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SUMMARY

Adipose-resident invariant natural killer T (iNKT) cells are key players in metabolic regulation. 

iNKT cells are innate lipid sensors, and their activation, using their prototypic ligand α-

galactosylceramide (αGalCer), induces weight loss and restores glycemic control in obesity. Here, 

iNKT activation induced fibroblast growth factor 21 (FGF21) production and thermogenic 

browning of white fat. Complete metabolic analysis revealed that iNKT cell activation induced 

increased body temperature, V02, VC02, and fatty acid oxidation, without affecting food intake or 

activity. FGF21 induction played a major role in iNKT cell-induced weight loss, as FGF21 null 

mice lost significantly less weight after αGalCer treatment. The glucagon-like peptide 1 (GLP-1) 

receptor agonist, liraglutide, also activated iNKT cells in humans and mice. In iNKT-deficient 

mice, liraglutide promoted satiety but failed to induce FGF21, resulting in less weight loss. These 

findings reveal an iNKT cell-FGF21 axis that defines a new immune-mediated pathway that could 

be targeted for glycemic control and weight regulation.
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Graphical abstract

INTRODUCTION

Obesity threatens to shorten the human lifespan by 5–20 years, the biggest burden being 

obesity-induced diseases (Wang et al., 2011). Obesity is far more complex and touches many 

more aspects of biology than was previously appreciated. Currently, therapy for obesity is 

limited by an incomplete understanding of how body weight is controlled. A promising 

potential approach for treating obesity is activation of brown adipose tissue (BAT). In 

contrast to energy-storing white adipose tissue (WAT), BAT contains many thermogenic 

mitochondria that express uncoupling protein 1 (UCP-1), which dissipates chemical energy 

into heat (Enerbäck et al., 1997). Recently, it was shown that multi-locular adipocytes 

expressing UCP-1 can also be induced in WAT, known as beige or brite cells (Cousin et al., 

1992; Enerbäck, 2009). Browning of WAT uses large amounts of energy through induction 

of β-oxidation, resulting in increased metabolic rate and weight loss. Chronic cold exposure 

and β-adrenergic stimulation are physiological inducers of browning in WAT (Cousin et al., 

1992; Himms-Hagen et al., 1994). More recently, the hormone fibroblast growth factor 21 

(FGF21), produced in liver, WAT, and BAT, was shown to improve metabolic disease and 

induce weight loss in humans and mice (Gaich et al., 2013; Hanssen et al., 2015; 

Kharitonenkov and Adams, 2013; Kharitonenkov et al., 2005; Samms et al., 2015). Recently, 

a synthetic FGF21 variant, LY2405319, was shown to reduce low-density lipoprotein (LDL) 

cholesterol and triglycerides, increase adiponectin levels, improve fasting insulin, and induce 

weight loss in obese patients with type 2 diabetes (Gaich et al., 2013). FGF21 administration 

has been associated with increased UCP-1 levels, which are required for FGF21-induced 

thermogenesis; however, FGF21 reduces food intake, contributing to weight loss, 

independently of UCP-1 (Samms et al., 2015). These studies position FGF21 as a promising 

drug target for the treatment of metabolic disorders.
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Recent studies have highlighted a role for the innate immune system in activation of BAT 

and induction of browning in WAT. Alternatively activated macrophages can produce 

catecholamines in response to cold exposure, which activates BAT and induces lipolysis in 

WAT (Nguyen et al., 2011). Eosinophils, which secrete IL-4 and IL-13, sustain alternative 

macrophage activation and catecholamine production in cold settings (Qiu et al., 2014). 

Independent of cold exposure, cytokines including IL-33 are critical for maintaining innate 

lymphoid cells (ILCs) in adipose tissue, which are key players in regulating energy 

expenditure (Molofsky et al., 2013). ILCs can also induce browning by producing 

methionine-enkephalin, which upregulates UCP1+ beige adipocytes in WAT (Brestoff et al., 

2015). Thus, recent studies have solidified the role of the adipose innate immune system in 

the regulation of metabolism and body weight.

