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Family Medicine, Université de Montréal, Montreal, Quebec, Canada, 5 Chronic Viral Illness Service,

MUHC, Montreal, Quebec, Canada, 6 Department of Family Medicine, McGill University, Montreal, Quebec,

Canada, 7 Division of Hematology, MUHC, Montreal, QC, Canada, 8 Division of Clinical Immunology,

MUHC, Montreal, Quebec, Canada

☯ These authors contributed equally to this work.

* nicole.bernard@mcgill.ca

Abstract
Natural Killer (NK) cell education, which requires the engagement of inhibitory NK cell

receptors (iNKRs) by their ligands, is important for generating self-tolerant functional NK

cells. While the potency of NK cell education is directly related to their functional potential

upon stimulation with HLA null cells, the influence of NK cell education on the potency of

the antibody dependent cellular cytotoxicity (ADCC) function of NK cells is unclear. ADCC

occurs when the Fc portion of an immunoglobulin G antibody bridges the CD16 Fc receptor

on NK cells and antigen on target cells, resulting in NK cell activation, cytotoxic granule

release, and target cell lysis. We previously reported that education via the KIR3DL1/HLA-

Bw4 iNKR/HLA ligand combination supported higher KIR3DL1+ than KIR3DL1- NK cell acti-

vation levels but had no impact on ADCC potency measured as the frequency of granzyme

B positive (%GrB+) targets generated in an ADCC GranToxiLux assay. A lower frequency

of KIR3DL1+ compared to KIR3DL1- NK cells were CD16+, which may in part explain the

discrepancy between NK cell activation and target cell effects. Here, we investigated the

frequency of CD16+ cells among NK cells expressing other iNKRs. We found that CD16+

cells were significantly more frequent among NK cells negative for the inhibitory KIR (iKIR)

KIR2DL1, KIR2DL3, and KIR3DL1 than those positive for any one of these iKIR to the exclu-

sion of the others, making iKIR+ NK cells poorer ADCC effectors than iKIR- NK cells. The

education status of these iKIR+ populations had no effect on the frequency of CD16+ cells.
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Introduction

Natural Killer (NK) cells acquire functional competence as they develop through a process
known as education, which requires the interaction of inhibitory NK receptors (iNKRs) with
their cognate human leukocyte antigen (HLA) ligands on neighboring cells [1–3]. Inhibitory
NKRs include inhibitory Killer Immunoglobulin-like Receptors (iKIR), such as KIR2DL1
(2DL1), KIR2DL3 (2DL3), and KIR3DL1 (3DL1), as well as the C-type lectin receptor NKG2A.
The 3DL1 receptor interacts with a subset of HLA-A and–B antigens that belong to the Bw4
subset [4,5]. Bw4 antigens differ from the remaining Bw6 HLA-B variants, which do not inter-
act with 3DL1, at amino acids 77–83 of the HLA heavy chain [6]. Thus, NK cells from Bw6
homozygotes with no HLA-A Bw4 alleles can serve as controls for the effect of education
though 3DL1 on NK cell function. The 2DL3 receptor interacts with HLA-C group 1 (C1) vari-
ants having an asparagine at position 80 of the heavy chain [7,8]. Other HLA-C variants with a
lysine at this position belong to the C2 group and are ligands for 2DL1 [8]. The 2DL3 receptor
can also bind certain allelic variants of C2, though with lower affinity than 2DL1 [9]. Therefore,
2DL3+ NK cells from individuals expressing the C1 ligand are educated, but are either unedu-
cated or less potently educated in individuals expressing only C2 ligands. NKG2A interacts
with non-classical major histocompatibility complex class I (MHC-I) HLA-E molecules that
present leader peptides frommany MHC-I proteins and certain viral derived epitopes [10–13].
NKG2A and HLA-E molecules are highly conserved and their effect on NK cell education is
similar from one person to another [14].

