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Abstract
It is a crucial and fundamental issue to identify a small subset of influential spreaders that

can control the spreading process in networks. In previous studies, a degree-based heuris-

tic called DegreeDiscount has been shown to effectively identify multiple influential spread-

ers and has severed as a benchmark method. However, the basic assumption of

DegreeDiscount is not adequate, because it treats all the nodes equally without any differ-

ences. To consider a general situation in real world networks, a novel heuristic method

named GeneralizedDegreeDiscount is proposed in this paper as an effective extension of

original method. In our method, the status of a node is defined as a probability of not being

influenced by any of its neighbors, and an index generalized discounted degree of one

node is presented to measure the expected number of nodes it can influence. Then the

spreaders are selected sequentially upon its generalized discounted degree in current net-

work. Empirical experiments are conducted on four real networks, and the results show that

the spreaders identified by our approach are more influential than several benchmark meth-

ods. Finally, we analyze the relationship between our method and three common degree-

based methods.

Introduction

In complex networks, models and methods for propagation behavior are always of great theo-
retical and practical importance. Consider a scenario in advertising: a small IT company devel-
ops a cool online application and it wants to let more people know their product. However, the
funds for advertising are limited. An economical way to advertise is to deliver the product to a
small group of initial users(or spreaders) who are willing to advertise the product by word of
mouth. This is often referred to as influencemaximization. Theoretically, influencemaximiza-
tion in networks is a specific problem about how to effectively identify a small subset of nodes
and maximize their spreading influence. Althoughmuch work has been done on measuring
the influence of a single node [1–6], methods that can effectively identifymultiple influential
spreaders are still lacking.
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The pioneers of this research area are Domingos and Richardson [7, 8] who studied influ-
ence maximization as an algorithmic problem and developed a probabilistic method. Kempe,
Kleinberg and Tardos [9] also made a significant contribution to this field. They showed that
the problem is an NP-hard discrete optimization problem, and proposed a greedy strategy to
select the spreaders that could achieve an approximation guarantee of 63%. Unfortunately,
their greedymethod encountered a serious drawback in computing efficiency, which limited its
wide usage in large-scale networks. Leskovec et al. [10] demonstrated that many realistic influ-
ence maximization problems exhibit a property of “submodularity”, and they proposed a Cost-
Effective Lazy Forward(CELF)method to improve the efficiencyof the greedymethod. Naraya-
nam et al. [11] analyzed the Shapley value concept from cooperative game theory and proposed
ShaPley value-based Influential Nodes(SPIN). Zhao et al. [12] attempted to find effectivemulti-
ple spreaders by generalizing the idea of the coloring problem in graph theory to complex net-
works. He et al. [13] suggested a novel method to identify multiple spreaders from
communities in a balancedway. Zhang et al. [14] presented an iterative method named VoteR-
ank to identify a set of decentralized spreaders. Chen et al. [15] decomposed the local topologi-
cal structure of nodes and proposed a DegreeDiscount heuristic. Numerical experiments
showed that DegreeDiscount could nearly match the performance of the greedymethod, while
the computational complexity of the former one was quite low. However, all nodes were treated
equally inDegreeDiscount, which was a little oversimplified and might reduce the performance
of the algorithm.
In this paper, we depict the status of nodes more concisely as a probabilistic score, and pro-

pose theGeneralizedDegreeDiscount heuristic.We discuss the computational efficiencyof our
method and demonstrate that the complexity is linearly correlated with the network scale,
which makes our method efficient and scalable to large-scale networks. Experiments are per-
formed on several real networks, and the results show that our method can outperform some
centrality-basedmethods.

Materials and Methods

Intuition and theory

Degree is a basic centrality index in the research area of complex networks. It is well known
that a node with a higher degree can influencemore nodes than a node with a lower degree.
Some researches in sociologyhave shown that selecting nodes with the highest degree as
spreaders can result in better spreading influence than many other methods. However, in some
recent studies, the authors argued that nodes with the highest degreemight not always be the
most influential ones. Though the effectiveness of theDegree is questionable, the low computa-
tional complexity of this strategy results in its widespread use in many business fields. In this
section, we try to enhance the performance of this method by using several heuristic strategies.
Let node v be a neighbor of node u. Suppose u has been selected as a spreader. When consid-

ering the selection of v as a new spreader, one should formulate a method for calculating the
contribution of edge uv to the degree of node v. It cannot be counted as 1, as has been done pre-
viously. As u has been selected as a spreader: (i) it is no longer necessary for v to influence u.
(ii) umay also influence v with some probability, which further weakens the potential influence
of v. Based on these considerations, we explore several heuristic strategies, in which the spread-
ers are selected one by one.