Invariant natural killer T (iNKT) cells are one such innate immune cell type with an 

important role in weight and glycemic control. iNKT cells are activated by lipid antigens 

presented by CD1d molecules (Brigl and Brenner, 2004). We and others have shown that 

iNKT cells are enriched in human and murine adipose tissue (Lynch et al., 2009, 2012), and 

that iNKT cells can regulate body weight and restore metabolic homeostasis in obesity 

(Hams et al., 2013; Huh et al., 2013; Ji et al., 2012; Lynch et al., 2012; Schipper et al., 

2012). Recently, we found that adipose iNKT cells are a unique regulatory subset of iNKT 

cells with a distinct gene expression profile and anti-inflammatory functions (Lynch et al., 

2015). Adipose iNKT cells are reduced in obesity, but activating iNKT cells with their 

prototypical lipid ligand α-galactosylceramide (αGalCer) causes their expansion, which 

induces potent weight loss; however, the weight loss mechanism is not understood. Here, we 

report that iNKT cell-induced weight loss occurs through browning of WAT and 

thermogenesis, without loss of appetite. Furthermore, FGF21 induction is a key player in 

this weight loss pathway. This iNKT-FGF21 pathway plays a physiological role in a subset 

of the actions of glucagon-like peptide 1 (GLP-1), a gut hormone that controls glycemia and 

satiety (Turton et al., 1996), leading to weight loss (Baggio and Drucker, 2007). In rodents, 

GLP-1 also regulates body temperature (O’Shea et al., 1996) and activates pathways 

associated with increased numbers of thermogenic beige and brown adipocytes (Lockie et 

al., 2012). Here, we show that murine iNKT cells contribute to the weight loss effects 

observed with administration of GLP-1 receptor (GLP-1R) agonists.

RESULTS AND DISCUSSION

To investigate the mechanism of iNKT cell-induced weight loss, we specifically activated 

iNKT cells in obese mice by using their lipid antigen ligand αGalCer. A single 

intraperitoneal (i.p.) injection of αGalCer potently induced weight loss in obese mice 

(Figures 1A and 1B). The effects of αGalCer were dose dependent; 1 μg αGalCer induced 

an average of 2.5 g of body weight in obese mice on high-fat diet (HFD) for 6–12 weeks (n 

= 15) (Figures 1A and 1B; p ≤ 0.0001), while mice fed an HFD of longer duration (16–20 

weeks) received 2 μg αGalCer and lost significantly more body weight (3.7 g lost with 

αGalCer, n = 10; versus 0.3 g increase with vehicle control, n = 10). We have previously 

shown that αGalCer reduces the percentage of fat mass, but not lean mass, in mice as 

measured by dual X-ray absorptiometry (DEXA) (Lynch et al., 2012). The reduction in total 

body fat after αGalCer prompted us to look at other fat depots in addition to epididymal fat 
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pads. We found that iNKT cells are enriched in all adipose depots examined compared to 

spleen, except omentum, which contained fewer iNKT cells (Figure 1C). αGalCer activated 

iNKT cells in all adipose depots (as measured by iNKT cell expansion >3-fold and CD69 

upregulation; data not shown) and induced a significant decrease in fat pad mass in the 

epididymal, subcutaneous, and perirenal adipose depots (Figure 1D). Thus, specific αGalCer 

activation of iNKT cells induces potent body weight loss associated with a reduction in the 

fat mass of several fat depots.

To understand how iNKT cell activation induces a rapid reduction of ~10% of body weight 

in 4 days, we measured whole-body metabolism using Complete Lab Animal Monitoring 

System (CLAMS). Obese mice (n = 6) were placed in the CLAMS and served as their own 

controls: they were first acclimatized and then received vehicle control (1 μg), metabolic 

readouts were measured for 70 hr, and then they received 1 μg αGalCer treatment and 

remained in the chambers for 70 hr. As before, mice lost significant weight after αGalCer 

treatment, but not vehicle control. Unlike control-treated mice, a single αGalCer injection 

induced an increase in VO2 and VCO2 (Figures 1F and 1G). There was a slight, but not 

significant, reduction in locomotor activity after αGalCer treatment, and despite weight loss, 

there was no reduction in daily food intake (Figures S1A and S1B, available online). 

αGalCer treatment induced a robust and consistent increase in thermogenesis (Figure 1H). 