NK cell education is a dynamic process whereby functionality can be tuned by the number
of iNKRs engaged, the strength of interactions between iNKRs and their ligands and the poten-
tial additional engagement of activating NK cell receptors (aNKRs) [9,15–19]. The potency of
NK cell education is related to the frequency of NK cells that are activated by stimuli such as
HLA null cells and antibody (Ab) dependent NK cell stimulation by recombinant gp120 coated
CEM.NKr-CCR5 (CEM) cells in the presence of anti-human immunodeficiency virus (HIV)
Envelope (Env) specificAbs [16,18,20–23]. Previous work by our group noted inter-individual
variation in NK cell mediated ADCC activity in a flow cytometry based ADCCGranToxiLux
(ADCC-GTL) assay, which measured the %GrB+ target cells generated in this assay [24,25].
The target cells used in this assay were gp120 coated CEM cells and the source of Ab was
HIVIG, immunoglobulinG (IgG) from pooled plasma fromHIV infected subjects.We showed
that this variability was not due to differences in the ability of 3DL1/HLA-B pairs to educate
NK cells [24]. This finding was despite the observation that 3DL1+ NK cells that were educated
through 3DL1/Bw4 interactions were stimulated by the same gp120 coated CEM target cells in
an Ab dependent fashion to higher levels than 3DL1- NK cells [22,24,26]. Furthermore, we
showed that among 3DL1+ NK cells, there was a significantly lower frequency of CD16+ cells
than among 3DL1- NK cells. As CD16 is crucial to ADCC activity, this would compromise the
ability of educated 3DL1+ NK cells to act as effector cells in terms of delivering GrB to target
cells [24,26].

In this report we expanded on these results by investigating the proportion of CD16+ cells
among NK cells expressing NKG2A, 2DL1, 2DL3, 3DL1, or none of these iNKR by adopting a
gating strategy that focused on NK cells expressing one of these iNKR to the exclusion of the
others stained for. We found NK cells exclusively expressing a single iKIR co-expressed CD16
less frequently than did NK cells expressing none of these iNKRs. On the other hand, NK cells
exclusively expressing NKG2A only, co-expressed CD16 more frequently than did NK cells
negative for these iNKRs. Furthermore, the frequency of CD16 on these single iKIR positive
NK cell populations did not differ based on whether or not the NK cells developed in an envi-
ronment that would have supported their education.
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Materials and Methods

Ethics statement and study population

This study was conducted in accordance with the principles expressed in the Declaration of
Helsinki. It was approved by the Institutional ReviewBoards of the Comité d’Éthique du Cen-
tre de Recherche du Centre Hospitalier de l’Université de Montréal and the Research Ethics
Committee of the McGill University Health Centre—Montreal General Hospital. All individu-
als provided written informed consent for the collection of samples and subsequent analysis.

We studied 26 HIV seronegative donors. The MHC-I HLA-A, -B, and–C type of each study
participants is shown in Table 1. Also shown in this table is the generic 3DL1/S1 genotype,
whether a 2DL1 locus was present, whether an allele belonging the 2DL3 group encoded at the
2DL2/L3 locus was present, whether subjects carried a Bw4 allele at either the HLA-A or–B
locus, and whether they carriedHLA-C alleles encoding antigens belonging to the C1 or C2
group or both.

Genotyping

MHC-I alleles were typed using commercial reagents (Atria Genetics Inc., South San Francisco,
CA). Genotyping and allotyping of 3DL1/S1was performed as previously described [27,28].

Table 1. Study population HLA and KIR genotypes.