Degree-basedheuristics. DegreeDistance [16] takes a naive approach to avoid the relative
influence between adjacent nodes. For example, if a node has been selected as a spreader, we
can ignore its neighbors and consider other nodes.DegreeDistance defines a candidate set C
and a distance threshold dtd. At first, all the nodes are in the candidate set C. In each round, a
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node v with maximum degree in C is selected as a spreader, and the nodes within a distance dtd
to v are removed from C. The procedure ends when all the spreaders have been selected.
In Ref [15], Chen et al. proposed two degree-basedheuristics, SingleDiscount and Degree-

Discount. SingleDiscount considers a simple adaptive strategy. In each round, a node u with the
maximum degree is selected as a spreader. Then, for each v 2 Γ(u), we do not count uv when
calculating its degree. In other words, the degree of v will be discounted by 1. This type of
degree is named as discount degree, and is denoted by sdv

sdv ¼ dv � tv ð1Þ

where dv denotes the original degree of v, and tv denotes the number of v’s neighbors who have
already been selected as spreaders.
DegreeDiscount is specifically designed for the independent cascademodel. For a specific

spreading probability p,DegreeDiscount attempts to conduct a deeper analysis of the local
structure of the nodes. Suppose that we want to calculate the potential spreading ability of
node v. Let the spreading probability be p. When p is small, the multi-hop neighbors of v can
be ignored, and only the nearest neighbors are counted toward the degree. Let u 2 Γ(v) be a
spreader neighbor of v. Obviously, the probability that v is directly influenced by u is p. As a
result, u will not only contribute nothing to v, but also weakens the spreading ability of v.
When calculating the potential spreading ability of v,DegreeDiscount ignores the differences

of v’s neighbors. As all the neighbors are treated equally, the diagram of v and its neighbors Γ
(v) can be mapped into a star-like subgraph structure. Let Star(v) be the subgraph considered
here, and let the edges in the subgraph be the edges incident to v. Let dv be the degree of node v,
tv be the number of spreader neighbors of v, and p be the spreading probability.
As the candidate node v has tv spreader neighbors, the probability that v is influenced by

these neighbors is 1 � ð1 � pÞtv . In this situation, selecting v as a new spreader may not bring
any additional influence. In the opposite situation, selecting v will contribute to the spreading
process by v itself and its normal neighbors. The former term can influence 1 node(v itself),
and the latter can influence dv − tv nodes(normal neighbors) with probability p. Together, the
expected number of nodes influenced by v is

ð1 � pÞtvð1þ ðdv � tvÞpÞ ð2Þ

Under the first order of Taylor expansion, when p is small, the left term can be approxi-
mated by 1 − tv p + o(tv p). After further simplification, the whole equation becomes

1þ ðdv � 2tv � ðdv � tvÞtvpÞpþ oðtvpÞ ð3Þ

Then, the discounted degree of v can be defined as

ddv ¼ dv � 2tv � ðdv � tvÞtvp ð4Þ

Note that in the original equation Eq (2), ddv is always non-negative. However, in the sim-
plified form Eq (4), ddvmay be negative with some special parameters. In this situation, we
manually set ddv to be 0. Fig 1 depicts the local topology considered by DegreeDiscount. In this
toy model, dv = 4, tv = 1, and

ddv ¼ 4 � 2� 1 � ð4 � 1Þ � 1p ¼ 2 � 3p ð5Þ

GeneralizedDegree Discount. As DegreeDiscountmodels all the neighbors in Γ(v)
equally, it ignores the differences among them. Take an extreme case as example, let s, t 2 Γ(v)
be two normal neighbors of node v. If all the neighbors of s itself are spreaders and all the
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neighbors of t itself are normal nodes, they should not be treated equally. Obviously, the proba-
bility that s is influenced by its own neighbors is far larger than t. When calculating the poten-
tial contribution of s, t towards v, the latter one should be given more weight. To make the
originalmodel more precisely, we propose the GeneralizedDegreeDiscount.
Similar to the analysis inDegreeDiscount, the probability that node v is not influenced by its

spreader neighbors is ð1 � pÞtv . If v is not influenced by any of those neighbors, selecting v will
enhance the total influence by v itself and its dv − tv normal neighbors. For any normal neigh-
borw 2 Γ(v), the probability that w is not influenced by its own neighbors is also ð1 � pÞtw . In
other words, w will bring additional influence ð1 � pÞtw to v with probability p. Together, the
expected number of nodes that will be influenced by v is

ð1 � pÞtv 1þ
X

dv � tv

ð1 � pÞtwp

 !

