

implementation. A naïve approach utilizing fine voxels throughout the whole volume would 

take ~10 hours for the reconstruction to complete and require ~15× more memory, and thus 

the multiresolution algorithm provided a significant step towards achieving clinically 

practical runtimes for iterative reconstruction of the trabecular detail in human studies. We 

anticipate that an additional 5× acceleration over the execution time stated here will be 

possible with an optimized implementation using a compiled executable with improved 

memory management on a multi-GPU workstation.

For certain configurations of the coarse and fine grid regions, downsampling factors as high 

as 10× can be used. For the typical knee CBCT (e.g. the sample reconstruction in figure 8), 

the 10× downsampling should yield ~52× speedup in PWLS, assuming a projection time that 

scales linearly with number of voxels. The acceleration factor will increase if the high 

resolution ROI is a smaller fraction of the total volume.

Similarly to the selection of the downsampling factor, the location, shape and the procedure 

for delineating the fine grid ROI will depend on the clinical application. The knee phantom 

reconstruction in Figure 8 represents a scenario where the scan parameters were selected to 

yield projection data that supports high-resolution reconstruction of the entire knee joint. In 

this case, a high fidelity FDK reconstruction could be obtained using the same projection 
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data (thus at no additional dose), enabling precise definition of the fine grid ROI. However, 

such close adherence to bony boundaries is not always necessary. As shown in Figure 7, 

image artifacts due to downsampling will be minimized as long as the boundaries of the fine 

grid ROI do not cross high contrast edges. Detection of such high-contrast edges will 

typically be possible in an initial FDK reconstruction even if the projection data is noisy or 

sparsely sampled, as in low-dose imaging protocols intended for use with iterative 

reconstruction algorithms. In such cases, the initial analytical reconstruction may be non-

diagnostic, but will likely be sufficient to delineate the fine grid ROI for the iterative 

algorithm. Furthermore, while the use of precisely defined fine grid ROIs (conforming with 

the object of interest) optimizes reconstruction time by minimizing the volume 

parameterized with fine voxels, the low dose applications are unlikely to yield data 

supporting reconstructions on very fine voxels. The use of sub-optimal fine grid ROIs (e.g. 

slightly larger than the object of interest) for low dose data will thus not be as detrimental 

for reconstruction performance as in the case of high resolution imaging.

Other factors to be considered in choosing the shape of the fine grid ROI involve 

computational burden and ease of implementation. In principle, the shape of the ROIs is 

only limited by the requirement that the fine grid voxel size must be an integer fraction of 

the coarse voxel size to ensure complete coverage of the volume. A fine grid ROI that is 

tightly matched to the shape of area of high resolution reconstruction has the advantage of 

minimizing the memory usage. At the same time, the execution speed may be hampered by 

non-contiguous memory access patterns that are likely to emerge when e.g. the fine grid ROI 

consists of multiple disjoint patches. Rectangular ROIs are easier to map to contiguous 

memory blocks and may thus yield improved computation speed compared to more complex 

ROI shapes when executed using general purpose software. In practice, the use of regular, 

rectangular or cylindrical fine grid ROIs loosely following the boundaries of the objects of 

interest (e.g. bones) and avoiding sharp tissue boundaries, combined with downsampling 

factors of 4–5, is likely to yield robust performance in typical clinical applications of 

multiresolution PWLS.

In conclusion, the proposed multiresolution algorithm for PWLS was tested in application to 

extremity CBCT. Artifact-free reconstructions of finely sampled ROIs were achieved at 

computation times that are 5× – 10× shorter compared to a brute force solution that applies 

fine voxel parameterization to the entire volume. The multiresolution framework can be 

further expanded to support other applications where computationally expensive forward 

models (e.g. modeling of detector blur (Tilley II et al 2015)) are applied only to a sub-region 

of the field-of-view. The algorithm permits application of different regularization strengths 

in the regions of coarse and fine grid, enabling reconstructions in which the sampling and 

regularization are individually optimized depending on the clinical task in each image 

region.
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Figure 1. 
Schematic of multiresolution forward projection with detector binning. The estimated bone 

region parameterized using fine grid voxels (μ̂F) is marked with a black dashed line. This 

region is projected onto native detector pixels (marked with l̂N) using projection operator 

AFN. The line integrals captured by the native projection pixels also include contributions 

from a subset of coarse voxels (μ̂C), denoted by projection operator ACN. Line integrals for 

binned projection pixels (marked as l̂B) traverse only through coarse grid voxels, computed 

using projector operator ACB.
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Figure 2. 
Schematic of multiresolution regularization scheme illustrating how the regularization over 

boundaries between the fine and coarse voxel grids is performed using interpolation 

operators.

