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Abstract

Despite seasonal cholera outbreaks in Bangladesh, little is known about the relationship between 

environmental conditions and cholera cases. We seek to develop a predictive model for cholera 

outbreaks in Bangladesh based on environmental predictors. To do this, we estimate the 

contribution of environmental variables, such as water depth and water temperature, to cholera 

outbreaks in the context of a disease transmission model. We implement a method which 

simultaneously accounts for disease dynamics and environmental variables in a Susceptible-

Infected-Recovered-Susceptible (SIRS) model. The entire system is treated as a continuous-time 

hidden Markov model, where the hidden Markov states are the numbers of people who are 

susceptible, infected, or recovered at each time point, and the observed states are the numbers of 

cholera cases reported. We use a Bayesian framework to fit this hidden SIRS model, implementing 

particle Markov chain Monte Carlo methods to sample from the posterior distribution of the 

environmental and transmission parameters given the observed data. We test this method using 

both simulation and data from Mathbaria, Bangladesh. Parameter estimates are used to make 

short-term predictions that capture the formation and decline of epidemic peaks. We demonstrate 

that our model can successfully predict an increase in the number of infected individuals in the 

population weeks before the observed number of cholera cases increases, which could allow for 

early notification of an epidemic and timely allocation of resources.

1. Introduction

In Bangladesh, cholera is an endemic disease that demonstrates seasonal outbreaks [Huq et 

al., 2005, Koelle and Pascual, 2004, Koelle et al., 2005, Longini et al., 2002]. The burden of 

cholera is high in that country, with an estimated 352,000 cases and 3,500 to 7,000 deaths 

annually [International Vaccine Institute, 2012]. We seek to understand the dynamics of 
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cholera and to develop a model that will be able to predict outbreaks several weeks in 

advance. If the timing and size of a seasonal epidemic could be predicted reliably, vaccines 

and other resources could be allocated effectively to curb the impact of the disease.

Specifically, we want to understand how the disease dynamics are related to environmental 

covariates. It is currently not known what triggers the seasonal cholera outbreaks in 

Bangladesh, but it has been shown that Vibrio cholerae, the causative bacterial agent of 

cholera, can be detected in the environment year round [Huq et al., 1990, Colwell and Huq, 

1994]. Environmental forces are thought to contribute to the spread of cholera, evident from 

the many cholera disease dynamics models that incorporate the role of the aquatic 

environment on cholera transmission through an environmental reservoir effect [Codeçco, 

2001, Tien and Earn, 2010]. One hypothesis is that proliferation of V. cholerae in the 

environment triggers the seasonal epidemic, feedback from infected individuals drives the 

epidemic, and then cholera outbreaks wane, either due to an exhaustion of the susceptibles 

or due to the deteriorating ecological conditions for propagation of V. cholerae in the 

environment. We probe this hypothesis using cholera incidence data and ecological data 

collected from multiple thanas (administrative subdistricts with a police station) in rural 

Bangladesh over sixteen years. There have been three phases of data collection so far, each 

lasting approximately three years and being separated by gaps of a few years; the current 

collection phase is ongoing. For a subset of these data, Huq et al. [2005] used Poisson 

regression to study the association between lagged predictors from a particular water body to 

cholera cases in that thana. This resulted in different lags and different significant covariates 

across multiple water bodies and thanas. Thus, it was hard to derive a cohesive model for 

predicting cholera outbreaks from the environmental covariates. Also, there is no easy way 

to account for disease dynamics in this Poisson regression framework. We want to measure 

the effect of the environmental covariates while accounting for disease dynamics via 

mechanistic models of disease transmission. Moreover, we want to see if we can make 

reliable short-term predictions with our model — a task that was not attempted by Huq et al. 

[2005].

Mechanistic infectious disease models use scientific understanding of the transmission 

process to develop dynamical systems that describe the evolution of the process [Bretó et al., 

2009]. Realistic models of disease transmission incorporate non-linear dynamics [He et al., 

2010], which leads to difficulties with statistical inference under these models, specifically 

in the tractability of the likelihood. Keeling and Ross [2008] demonstrate some of these 

difficulties; they use an exact stochastic continuous-time, discrete-state model which evolves 

Markov processes using the deterministic Kolmogorov forward equations to express the 

probabilities of being in all possible states. However, that method only works for small 

populations due to computational limitations. To overcome this intractability, Finkenstädt 

and Grenfell [2000] develop a time-series Susceptible-Infected-Recovered (SIR) model 

which extends mechanistic models of disease dynamics to larger populations. A similar 

development is the auto-Poisson model of Held et al. [2005]. To facilitate tractability of the 

likelihood, both of the above approaches make simplifying assumptions that are difficult to 

test. Moreover, these discrete-time approaches work only for evenly spaced data or require 

aggregating the data into evenly spaced intervals. Cauchemez and Ferguson [2008] develop 

a different, continuous-time, approach to analyze epidemiological time-series data, but 
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assume the transmission parameter and number of susceptibles remain relatively constant 

within an observation period. Our current understanding of cholera disease dynamics leads 

us to think that this assumption is not appropriate for modeling endemic cholera with 

seasonal outbreaks.