ð6Þ

where the summation is over all dv − tv normal neighbors of node v.
Departing from the conduction inDegreeDiscount, here we consider the second-order Tay-

lor expansion for the left term and the first-order expansion for the right term:

1 � tvpþ
1

2
tvðtv � 1Þp2 þ oððtvpÞ

2
Þ

� �

1þ
X

dv � tv

ð1 � twpþ oðtwpÞpÞ

 !

ð7Þ

Fig 1. The diagram of DegreeDiscount. Nodes filled by gray denote the selected spreaders, and others

denote normal nodes.

doi:10.1371/journal.pone.0164393.g001
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After further simplification, the equation becomes

1þ dv � 2tv � ðdv � tvÞtvpþ
1

2
tvðtv � 1Þp �

X

dv � tv

tsp

 !

pþ oðt2v p
2Þ þ

X

dv � tv

oðtwp
2Þ ð8Þ

Then, the generalized discounted degree of v can be defined as

gddv ¼ dv � 2tv � ðdv � tvÞtvpþ
1

2
tvðtv � 1Þp �

X

dv � tv

twp ð9Þ

Similar to the situation inDegreeDiscount, the simplified equation of gddvmay also be less
than zero. In our real implementations, we set gddv = 0 in this situation. Fig 2 depicts the local
topology considered by GeneralizedDegreeDiscount. In this toy model, dv = 4 and tv = 1. Note
that the summation is over all normal neighbors, i.e., {g, i, j} in this figure. As tg = 2, ti = 1 and tj
= 1, the generalized discounted degree of v is

gddv ¼ 4 � 2� 1 � ð4 � 1Þ � 1pþ
1

2
� 1� ð1 � 1Þp � ð2þ 1þ 1Þp ¼ 2 � 7p ð10Þ

Fig 2. The diagram of GeneralizedDegreeDiscount. Nodes filled by gray denote the selected spreaders, and others

denote normal nodes.

doi:10.1371/journal.pone.0164393.g002
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Compared to the formulation ofDegreeDiscount(Eq (4)), the formulation of GeneralizedDe-
greeDiscount(Eq (9)) adds the last two terms. As the consideration of the latter one is deeper than
the former one,GeneralizedDegreeDiscount should bemore effective thanDegreeDiscount. How-
ever, the difference between them is not so significant in real situations. In reality, a small fraction
of spreaders must be selected and their influences broadcast with low probability. Because the
number of spreaders is not large, usually tv� dv for all nodes. Thus, in Eq (9), the fourth and
fifth terms are smaller than the third term, whichmakesGeneralizedDegreeDiscount just similar
toDegreeDiscount. In the Results section,we will compare the twomethods numerically.

Computational efficiency

TheGeneralizedDegreeDiscount is implemented in Algorithm 1. If we want to select l spreaders,
the algorithmmust run for l rounds. LetN be the number of nodes and hki be the average degree.
In each round, the selection scheme costsO(N), the neighbor finding scheme costsO(hki2), and
for each of those neighbors, the updating process costsO(hki). Then, the total time cost of the
algorithm isO(l(N + hki2 + hki2 � hki))� O(l(N + hki3)). In many networks, the average degree is
far less than the number of nodes: hki � N. Thus the time cost of GeneralizedDegreeDiscount
will be nearlyO(lN), which is just linearly correlated with the scale of the network.