To confirm this increase in thermogenesis, we performed a separate experiment where obese 

mice received vehicle (n = 5) or αGalCer (n = 5), and body temperature was visualized 

using a forward-looking infrared (FLIR) camera, showing that αGalCer treatment induced a 

1° rise in body temperature (Figure 1I). Most strikingly, αGalCer induced a significant 

decrease in the respiratory exchange ratio (RER) (Figure 1J), which is a measurement of 

substrate utilization. Decreased RER shows preferential burning of fat, rather than 

carbohydrates, as the main source of energy, indicating induction of β-oxidation. After 

adjusting for food intake and body weight of each mouse, energy expenditure calculations 

showed that one αGalCer treatment induced significantly higher energy expenditure in mice 

in each 24 hr period following treatment (Figure 1K). In addition to the weight loss, we 

confirmed our previous finding (Lynch et al., 2012) that αGalCer activation of iNKT cells in 

obese mice also improves fasting glucose levels (Figure 1L). This striking change in 

metabolic rate and energy homeostasis would explain the potent effects on weight loss seen 

with αGalCer treatment.

The induction of β-oxidation, thermogenesis, and reduced WAT suggested that activation of 

browning of WAT may have occurred. Consistent with this possibility, we found significant 

induction of UCP1+ cells in inguinal WAT within 24 hr after αGalCer (Figure 2A). Cold 

temperatures and β-adrenergic stimulators are physiological activators of browning in WAT. 

As mice treated with αGalCer were housed at room temperature where full BAT activation 

is not required, we investigated iNKT-dependent mechanisms leading to browning of WAT. 

FGF21 has been shown to improve metabolic disorders and induce weight loss in humans 

and mice (Kharitonenkov and Adams, 2013). FGF21 has been implicated in inducing a 

thermogenic program in WAT through activation of PGC1α (Fisher et al., 2012), as well as 

by induction of adiponectin, leading to increased energy expenditure (Holland et al., 2013). 

Administration of αGalCer strongly induced FGF21 transcripts in inguinal adipose tissue 

within 3 hr of administration, to a similar extent as the β3-adrenoreceptor agonist 
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CL316,243 (Figure 2B). At 3 hr after αGalCer, FGF21 was not activated in BAT; however, 

by 24 hr after αGalCer treatment, FGF21 transcripts were also significantly induced in BAT 

and further increased in inguinal adipose tissue (Figures 2B and 2C). In contrast, FGF21 

expression was not induced in WAT or BAT of CD1d−/− (iNKT deficient) mice after 

αGalCer, confirming an iNKT-dependent effect (Figure 2C). FGF21 protein secretion was 

also significantly increased from explants of inguinal WAT and BAT after αGalCer 

treatment (Figure 2D). Furthermore, serum FGF21 levels were significantly elevated after 

αGalCer treatment, at even higher levels than those detected after administration of 

CL316,243 (Figure 2E). Surprisingly, despite the liver being another key source of iNKT 

cells and FGF21, αGalCer treatment did not increase FGF21 levels in liver (Figure S1C). 

αGalCer also induced adiponectin in inguinal adipose tissue of wild-type (WT), but not in 

CD1d−/−, mice (Figure 2F). Although αGalCer is a specific activator of iNKT cells and is 

not a β-adrenoreceptor agonist, we assessed if iNKT cells could induce FGF21 without 

αGalCer activation. To examine this, we adoptively transferred iNKT cells into obese 

CD1d−/− mice (in vivo), and in another experiment, we co-cultured iNKT cells with obese 

adipose tissue (in vitro). In both types of experiments, iNKT cells increased levels of FGF21 

protein, and adiponectin in adipose tissue (Figure 2G). Thus, our data show that iNKT 

activation or adoptive transfer induces FGF21, thermogenesis, and weight loss, implicating 

FGF21 as an important mediator of this pathway. To examine if FGF21 was required for 

iNKT-mediated weight loss, we investigated FGF21 null mice. FGF21−/− mice were fed an 

HFD for 12 weeks and treated with αGalCer or vehicle control. In the absence of FGF21, 

αGalCer-induced weight loss was significantly attenuated, compared to WT controls (Figure 

2H). There was no statistical difference in the mean weight of the epididymal fat pads 

between groups (Figure 2I). Thus, iNKT cell activation or adoptive transfer induces FGF21, 

adiponectin, β-oxidation, browning of WAT, and increased energy expenditure leading to 

weight loss, which is partly dependent on induction of FGF21.