Donor 3DL1/S11 2DL12 2DL3 HLA-A HLA-B HLA-C Bw4 C1/C2

1 3DL1 1 1 01:01, 03:01 44:03, 49 07:01, 16:01 1 C1

2 3DL1 1 1 24:01, 26:01 15:01, 57:01 05:01, 06:02 1 C2

3 HTZ 1 0 03:01, 32:01 13:02, 53:01 04:01, 06:02 1 C2

4 3DL1 1 1 01:01, 31:01 49:01 07:01 1 C1

5 3DL1 1 1 02:01, 03:01 07:02, 27:05 01:02, 07:02 1 C1

6 3DS1 1 1 02:01, 24:02 38:01, 78:01 07:02 1 C1

7 3DL1 1 1 02:01 07:02, 57:01 05:01, 06:02 1 C2

8 HTZ 1 1 03:01, 11:01 40, 57:01 02:02, 04:01 1 C2

9 3DL1 1 1 01:01, 23:01 14:02, 38:01 08:02, 12:02 1 C1

10 HTZ 1 0 02:01, 29:02 07:02, 44:03 07:02,16:01 1 C1

11 3DS1 1 1 02:01, 03:01 27:05, 47:01 02:02, 06:02 1 C2

12 HTZ 1 1 02:01, 03:01 07:02, 50:01 07:02, 16:02 0 C1

13 3DL1 1 1 01:01, 02:01 08:01, 40:01 03:02, 07:01 0 C1

14 3DL1 1 1 02:01 07:02, 08:01 07:01, 07:02 0 C1

15 3DL1 1 1 02:01, 30:02 07:02, 35:01 04:01, 07:02 0 C1/C2

16 3DL1 1 1 03:01, 11:01 07:02, 35:01 04:01, 07:02 0 C1/C2

17 3DL1 1 1 02:01, 24:02 44:02, 01:01 05:01, 08:02 1 C1/C2

18 3DL1 1 1 01:01, 26:01 38:01, 57:01 06:02, 12:03 1 C1/C2

19 HTZ 1 1 01:01, 23:01 44:03, 57:01 04:01, 06:02 1 C2

20 HTZ 1 1 11:01, 24:02 27:02, 53:03 02:02, 04:01 1 C2

21 HTZ 1 0 02:01, 11:01 35:01, 40:02 02:02, 04:01 0 C2

22 3DL1 1 1 01:01, 68:02 18:01, 57:01 05:01, 06:02 1 C1/C2

23 3DL1 1 1 02:01, 03:01 35:01, 40:01 03:04, 04:01 0 C1/C2

24 3DL1 1 1 02:01, 03:01 07:02, 08:01 07:01, 16:01 0 C1

25 3DL1 1 1 01:01, 24:02 51:01, 73:01 04:01, 07:01 1 C1/C2

26 3DL1 1 1 02:01, 25:01 18:01, 55:01 03:03, 12:03 0 C1

1 KIR3DL1 generic genotype, 3DL1 = KIR3DL1 homozygote, HTZ = KIR3DL1/S1 heterozygote, 3DS1 = KIR3DS1 homozygotes.
2 0 = not present; 1 = present.

doi:10.1371/journal.pone.0164517.t001
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Presence of 2DL1 and 2DL2/2DL3 loci and alleles belonging to the 2DL3 group was determined
using a KIR genotyping kit (One Lambda Inc., Canoga Park, CA). Presence of 2DL1, 2DL2,
and 2DL3 alleles was verified by PCR using specific primers and conditions describedby Kulk-
arni et al.[29]

Cells

Peripheral bloodmononuclear cells (PBMC) were isolated by density gradient centrifugation
(Lymphocyte SeparationMedium,Wisent, St. Jean Baptiste, QC, Canada) from whole blood
obtained by venipuncture into tubes containing EDTA anticoagulant or by leukapheresis, as
previously described [18,30]. The cells were then cryopreserved in 10% DMSO, with 90% fetal
bovine serum (FBS). After thawing, cells were rested overnight in RPMImedia containing 2
mM L-glutamine; 100 IU/ml penicillin; 100 μg/ml streptomycin; 10% FBS (R10) (all from
Wisent) at 37°C in a 5% humidifiedCO2 incubator at a concentration of 1x106 cells/ml.