To implement a mechanistic approach without these approximations, both maximum 

likelihood and Bayesian methods can be used. Maximum likelihood based statistical 

inference techniques use Monte Carlo methods to allow maximization of the likelihood 

without explicitly evaluating it [He et al., 2010, Bretó et al., 2009, Ionides et al., 2006, 

Bhadra et al., 2011]. Ionides et al. [2006] use this methodology to study how large scale 

climate fluctuations influence cholera transmission in Bangladesh. Bhadra et al. [2011] use 

this framework to study malaria transmission in India. They are able to incorporate a rainfall 

covariate into their model and study how climate fluctuations influence disease incidence 

when one controls for disease dynamics, such as waning immunity. Under a Bayesian 

approach, approximate Bayesian computation (ABC) techniques exist which avoid 

computation of the likelihood [Rubin, 1984]. Toni et al. [2009] use ABC to estimate 

parameters of dynamical models, and McKinley et al. [2009] utilize ABC in the context of 

epidemic models. Alternatively, particle Markov chain Monte Carlo (MCMC) methods have 

been developed which require only an unbiased estimate of the likelihood [Andrieu et al., 

2010]. Rasmussen et al. [2011] use this particle MCMC methodology to simultaneously 

estimate the epidemiological parameters of a SIR model and past disease dynamics from 

time series data and gene genealogies. Using Google flu trends data [Ginsberg et al., 2008], 

Dukic et al. [2012] implement a particle filtering algorithm which sequentially estimates the 

odds of a pandemic. Notably, Dukic et al. [2012] concentrate on predicting influenza 

activity. Analyzing the same data, Fearnhead et al. [2014] also develop a predictive model 

for flu outbreaks using a linear noise approximation [van Kampen, N. G., 1992, Ferm et al., 

2008, Komorowski et al., 2009]. Similarly, here we develop a model-based predictive 

framework for seasonal cholera epidemics in Bangladesh.

In this paper, we use a combination of sequential Monte Carlo and MCMC methods. 

Specifically, we develop a hidden Susceptible-Infected-Recovered-Susceptible (SIRS) model 

for cholera transmission in Bangladesh, incorporating environmental covariates. We use a 

particle MCMC method to sample from the posterior distribution of the environmental and 

transmission parameters given the observed data, as described by Andrieu et al. [2010]. 

Further, we predict future behavior of the epidemic within our Bayesian framework. Cholera 

transmission dynamics in our model are described by a continuous-time, rather than a 

discrete-time, Markov process to easily incorporate data with irregular observation times. 

Also, the continuous-time framework allows for greater parameter interpretability and 

comparability to models based on deterministic differential equations. We test our Bayesian 

inference procedure using simulated cholera data, generated from a model with a time-

varying environmental covariate. We then analyze cholera data from Mathbaria, Bangladesh, 

similar to the data studied by Huq et al. [2005]. Parameter estimates indicate that most of the 

transmission is coming from environmental sources. We test the ability of our model to 

make short-term predictions during different time intervals in the data observation period 

and find that the pattern of predictive distribution dynamics matches the pattern of changes 

in the reported number of cases. Moreover, we find that the predictive distribution of the 
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hidden states, specifically the unobserved number of infected individuals, clearly pinpoints 

the beginning of an epidemic approximately two to three weeks in advance, making our 

methodology potentially useful during cholera surveillance in Bangladesh.