Discovery of an iNKT-FGF21 thermogenic pathway led us to question if this pathway was 

physiologically relevant in other weight loss settings. As we have previously shown that 

liraglutide and native GLP-1 can activate human iNKT cells (Hogan et al., 2011), and 

GLP-1 receptor signaling can regulate lymphocyte maintenance and proliferation 

(Hadjiyanni et al., 2010), we examined whether GLP-1R signaling-induced weight loss was 

dependent in part on iNKT cell activation. Obese mice fed an HFD for 8 weeks were treated 

with the GLP-1R agonist liraglutide or PBS control by i.p. injection daily for 5 days. As 

expected, liraglutide treatment lowered fasting glucose, improved glucose handling (Figure 

S2A), reduced body weight and epididymal fat pad weight (Figures S2B and S2C), and 

decreased adipocyte size (Figure S2D). Consistent with our previous finding in humans, 

liraglutide increased iNKT cell frequency in blood and adipose tissue (Figures 3A and 3B). 

Adipose iNKT cells were activated by liraglutide treatment, evidenced by an increased 

expression of the activation marker CD69 in vivo (Figure 3C). Liraglutide also led to 

proliferation of adipose iNKT cells (Figure S2E) and increased their IL-10 production in 

vivo (Figure 3D), a hallmark of adipose iNKT cell regulatory function (Lynch et al., 2015). 

Furthermore, when tested in vitro, liraglutide directly induced proliferation in murine iNKT 

cell primary lines (Figure S2F) and induced their IL-10 production (Figures S2G and S2H). 
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These results show that the GLP-1 analog liraglutide can activate iNKT cells in vivo and 

directly in vitro.

As liraglutide activates iNKT cells, and both liraglutide (Lovshin and Drucker, 2009) and 

iNKT cell activation can promote weight loss (Lynch et al., 2012), we determined whether 

GLP-1-iNKT cell interactions were relevant to the metabolic and weight loss effects of 

liraglutide GLP-1-based therapy. We fed WT and CD1d−/− mice (lacking iNKT cells) an 

HFD for 8 weeks and treated them with liraglutide. The absence of iNKT cells did not 

impact the glycemic effects of liraglutide (Figures 3E and 3F), for liraglutide induces similar 

reductions in fasting glucose and glycemic excursion in both WT and CD1d−/− mice. 

However, the presence of iNKT cells was required for the full weight loss effects after 

several days of liraglutide administration; CD1d−/− mice lost approximately one-third less 

overall weight than WT mice after liraglutide treatment (Figure 3G). Although liraglutide 

produced a significant reduction in food intake in both WT and CD1d−/− (Figure S2I), 

CD1d−/− mice regained their weight and exhibited no weight loss between days 2 and 6 

following liraglutide treatment, unlike WT mice, which continued to lose weight (Figures 

3H and 3I). Similar findings (less weight loss with liraglutide) were seen in Ja18−/− mice on 

HFD, a second murine model that lacks iNKT cells due to deletion of the invariant Ja18 T 

cell receptor chain (Figure S3). Ja18−/− mice and WT mice lost similar weight in the first 24 

hr, when food intake is severely reduced, but following this initial 24 hr period, WT 

continued to lose weight while Ja18−/− gained weight (Figures S3B–S3D). To rule out a 

central defect in GLP-1R signaling as a mechanism for resistance to liraglutide-induced 

weight loss, we found that GLP1r expression in the hypothalamus was similar in WT and 

iNKT-deficient mice (CD1d−/−) (Figures S3E and S3F). CLAMS studies revealed that 

CD1d−/− mice had a lower metabolic rate than WT mice (Figures S4A and S4B), consistent 

with the increase in adiposity previously described (Lynch et al., 2012). Liraglutide induced 

a slight decrease in overall VO2 and VCO2 in both WT and CD1d−/− mice (Figures S4A and 

S4B), in agreement with reports that liraglutide-induced weight loss mainly reflects reduced 

appetite and energy intake (Harder et al., 2004; O’Shea et al., 1996; van Can et al., 2014). 

Nevertheless, central GLP-1R signaling can also induce thermogenesis through activation of 

BAT, which may account for a small proportion of liraglutide weight loss effects (Lockie et 

al., 2012). Thus, we investigated if i.p. liraglutide treatment induced browning of white 

inguinal fat. Liraglutide induced a robust thermogenic gene expression program in WT mice, 

including upregulation of UCP-1, PGC1α, and Cidea (Figure 3J). Importantly, this response 

was blunted or lost in CD1d−/− mice (Figure 3J). Liraglutide administered intraperitoneally 

did not induce a significant change in thermogenic genes in BAT, although a trend was seen 

in WT, but not CD1d−/−, mice (Figure S4C). Together, our findings show (1) liraglutide 

activates iNKT cells, (2) iNKT cells are required for the thermogenic program in WAT 

induced by liraglutide, and (3) iNKT activation induces FGF21. Previous reports have linked 

GLP-1 analogs with increased FGF21 expression (Nonogaki et al., 2014; Yang et al., 2012). 