CD16 surface staining

Rested, unstimulated PBMCs were cell surface stained to identify the frequency of CD16+

expression among CD56total/dim/bright and iNKR+/- NK cell populations. Following staining
with UV Live/Dead Fixable Stain (Invitrogen, Burlington, ON, Canada), surface staining was
performed in the dark at room temperature on 1x106 PBMCs per individual with Abs of the
following specificities:CD3-BV785 (OKT3), CD56-BV711 (NCAM16.2), 3DL1-BV421 (DX9),
CD57-FITC (HCD57), (all from BioLegend, San Diego, CA), NKG2A-PeCy7 (Z199, Beckman
Coulter, Mississauga, ON, Canada), CD16-APC-Cy7 (3GB, BD Biosciences,Mississauga, ON,
Canada), 2DL1-AlexaFluor700 (143211) and 2DL3-PE (180701; both from R&D Systems,
Minneapolis, MN). Stained cells were then washed and fixed with 1% paraformaldehyde solu-
tion (PFA, Santa Cruz, Biotechnology, Inc, Dallas, TX). Between 300,000 and 400,000 events
per sample were acquired using an LSRFortessa flow cytometer (BD). Data analysis was per-
formed using FlowJo software v10 (Treestar, Ashland OR). Unstained, single color, and fluo-
rescenceminus one controls were used for each subject for multi-color compensation and
gating purposes.

Statistical analysis

Statistical analysis and graphical presentation were performed using GraphPad Prism 6
(GraphPad Software, Inc., La Jolla, CA). Wilcoxon matched pairs and Mann-Whitney tests
were used to assess the significance of differences on 2 matched or unmatched groups, respec-
tively. Friedman tests with Dunn’s post-test comparisons were used to assess the significance
of more than 2 matched groups. Results were reported as medians and inter-quartile ranges
(IQR). P-values less than 0.05 were considered significant.

Results

CD16, NKG2A, and CD57 expression in CD56+ NK cell populations

NK cells were defined as CD3-CD56+ cells from the live singlet lymphocyte gate. Two NK cell
subsets were identified, i.e. the less mature CD3-CD56bright cells, which represent approxi-
mately 10% of circulating NK cells, and the more differentiated CD3-CD56dim population,
which comprises the remainder of circulatingNK cells [31–34] (S1A Fig). The frequencies of
CD16+, CD16+NKG2A+, and CD16+CD57+ NK cells and their CD16- counterparts within
these three NK cell populations were assessed using the gating strategy shown in Fig 1A.
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Consistent with observationsmade by others, the CD56+ and CD56dim NK populations had
higher frequencies of CD16+ than CD16- cells (Fig 1B, left and middle panels and S1 Table),
while the opposite was seen for CD56bright NK cells (right panel) (p = 0.016, p = 0.005, and
p = 0.043, respectively, Wilcoxon tests) [33]. NKG2A is an iNKRwhose expression declines as

Fig 1. Frequency of CD16+, NKG2A+ and CD57+ NK cells and their subsets expressing or not CD16. (A)

Representative gating strategy for determining the frequency of CD16+/- cells on CD56total, CD56dim, and CD56bright NK cell

populations and on the NKG2A-/+ and CD57-/+ subsets of these populations. (B) Frequencies of CD16+/- cells in the

CD56total, CD56dim, and CD56bright NK cell populations. Frequencies of expression of NKG2A (C) and CD57 (E) on CD56total,

CD56dim, and CD56bright NK cells. A Friedman test was used to assess the significance of matched between group

differences. Frequencies of CD16+ and CD16- cells within the NKG2A+ (D) and CD57+ (F) CD56total, CD56dim, and

CD56bright NK cell populations. Each data point represents results for 1 of 26 separate individuals. Bar height and error bars

represent the median and interquartile range for the data set. Wilcoxon tests were used to determine significance of within

subject differences for the indicated NK subsets linked by a line connecting the data sets. Significant values are shown; “*” =

p< 0.05; “**” = p< 0.01; “***” = p< 0.001; “****” = p< 0.0001.

doi:10.1371/journal.pone.0164517.g001
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NK cells mature [35,36]. The proportion of NKG2A+ NK cells was lower in total and CD56dim

than in the CD56bright population (Fig 1C and S2 Table; p = 0.014 and p<0.0001, respectively,
Dunn’s post-tests).Within the total CD56+ and CD56dim NKG2A+ populations, there was a
higher proportion of CD16+ than CD16- cells, while there was a lower frequency of CD16+

than CD16- cells within the NKG2A+CD56bright population (Fig 1D, and S3 Table p = 0.043,
p = 0.002, and p = 0.043, respectively, Wilcoxon).