Algorithm 1 GeneralizedDegreeDiscount(G, l, p)

InitializeS = ;
for all v 2 V do
gddv = dv
tv = 0

end for
// iterativelyselectl spreaders
for i = 1 to l do
// selectthe node with the maximumgeneralizeddiscountdegreegddv
selectu = arg maxv {gddv|v 2 VnS}
S = S [ {u}
NB = ;
// find the nearestand next nearestneighborsof u and updatetv for v 2 Γ(u)
for all v 2 Γ(u) do
NB = NB [ {v}
tv = tv + 1
for all w 2 Γ(v) do
NB = NB [ {w}

end for
end for
// updategddv for all v 2 NB
for all v 2 NB do
sumtw = 0
for all w 2 Γ(v) do
if w =2 S then
sumtw = sumtw + tw

end if
end for
gddv ¼ dv � 2tv � ðdv � tvÞtvpþ 1

2
tvðtv � 1Þp � sumtwp

if gddv < 0 then
gddv = 0

end if
end for

end for
returnS

Generalized Degree Discount
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Results and Discussion

To evaluate the performance, we simulate the experiments using the Susceptible-Infected-
Recovered(SIR)model. The SIR model was originally proposed as a model of the dynamics of
the spread of disease. Due to the similarities between epidemic transmission and the spread of
information, we use SIR to measure the spreading influence of individual nodes. In the SIR
model, a nodemay assume one of three states(susceptible, infected and recovered). Specifically,
susceptible individuals S in the model is analogous to individuals who are not aware of the
information. Infected individuals I can be analogous to information carriers who are willing to
spread information to their neighbors. Recovered individualsR are those who had previously
received the information but later lost interest. To better simulate the real-world spreading pro-
cess, we use the SIR model with limited contact [17]. At each time step, each infected node will
randomly select a neighbor to contact, and will transmit the disease to its neighbor with proba-
bility p if the neighbor is susceptible. After the transmission process, the infected node will
become a recovered node with probability q. The effective spreading rate λ is defined as p/q.
When there are no infected nodes, the process stops, and we use the fraction of recovered
nodes to measure the spreading influence.

Data Description

To evaluate the influences of different groups of spreaders selected by various methods, we
conduct the experiments on the following four networks from different fields.

1. Enron [18]: An email communication network which covers all the email communication
within Enron Corporation.Nodes in the network are email addresses and edges represent
the email communications among them.

2. Cond-mat [19]: A collaboration network of scientists posting preprints to the condensed
matter archive at arxiv.org between January 1, 1995 and March 31, 2005. Nodes in the net-
work represent the scientists and edges represent the collaborations among them.

3. Gnutella [20]: A snapshot of the Gnutella peer-to-peer file sharing network at August 31
2002. Nodes represent hosts in the Gnutella network topology and edges represent connec-
tions between the Gnutella hosts.

4. Epinions [21]: A who-trust-whomonline social network of the general consumer review site
Epinions.com. All the trust relationships interact and form theWeb of Trust, which is then
combined with review ratings to determine which reviews are shown to the users.

For simplicity, we treat all the networks as undirected and unweighted, and discard self-
loops and multiple links. Only the largest connected component of each network is considered.
A Brief overviewof the networks is shown in Table 1.

Table 1. The basic topological features of four real networks. N and M are the numbers of nodes and edges. hki is the average degree. dmax denotes the

network diameter and hdi denotes the average shortest path length. r and cc are the assortative coefficient and clustering coefficient, respectively.

network N M hki dmax hdi r cc

Enron 33696 180811 10.732 13 4.025 -0.116 0.085

Cond-mat 36458 171736 9.421 18 5.499 0.177 0.243

Gnutella 62561 147878 4.727 11 5.936 -0.093 0.004

Epinions 75877 405739 10.695 15 4.308 -0.041 0.066

doi:10.1371/journal.pone.0164393.t001
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Benchmark methods

In complex networks, many centrality indexes have been defined to measure the importance of
nodes and links. It is believed that nodes with higher centrality are more influential than com-
mon nodes. Accordingly, one naive solution for the influencemaximization problem is to
select the top − l nodes with the highest centrality indexes. In this paper, we use centrality-
basedmethods as the benchmark methods.
Degree is a basic local centrality index for nodes. The higher degree a node has, the more

important it is. In a social network, a person with more followers or friends is likely to have a
larger influence.
Betweenness [22, 23] measures the extent to which a node is located on the shortest paths

between pairs of nodes in networks.

CBðvÞ ¼
X

s6¼v6¼t

sstðvÞ
sst

ð11Þ

where σst denotes the number of shortest paths between a pair (s, t) of nodes, and σst(v) denotes
the number of shortest paths between any pair of nodes that pass through v.
Closeness [24] is an evaluation of the geometric location of nodes.