Thus, we examined whether iNKT cells were required for the induction of FGF21 by 

liraglutide. Liraglutide robustly induced FGF21 expression in WT inguinal adipose tissue; 

however, FGF21 was not induced in mice lacking iNKT cells (Figure 3K). Liraglutide also 

induced expression of FGF21 receptors FGFR and β-klotho in adipose tissue of WT, but not 

in CD1d−/−, mice (Figure 3L). Adiponectin, a downstream regulator of FGF21 signaling, 
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was also robustly induced in adipose tissue by liraglutide in WT, but not iNKT, cell-deficient 

mice (Figure 3M). Thus, although the primary mechanism of action for the weight loss 

effects of liraglutide is a reduction of energy intake, liraglutide also induces adiponectin, 

FGF21, and an adipose thermogenic program that requires a functional iNKT cell system.

Previously, we have shown that liraglutide can activate human iNKT cells in vitro (Hogan et 

al., 2011) and can increase levels of circulating adiponectin in obese individuals with type 2 

diabetes (Hogan et al., 2014). To ascertain the existence of a GLP-1-iNKT cell-FGF21 axis 

in humans, we studied a cohort of nine newly diagnosed obese type 2 diabetes patients 

before and after 8 weeks of liraglutide therapy. HbA1c and body weight were reduced 

following liraglutide administration (Figures 4A and 4B). This was paired with a significant 

expansion in peripheral iNKT cell levels (Figure 4C). Liraglutide also significantly elevated 

circulating FGF21 levels (Figure 4D), which strongly correlated with the extent of weight 

loss: two individuals without weight loss did not display increases in FGF21, and the 

individuals who lost the most weight had the largest increases in FGF21 (Figure 4E). These 

data demonstrate that liraglutide expands iNKT cell number and increases FGF21 levels in 

obese humans, consistent with our findings in high-fat-fed mice.

Our data provide a mechanism whereby iNKT cells, by adoptive transfer or activation with 

their specific ligand αGalCer, induce rapid and robust weight loss. Our study shows that an 

innate T cell population, resident in adipose tissue, drives thermogenesis and weight loss. 

Thus, iNKT cells join the list of other immune cells that have been reported to control 

weight, namely ILC2s (Brestoff et al., 2015; Lee et al., 2015) and macrophages (Nguyen et 

al., 2011). iNKT cell actions are distinct from those previously published. ILC2 cell 

production of methionine-enkephalin peptides drove UCP1 expression and thermogenesis in 

WAT (Brestoff et al., 2015), while macrophages can produce catecholamines to sustain 

thermogenesis in cold temperatures (Nguyen et al., 2011). Here we show that iNKT 

activation drives production of FGF21 by adipocytes in WAT and a robust and sustained 

reduction in RER, indicating β-oxidation, coupled with UCP-1 expression, leading to 

thermogenic weight loss without affecting appetite. We also show that this pathway plays a 

role in another setting: liraglutide-induced weight loss. Although this pathway is not the 

main mechanism of liraglutide action, which is primarily satiety, our results highlight a role 

for activation of this iNKT-FGF21 pathway in the maximal weight loss effects of liraglutide 

in mice. Of additional relevance, the actions of liraglutide to induce FGF-21 and adiponectin 

also required a functional iNKT cell axis. Unlike other pathways of cytokine-driven 

activation of immune cells, iNKT cells can be specifically targeted in the clinic by αGalCer 

and related lipid ligand administration. αGalCer has been given to patients in several 

different clinical trials for cancer and has been proven safe and capable of activating human 

iNKT cells in vivo, with minimal side effects. This study suggests that targeting iNKT cells 

with specific ligands could represent a new therapeutic approach for subjects with metabolic 

disorders, such as nonalcoholic fatty liver disease or insulin resistance, that are sensitive to 

the actions of metabolic mediators such as adiponectin and FGF-21.
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EXPERIMENTAL PROCEDURES

Patients

Details of patient collection are in the Supplemental Experimental Procedures. Blood was 

collected from ten type 2 diabetes patients before and after 8 weeks of GLP-1 analog therapy 

(0.6 mg once daily for 2 weeks, then 1.2 mg once daily by i.p. injection), and metabolic 

status, iNKT, and FGF21 levels were measured. Informed consent was obtained from all 

participants, and approval to conduct this study was obtained from the St. Vincent’s 

Healthcare Group Ethics and Medical Research Committee.