CD57 is a marker of senescence and terminal differentiation [36–38]. In accordance with
this, the frequency of CD57+ total CD56+ and CD56dim NK cells was higher than that of
CD57+CD56bright NK cells (Fig 1E and S4 Table, p = 0.014 and p<0.0001, respectively, Dunn’s
post-tests). A higher proportion of CD57+ total CD56+, CD56dim, and CD56bright NK cells
were CD16+ than CD16-, though the difference for CD57+CD56bright NK cells did not achieve
statistical significance, likely due to the low frequency of CD57+NK cells that were CD56bright

(Fig 1F and S5 Table, p = 0.01, p = 0.0002, and p = 0.4, respectively, Wilcoxon).

CD16 and KIR expression on total CD56+ and CD56dim NK cells

We next assessed the frequency of total CD56+ NK cells that were positive or negative for
CD16 and that expressed any combination of the iKIR 2DL1, 2DL3, and 3DL1 or none of these
IKIR (Fig 2A and S5 Table). The proportion of CD16- NK cells that expressed at least one of
these iKIR was lower than those that expressed none. The frequency of CD16+ NK cells that
co-expressed or not at least one of these iKIR did not differ significantly.

Fig 2. CD16 expression on total CD56+ NK cells populations expressing all combinations of iKIRs and on CD56dim single iNKR

expressing NK cell populations. (A) The frequency of KIR+ (expressing any Boolean combination of KIR2DL1 (2DL1), KIR2DL3 (2DL3), or

KIR3DL1 (3DL1]) subsets in CD16- and CD16+ total CD56+ NK cell populations. (B) The gating strategy for assessing the frequencies of single

NKG2A, 2DL1, 2DL3, and 3DL1 and CD16 positive CD56dim NK cells. (C) Frequencies of CD16 positive CD56dim NK cells that are single

positive for NKG2A (n = 26), 2DL1 (n = 25),2DL3 (n = 22), and 3DL1 (n = 22) or negative for all iNKR tested (iNKR-). Wilcoxon tests were used to

determine significance of within subject differences for the indicated NK subsets. Each data point represents results a separate individual. Bar

height and error bars represent the median and interquartile range for the data set. Significant values are shown; “**” = p< 0.01; “***” = p<
0.001; “****” = p< 0.0001.

doi:10.1371/journal.pone.0164517.g002
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To further investigate the relationship between iNKR and CD16 expression, we adopted an
exclusive gating strategy in order to examine the frequency of CD16+ cells among NK cells
expressing NKG2A, 2DL1, 2DL3, or 3DL1 to the exclusion of the other iNKR and compared this
frequency to that of CD16+ NK cells negative for all of these iNKR. For this analysis we used
Boolean gating to measure the frequency of NKG2A+, 2DL1+, 2DL3+, 3DL1+, and CD16+ cells
within the CD56dim NK cell gate (Fig 2B and S6 Table). A higher frequency of CD56dim NKs
expressing NKG2A to the exclusion of the other iNKRs tested (NKG2A+2DL1-2DL3-3DL1-)
co-expressedCD16, compared to cells negative for all four iNKRs (Fig 2C and S7 Table, 21.1
[15.5, 30.7] and 12.4 [6.4, 5.75], respectively, p = 0.0004Wilcoxon). We found that a significantly
lower proportion of cells expressing each of the three iKIR to the exclusion of the other iNKR
(NKG2A-2DL1+2DL3-3DL1-, NKG2A-2DL1-2DL3+3DL1-, or NKG2A-2DL1-2DL3-3DL1+) were
CD16+ compared to NK cells negative for all four iNKRs tested (Fig 2C and S7 Table, [3.1 (1.6,
5.88)], p<0.0001, [4.41 (2.8, 7.46)], p = 0.008, and [3.84 (1.56, 6.6)], p<0.0001 for comparisons
with 2DL1, 2DL3 and 3DL1, respectivelyWilcoxon). Together, these results show that NK cells
expressing 2DL1, 2DL3, or 3DL1 alone are less likely to be CD16+ cells than iNKR- NK cells.
Additionally, CD56dim NK cells that do not express the KIR studied, but that express NKG2A
alone are more likely to co-express CD16 than iNKR- cells.