CCðvÞ ¼
1

P
u6¼vdðv; uÞ

ð12Þ

where d(v, u) denotes the distance between nodes v and u. Some researchers have proposed
other definitions of closeness to measure the locations of nodes [25, 26].
PageRank [27] evaluates the status of nodes in the random walking process in networks,

which is also a core algorithm in the many search engines.

PRðvÞ ¼ d
X

u2GðvÞ

1

koutu
PRðuÞ þ ð1 � dÞ

1

N ð13Þ

whereN denotes the total number of nodes,Γ(v) denotes the set of neighbors of v, koutu denotes
the out-degree of node u, and d is a dumping factor. In real implementations, we set d = 0.85.
Coreness [28] is a well-established centrality index that focuses on the structure of networks.

Kitsak et al. found that the most efficient spreaders are those located within the core of the net-
work as identified by the k-shell decomposition analysis. The decomposition runs in an itera-
tive way. Nodes are assigned to k shells according to their remaining degrees, which are
obtained by the successive pruning of nodes with degrees smaller than ks. However, the perfor-
mance of k-shell decomposition is not stable, and many studies have sought to enhance its
effectiveness [29–31]. Recently, Liu et al. [32] analyzed the structure of core-like groups in net-
works, and improved the accuracy of the k-shell decomposition by filtering out the redundant
links. In Ref [33], Lü et al. discovered an important relation among degree, H-index and core-
ness. By constructing a suitable operator, they proved that degree, H-index and coreness were
the initial, intermediate and steady states of a special sequences, respectively.

Effectiveness

We use the SIR model to compare the effectiveness of GeneralizedDegreeDiscount withDegree-
Distance, SingleDiscount, DegreeDiscount and several centrality-basedmethods discussed
before. In each implementation, a fraction of the nodes is selected as spreaders, and the infor-
mation spreads according to the SIR process described above. The spreading influence is used
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to measure the effectiveness of the methods. For each method, the SIR process is repeated
many times to ensure the stability of the results.
Fig 3 shows the numerical results of nine methods on four networks. The proposedGeneral-

izedDegreeDiscount outperforms all other methods on all four networks for almost all fraction
of spreaders. Especially, as the fraction of spreaders increases, our method shows better and
better performance. The only exception is in Enron network, when the fraction of spreaders is

Fig 3. The spreading influence of nine methods on four networks with different fractions of spreaders. The parameters are λ = 1.1, q = 1/hki for all

networks, and all results are obtained by averaging over 200 implementations of the SIR model.

doi:10.1371/journal.pone.0164393.g003
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small, the performance of GeneralizedDegreeDiscount is slightly worse thanDegreeDiscount.
Compared withDegreeDiscount, the performance of GeneralizedDegreeDiscount is consistently
better. One promising phenomenon observed in our method is that as the fraction of spreaders
becomes larger, the performance differences becomesmore significant. Numerical results con-
firm that GeneralizedDegreeDiscount is indeed a effective extension of DegreeDiscount. In all
networks, Coreness and Closeness perform the worst among all methods. In Ref [31], Liu et al.
found that nodes in high shells may not be influential because of the existence of core-like
groups: groups of nodes that link very locally within themselves. For nodes in the core-like
groups, the Coreness cannot reflect their location importance in the network, which reduces
the accuracy of the k-shell decomposition process. Moreover, if nodes in the highest shell tend
to links with one another, their influence areas may overlap significantly. Obviously, selecting
those nodes as spreaders may cause a large fraction of the network to overlooked. The situation
for Closeness is similar: nodes with high closeness values often distribute closely with one
another.
In addition, we test the validity of our method with different effective spreading rates. We

fix the fraction of spreaders to be 1% of the scale of the networks and vary the effective spread-
ing rate λ. The results are shown in Fig 4. As in the previous experiments, the proposedGener-
alizedDegreeDiscount shows a clear advantage in maximizing the spreading influence over all
networks under various effective spreading rates. Even if the effective spreading rates are below
1.0 in four networks,GeneralizedDegreeDiscount performs better than other methods.
Obviously, GeneralizedDegreeDiscount is an adaptive method which recalculates the gddv