Mice

Details of mouse strains are in the Supplemental Experimental Procedures. C57BL/6 mice 

were purchased from Jackson Laboratory. CD1d−/− and Ja18−/− were provided by Mark 

Exley (Harvard). FGF21 null mice were kindly provided by Eli Lily (Badman et al., 2009). 

All animal work was approved by and in compliance with the Institutional Animal Care and 

Use Committee guidelines of the Dana Farber Cancer Institute and Harvard Medical School.

Mouse Manipulations

Details of cell isolation and flow cytometry can be found in the Supplemental Experimental 

Procedures. iNKT cells were measured using αGalCer analog PBS-57-loaded or empty 

CD1d tetramers provided by the NIH tetramer facility. For in vivo treatment, mice were 

injected intraperitoneally with a single injection of αGalCer or vehicle in 150 μL volume. 

For liraglutide treatment, mice received daily injection of GLP-1 analog (50 μg/kg 

intraperitoneally) for 5 days. For CLAMS analysis, mice were singly housed and acclimated, 

then administered vehicle control, monitored for 70 hr, given 1 μg αGalCer in 150 μL 

intraperitoneally, and monitored for a further 70 hr.

Statistics

The changes of outcomes between baseline and the follow-up were evaluated using paired t 

tests. The difference between treatment groups was tested using unpaired two-sample t tests 

with Welsh’s correction for unequal variances and one-way ANOVA followed by Tukey’s 

post hoc test. p ≤ 0.05 was considered significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• iNKT cell activation leads to potent weight loss and glycemic control 

in obesity

• iNKT-induced weight loss is induced by thermogenic browning of 

white fat

• FGF21 induced by iNKT cells plays an important step in weight loss

• GLP-1 activates iNKT cells, triggering FGF21 and contributing to 

weight loss
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Figure 1. Activation of iNKT Cells Induces Weight Loss through Thermogenesis
(A) Body weight of obese WT mice 4 days after one injection of 1 μg/mouse (n = 15 per 

group) (left) or 2 μg/mouse (n = 10 per group) (right) αGalCer or vehicle control.

(B) Change in body weight after αGalCer or vehicle control.

(C) Flow plots of iNKT cells, measured by αGalCer-loaded CD1d tetramer+ cells in various 

adipose depots and spleen, representing five individual mice. Numbers show percent of 

CD45+ cells (top) and percent of T cells (bottom).
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(D) Change in epididymal (n = 15 per group), subcutaneous (n = 10 per group), and 

perirenal (n = 5 per group) fat pad size in obese WT mice 4 days post-αGalCer treatment.

(E) Body weight of obese WT mice 3 days after one injection of vehicle and then 3 days 

after 1 μg αGalCer, following CLAMS experiment (n = 6 per treatment).

(F and G) (F) O2 consumption and (G) CO2 production in obese WT mice acclimatized in 

metabolic cages, then treated with vehicle for 3 days, and then αGalCer for 3 days. Each 

mouse served as its own control (n = 6). Results displayed in 12 hr periods (shaded area 

represents the dark cycle).

(H) Body temperature measured by implanted peritoneal temperature probes.

(I) Infrared images and graph showing body temperature of obese WT mice 48 hr after 

receiving αGalCer (1 μg) or vehicle (n = 5 per treatment).

(J) RER of obese WT mice treated with vehicle control for 3 days (blue) or αGalCer for 3 

days (red).

(K) Calculation of energy expenditure in the first and second 24 hr period following 

treatment with vehicle or αGalCer after adjustment for food intake and body weight.

In (J) and (K), n = 6 per group.

(L) Fasting blood glucose 4 days post-vehicle or 1 μg αGalCer treatment (n = 5–6 per group, 

two independent experiments). Small horizontal bars indicate the mean (± SEM).

Statistics have been calculated using a Student’s paired t test (A and E) and unpaired t test 

(B, D, I, K, and L). *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 2. Activation of iNKT Cells Induces Browning of WAT, Partially through Induction of 
FGF21
(A) Immunohistochemical staining of UCP-1 protein in inguinal adipose tissue after vehicle 

control or αGalCer injection (representing one experiment with n = 4 per group, repeated 

twice).