The effect of KIR education on CD16 Expression

CD56dimNKG2A- NK cells expressing 2DL1, 2DL3, or 3DL1 were stratified according to
whether they came from a study subject co-carryingor not a ligand for that KIR, which would
support NK cell education through each receptor. We then compared the frequency of CD16+

CD56dim NK cells from subjects whose KIR/HLA genotype would support versus not support
education through each receptor (Fig 3 and S8 Table). Educated 2DL1+ cells from HLA-C2

Fig 3. The frequency of educated and uneducated CD56dim NK cell populations expressing CD16 and one

of the inhibitory KIR KIR2DL1, KIR2DL3, or KIR3DL1. The frequency of CD16+ cells among educated

KIR2DL1+ (2DL1) NKG2A-CD56dim NK cells from HLA-C2 homozygotes (n = 8) versus uneducated HLA-C1

homozygotes (n = 11), educated KIR2DL3+ (2DL3) NKG2A-CD56dim NK cells from HLA-C1 homozygotes (n = 10)

versus uneducated HLA-C2 homozygotes (n = 7), and educated KIR3DL1+ (3DL1) NKG2A-CD56dim NK cells from

Bw4 carriers (n = 8) versus uneducated Bw6 homozygotes (n = 8). The lines and error bars through the datasets

represent medians and interquartile ranges. Mann-Whitney tests assessing the significance of differences in the

frequency of CD16+, single KIR positive cells in educated versus uneducated NK cell subsets found no significant

differences.

doi:10.1371/journal.pone.0164517.g003
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carriers were compared to uneducated 2DL1+ NK cells from HLA-C1 homozygotes. Likewise,
2DL3+ cells from HLA-C1 carriers were compared to those from HLA-C2 homozygotes and
3DL1+ cells from Bw4 carriers were compared to 3DL1+ cells from Bw6 homozygotes. There
were no significant differences in the frequency of CD16+ cells in the educated and uneducated
groups.

Discussion

In this report we show that a lower frequency of CD56dim NK cells expressing no NKG2A,
2DL1, 2DL3, or 3DL1 were CD16+ compared those expressing NKG2A alone, whereas a higher
frequency of CD56dim NKs expressing none of these iNKRs were CD16+ compared to those
expressing the iKIR 2DL1, 2DL3, or 3DL1 alone. Whether 2DL1, 2DL3, or 3DL1+ NK cells
developed in a host carrying alleles encodingHLA variants able to educate NK cells expressing
these iKIR or not, did not affect the frequency of CD16+ cells in these NK cell populations.

CD16 is a low affinity activating Fc receptor (FcRIIIa) on NK cells, monocytes and neutro-
phils [39]. Its engagement on NK cells leads to the induction of several functions such as cyto-
kine/chemokine secretion and expression of CD107a. Ab dependent NK cell activation also
results in the delivery of GrB to target cells and their eventual cytolysis by ADCC.NK cell-
mediated ADCC involves the recognition of a cognate antigen on target cells by the fragment
variable (Fv) portion of an IgG Ab molecule and the ligation of the fragment crystallizable (Fc)
region to CD16 on NK cells.

The higher frequencies of CD16+, CD16+NKG2A+, and CD16+CD57+ cells than their CD16-

counterparts observed in total CD56+ NK cells reflect the higher percentage of CD16+ cells
among CD56dim than CD56bright NK cells in the periphery [32,33]. The higher proportion of
CD16- than CD16+ cells within the CD56bright and NKG2A+CD56bright populations is consistent
with CD56bright NKs being at an earlier stage of differentiation than CD56dim NK cells [31,36,40].
As NK cells differentiate from CD56bright to CD56dim, NKG2A expression declines and KIR
expression increases [31,34,35]. CD57+ cells have also been reported to proliferate more poorly,
express more CD16, and mediate more potent CD16 dependent cytotoxicity [36]. In support of
this, we found that CD57+CD56dim NKs were significantlymore likely to co-express CD16.