Cao et al. Page 19

Phys Med Biol. Author manuscript; available in PMC 2017 October 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Schematic of digital bone phantom with the boundary of a central fine voxel grid region 

marked with a thick dashed line. The ROIs used for measurement of artifacts in the fine grid 

region (μart) and noise (μnoise) in the coarse grid region are indicated with boxes.
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Figure 4. 
Convergence profile measured in reconstructions of the digital phantom. The estimate at the 

current iteration is compared with a converged image at 200 iterations. βF = 103.5; βC = 

104.5. The RMSD curves for the fie grid region (dashed line) overlap for all values of ημ.
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Figure 5. 
Multiresolution PWLS reconstructions for different downsampling factors and coarse grid 

regularization values. A central region of the digital phantom is shown for PWLS without 

detector binning (a) and with detector binning (b). The last column in each subfigure is a 

difference image between the case with maximal downsampling (ημ = 10) and the case of no 

downsampling (ημ = 1). Arrows indicate artifacts due to strong coarse grid downsampling 

and regularization.
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Figure 6. 
(a) Magnitude of the artifact in fine grid ROI (RMSE of μart in Fig. 3, given by Eq. 11) as a 

function of noise in the coarse grid region. The noise metric quantifies the cumulative effect 

of regularization and voxel downsampling in μC. (b) The artifact ROI (μart) in the fine grid 

region for a range of downsampling factors (rows) and normalized coarse grid regularization 

strengths β (columns).
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Figure 7. 
Multiresolution PWLS with fine grid ROI conforming to bone boundaries (marked with 

dashed line in the leftmost mage) for three values of the normalized penalty strength β. The 

downsampling factor ημ is set to 10. The right-most subfigure shows a difference image 

between the downsampled case (β = 106.5) and the reference reconstruction with no 

downsampling. Projection binning is included.
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Figure 8. 
Multiresolution PWLS reconstruction of an anthropomorphic knee phantom acquired on a 

CBCT benchtop. Fine and coarse grid regions are delineated in (a). (b)–(d) shows details of 

the high resolution trabecular ROI in the sagittal, axial, and coronal planes. Boundaries of 

the ROI are marked with a dashed line.
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Figure 9. 
(A) Measured reconstruction speedup of multiresolution PWLS as a function of the size of 

fine grid FOV (for total volume size of 120×120×120 mm3). (B) Total memory consumption 

of downsampled cases compared to fine grid cases.
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Table 1

Glossary of terms and pseudocode of SPS optimization method for multiresolution PWLS. Ordered-subsets 

are omitted for simplification.

Definitions

l̂B, l̂N forward-projected line integrals onto binned and native detector pixels

lB, lN binned and native preprocessed line integral data

wB, wN diagonal entries in weighting matrices WB and WN.

c precomputed PWLS curvature, c = [W]+

1 volume covering the entire reconstruction FOV of all 1's.

L̇
C, L̇

F derivatives of data-fit surrogates for voxels of μ̂C and μ̂F.

dC, dF curvatures of data-fit surrogates for voxels of μ̂C and μ̂F.

ψ̇, ωψk
gradient and curvature of the penalty function ψ.

ṘC, ṘF derivatives of penalty surrogates for voxels of μ̂C and μ̂F.

rC, rF curvatures of penalty surrogates for voxels of μ̂C and μ̂F.

Algorithm

Precompute 
for iteration n=1, …, N

  Coarse Grid Update   Fine Grid Update

  l̂B = ACBμ̂C     l̂N = ACNμ̂C + AFNμ̂F

  ḣB = wB ∘ (l̂B−lB)     ḣN = wN ∘ (l̂N − lN)

      

  ṘCj = Σk∈KC ckjψ̇([C̃μ̂]k), j ∈ coarse voxels     ṘFi = Σk∈KF ckiψ̇([C̃μ̂]k), i ∈ fine voxels

      

      

end
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