(B and C) qPCR for FGF21 transcript in inguinal adipose tissue and brown adipose tissue 

(BAT) at (B) 3 hr or (C) 24 hr after vehicle (n = 7) or αGalCer treatment (n = 7), compared 

to β-adrenergic receptor agonist CL316,243 (1 mg/kg intraperitoneally) (n = 4) as a positive 

control (AU, arbitrary units).

(D) FGF21 protein level in supernatant of cultured ex vivo inguinal and brown adipose 

tissue, measured by ELISA, from mice treated in vivo with vehicle control or αGalCer (n = 

5 per group).
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(E) Serum concentration of FGF21 after αGalCer or CL316,243, in WT and CD1d−/− mice 

measured by ELISA (n = 5 per group).

(F) Adiponectin protein in inguinal adipose tissue after αGalCer or CL316,243, in WT and 

CD1d−/− mice measured by ELISA (n = 3 per group, repeated twice).

(G) WT obese mice received iNKT cell adoptive transfer intraperitoneally, and 2 days later, 

adipose tissue was cultured overnight. In another experiment, obese adipose tissue was co-

cultured with isolated adipose iNKT cells (in vitro). Supernatant was collected from both 

experiments, and FGF21 and adiponectin proteins were measured (n = 4–5 per group).

(H and I) (H) Body weights and (I) epididymal fat pad weight of HFD-fed FGF21−/− mice (n 

= 6) and WT mice (n = 6) 3 days after one i.p. injection of 2 μg αGalCer or vehicle. Graphs 

show the mean (± SEM).

Statistics have been calculated using a Student’s unpaired t test or ANOVA with Tukey post 

hoc test for groups of three or more. *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 3. GLP-1 Analog Liraglutide Activates iNKT Cells In Vivo and In Vitro
WT mice fed an HFD for 6–8 weeks, then injected daily with GLP-1 analog liraglutide (50 

μg/kg intraperitoneally) for 5 days (n = 5 per treatment per experiment; experiment 

performed four times).

(A and B) (A) Circulating peripheral and (B) adipose iNKT cells levels in obese mice after 

liraglutide treatment in vivo (n = 8–9 per group).
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(C and D) (C) Graph of activation marker CD69 and (D) intracellular cytokine staining of 

IL-10 on adipose iNKT cells from obese WT mice post-PBS or liraglutide treatment (n = 9 

per group).

(E–G) HFD-fed WT and CD1d−/− (no iNKT) mice were injected daily with GLP-1 analog 

liraglutide (50 μg/kg intraperitoneally) for 5 days and (E) fasting glucose and (F) glucose 

tolerance tests and (G) total weight loss in grams (g) were measured.

(H and I) (H) Weight loss after 24 hr, and (I) from 24 hr and 120 hr after liraglutide 

treatment.

In (E)–(I), n = 10 per group receiving PBS, and n = 13–14 per group receiving liraglutide.

(J–M) Graphs of transcripts for (J) UCP-1, Cidea, and PGC1α; (K) FGF21; (L) FGFR and 

β-klotho (KLB); and (M) adiponectin in inguinal adipose tissue of obese WT and CD1d−/− 

mice that received PBS or liraglutide for 5 days. n = 3 per group per experiment, repeated 

three times. Graphs show the mean (± SEM).

Statistics have been calculated using a Student’s unpaired t test or ANOVA with Tukey post 

hoc test for groups of three or more. *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 4. Liraglutide Activates Human iNKT Cells In Vivo and Induces FGF21
Obese patients with newly diagnosed type 2 diabetes received daily injections of liraglutide 

for 8 weeks, and peripheral blood was collected before and after.

(A–C) Change in (A) HbA1c (n = 8) and (B) body weight (n = 10) and (C) circulating iNKT 

cell levels in obese patients after 8 weeks of liraglutide therapy, with age-matched lean 

controls for comparison (n = 6).

(D and E) (D) Serum FGF21 concentration and (E) correlation between weight loss and 

change in FGF21 concentration in patients, before and after 8 weeks of liraglutide therapy. 

Each symbol represents one individual.

Statistical comparisons using Mann-Whitney U test and paired t tests. *p < 0.05, **p ≤ 0.01.
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