That single iKIR+ NK cells are less likely to be CD16+ has not been reported previously.
This may be partly due to the gating strategies and Ab panels that have been used to detect
CD56, CD16, and iKIR on NK cells. Since NKG2A+ cells co-express CD16+ at a higher fre-
quency than iNKR- NK cells, if they are included in comparisons of NK cells positive versus
negative for particular iKIR they may mask the differences in CD16 frequency in comparisons
of single iKIR+/- NK cell pairs. This may in part explain the results presented in Fig 2A where
NKG2A+ cells were not excluded and NK cells expressing any combination of the iKIR
screened for were gated on. Inclusion of CD56bright NK cells in such analyses may also mask
differences in CD16 expression on iKIR+/- NK cell pairs. Although they only make up ~10% of
the total CD56+ NK cell pool they are almost all NKG2A+ and rarely KIR+ and thus may skew
results for the expression of CD16 on iKIR+/- pairs within the CD56dim compartment [35].

iKIR expression is required for NK cell education [1,3]. The finding that there are fewer
CD16+ cells among iKIR+ compared to iKIR- NK cells whether they are from subjects who
express HLA ligands that would support the education of these NK cells would make iKIR+

NK cells poorer ADCC effector cells than their iKIR- counterparts, as CD16 is crucial for
ADCC activity. This could have contributed to the absence of an impact of educating 3DL1/
Bw4 pairs on ADCCpotencymeasured by assessing the frequency of the delivery of GrB to
gp120 coated CEM, as previously reported [24]. Using the same data set as the one described in
Isitman et al. [24] we stratified the results for %GrB+ CEM according to whether the effector
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cells used in the ADCC-GTLassay came from subjects positive or not for the educating 2DL1/
HLA-C2 pair or the 2DL3/HLA-C1 pair. In neither case did we observe differences in the %
GrB+ CEM cells when effector cells from subjects carrying educating versus non educating
combinations were used (not shown).

It is important to note that not all possible iKIR were stained for, which is a limitation of
this study. The reason we did not stain for KIR2DL2 is that there is no commercially available
Ab that specifically detects this receptor without also detecting 2DL3 with or without
KIR2DS2. Abs to other iKIR such as KIR2DL5, KIR3DL2, or KIR3DL3 were not included in
the panel. The inhibitory function of these potential iKIR is not well characterized nor is their
ligand specificity. In summary, it is possible that subsets of the cells staining as 2DL1+, 2DL3+,
3DL1+, NKG2A+, or iNKR- may co-express these additional iKIR or activating KIR. At present,
there is no information on the expression of CD16 on NK cell subsets expressing one or more
of these unstained for iKIR.

Interest in ADCC increasedwhen analyses of the results of the RV144 Thai trial revealed
that IgG Abs to the V1/V2 low loop of the HIV Env, together with low levels of IgA and elevated
levels of ADCCactivity, may have contributed to the modest protection against HIV infection
observed in this trial [41,42]. This, and the explosion of HIV-Env specific broadly neutralizing
Abs, which alsomediate ADCChas promoted interest in exploiting Fc-mediated effector func-
tions for protection against HIV infection in a vaccine setting and for HIV therapy [43–47]. Our
findings that NK cells that have the potential to be educated through iKIR are less likely to co-
express CD16 suggests that non iKIR educated NK cells are the more likely mediators of ADCC.
The implication of this observation is that vaccine or therapeutic strategies targeting NK cell
mediated ADCC through the induction of ADCC-competentAbs will not be limited by inter-
individual genetic differences that determine the potential potency of NK cell education.
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S1 Fig. The gating strategy used for detectingNK cells.The live lymphocytic singlet
population was used to gate on NK cells, which were defined as CD3-CD56+ (CD56total),
CD3-CD56dim, and CD3-CD56bright. SSC-A = side scatter area; FSC-H = forward scatter height;
FSC-A = forward scatter area.
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S1 Table. Data used to create Fig 1B. Frequency of CD16+/- cells among total CD56+,
CD56dim and CD56bright NK cells.
(DOCX)
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