during each step of the spreaders selection processes, while the centrality-based benchmark
methods are not. In this part, more comparisons are done among our methods and adaptive
versions of Degree, Betweenness and Closeness. To make them adaptive, a simple node-remov-
ing process is conducted: in each iteration, the node with the maximum centrality is selected as
a spreader, and then we remove it from the network and recalculates the new centrality. The
whole process ends until all the spreaders are selected. In fact, the adaptive version of Degree is
the same as SingleDiscount. Fig 5 shows the numerical results. Unlike the previous results,
when considering the top spreaders with low effective rate, our GeneralizedDegreeDiscount
does not performs well. Especially in Gnutella network, the performance of GeneralizedDegree-
Discount is worse than Betweenness-adaptive and Closeness-adaptive. As the clustering coeffi-
cient of Gnutella is so small, the spreaders selection process in the early iteration of
GeneralizedDegreeDiscount is just similar toDegree, which may limit the performance of our
method. In Figs 3 and 4, it can also be seen that the performance differences betweenGenerali-
zedDegreeDiscount and other methods are not so remarkable under small number of spreaders
and low effective spreading rate. How to identifymultiple influential spreaders in networks
with low clustering coefficients is a challenging problem, and we leave it in the future.

Relations with other methods

In this subsection,we perform numerical comparisons among four degree-basedmethods:
Degree, SingleDiscount, DegreeDiscount and GeneralizedDegreeDiscount. ThoughDegreeDis-
tance is also a degree-basedmethod, we do not consider it because there is no clear formulation
to describe this method. The mathematical formulations of the four are listed below.

• Degree

dv ¼ dv

Generalized Degree Discount
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• SingleDiscount

sdv ¼ dv � tv

• DegreeDiscount

ddv ¼ dv � 2tv � ðdv � tvÞtvp

Fig 4. The spreading influence of nine methods on four networks under different effective spreading rates. The parameters are λ = 1.1, q = 1/hki for

all networks, and all results are obtained by averaging over 200 implementations of the SIR model.

doi:10.1371/journal.pone.0164393.g004
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• GeneralizedDegreeDiscount

gddv ¼ dv � 2tv � ðdv � tvÞtvpþ
1

2
tvðtv � 1Þp �

X

dv � tv

twp

Obviously, the complexity of these methods increases one by one. These formulations indi-
cate that DegreeDiscount has more terms in common withGeneralizedDegreeDiscount than the
other two methods. In an extreme case, when p = 0, GeneralizedDegreeDiscount is exact the
same as DegreeDiscount. To better clarify the difference between the methods, we set the

Fig 5. The spreading influence of GeneralizedDegreeDiscount and three adaptive centrality-based methods under different effective spreading

rates. The numbers of spreaders are 100 in all networks, and the results are obtained by averaging over 200 implementations of the SIR model.

doi:10.1371/journal.pone.0164393.g005
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fraction of spreaders to be 1% and calculate the similarity(the fraction of commonly selected
spreaders) betweenGeneralizedDegreeDiscount and other methods. Fig 6 shows the results for
the four networks. In all the networks,GeneralizedDegreeDiscount shows the best similarity
withDegreeDiscount, normal similarity with SingleDiscount, and the worst similarity with
Degree.

Conclusion

In this paper, we propose a novel degree-basedheuristic,GeneralizedDegreeDiscount, which
selectsmultiple spreaders and maximizes their spreading influence. In our method, when

Fig 6. The similarities between GeneralizedDegreeDiscount and Degree, SingleDiscount, DegreeDiscount. The fraction of spreaders is 1%.

doi:10.1371/journal.pone.0164393.g006
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evaluating the potential influence of a candidate node v, the way in which its neighbors are
treated depends on whether it has been selected as a spreader or not. Taking both of the situa-
tions into consideration,GeneralizedDegreeDiscount uses a heuristic scheme to evaluate the
potential influence of all individuals in the network.
We analyze the computational complexity of our method and show that it is just linearly

correlated with the network scale. Then, the performance of our method is evaluated in four
real networks from different fields. Results show that our method outperforms several central-
ity-basedmethods and other heuristic methods in all cases, no matter how many spreaders we
choose to select or what the effective spreading rate is.
The theoretical analysis about influencemaximization problem is still lacking. Although it

has long been proven that there is a strong connection between the spreading process and the
percolation process [34, 35], few researches have discussed the relationship between influence
maximization and percolation. Recently, Morone and Makse pointed out that the influence
maximization problem could be mapped onto optimal percolation problem in random net-
works [36], which might shed light on a new trend of future researches [37, 38]. Besides, we
have witnessed the rapid development of theories and methods for temporal networks [39, 40].
Further researches on the influencemaximization problem in temporal networks may also be a
promising direction [41, 42].
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