2. SIRS model with environmental predictors

We consider a compartmental model of disease transmission [May and Anderson, 1991, 

Keeling and Rohani, 2008], where the population is divided into three disease states, or 

compartments: susceptible, infected, and recovered. We model a continuous process 

observed at discrete time points. The vector Xt = (St, It, Rt) contains the numbers of 

susceptible, infected, and recovered individuals at time t, and we consider a closed 

population of size N such that N = St +It +Rt for all t. Individuals move between the 

compartments with different rates; for cholera transmission we consider the transition rates 

shown in Figure 1. In this framework, a susceptible individual’s rate of infection is 

proportional to the number of infected people and the covariates that serve as proxy for the 

amount of V. cholerae in the environment. Thus, the hazard rate of infection, also called the 

force of infection, is βIt+α(t) for each time t, where β represents the infectious contact rate 

between infected individuals and susceptible individuals and α(t) represents the time-

varying environmental force of infection. Possible mechanisms for infectious contact include 

direct person-to-person transmission of cholera and consumption of water that has been 

contaminated by infected individuals. If It = 0, as it might between seasonal cholera 

epidemics, the hazard rate of infection is just α(t), so all of the force of infection comes from 

the environment. Infected individuals recover from infection at a rate γ, where 1/γ is the 

average length of the infectious period. Once the infected individual has recovered from 

infection, they move to the recovered compartment. Recovered individuals develop a 

temporary immunity to the disease after infection. They move from the recovered 

compartment to the susceptible compartment with rate μ, where 1/μ is the average length of 

immunity. Similar to Codeçco [2001] and Koelle and Pascual [2004], birth and death are 

incorporated into the system indirectly through the waning of immunity; thus, instead of 

representing natural loss of immunity only, μ also represents the loss of immunity through 

the death of recovered individuals and birth of new susceptible individuals.

Under this model, Xt is an inhomogeneous Markov process [Taylor and Karlin, 1998] with 

infinitesimal rates

(1)

where X = (S, I, R) is the current state and X′ = (S′, I′, R′) is a new state. Because Rt = N − 

St − It, we keep track of only susceptible and infected individuals, St and It.

This type of compartmental model is similar to other cholera models in the literature. The 

time-series SIRS model of Koelle and Pascual [2004] also includes the effects of both 
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intrinsic factors (disease dynamics) and extrinsic factors (environment) on transmission. 

King et al. [2008] examine both a regular SIRS model and a two-path model to include 

asymptomatic infections, and use a time-varying transmission term that incorporates 

transmission via the environmental reservoir and direct person-to-person transmission, but 

does not allow for feedback from infected individuals into the environmental reservoir. The 

SIWR model of Tien and Earn [2010] and Eisenberg et al. [2013] allows for infections from 

both a water compartment (W) and direct transmission and considers the feedback created 

by infected individuals contaminating the water. To allow for the possibility of 

asymptomatic individuals, Longini et al. [2007] use a model with a compartment for 

asymptomatic infections; that model only considers direct transmission. Codeçco [2001] 

uses an SIR model with no direct person-to-person transmission; infected individuals excrete 

directly into the environment and susceptible individuals are infected from exposure to 

contaminated water. Our SIRS model is not identical to any of the above models, but it 

borrows from them two important features: explicit modeling of disease transmission from 

either direct person-to-person transmission of cholera or consumption of water that has been 

contaminated by infected individuals and a time-varying environmental force of infection.

3. Hidden SIRS model

While the underlying dynamics of the disease are described by Xt, these states are not 

directly observed. The number yt of infected individuals observed at each time point t is only 

a random fraction of the number of infected individuals. This fraction depends on both the 

number of infected individuals that are symptomatic and the fraction of symptomatic 

infected individuals that seek treatment and get reported (the reporting rate). Thus, yti, the 

number of observed infections at time ti for observation i ∈{0, 1, …, n}, has a binomial 

distribution with size Iti, the number of infected individuals at time ti, and success 

probability ρ, the probability of infected individuals seeking treatment, so yti |Xti = (Sti, 

Iti,Rti), ρ ~ Binomial(Iti, ρ). Given Xti, yti is independent of the other observations and other 

hidden states.

We use a Bayesian framework to estimate the parameters of the hidden SIRS model, where 

the unobserved states Xt are governed by the infinitesimal rates in Equation (1). The 

parameters that we want to estimate are β, γ, μ, ρ, and the k + 1 parameters that will be 

incorporated into α(t), the time-varying environmental force of infection. We let C1(t), …, 

Ck(t) denote the k time-varying environmental covariates, and we assume α(t) = exp (α0 + 

α1C1(t) + ⋯ + αkCk(t)).

We assume independent Poisson initial distributions for St0 and It0, with means φS and φI. 

The population size N is assumed to be known, and we check sensitivity to this assumption. 

Parameters that are constrained to be greater than zero, such as β, γ, μ, φS, and φI, are 

transformed to the log scale. A logit transformation is used for the probability ρ. We assume 

independent normal prior distributions on all of the transformed parameters, incorporating 

biological information into the priors where possible.

We are interested in the posterior distribution Pr(θ|y) ∝ Pr(y|θ)p(θ), where y = (yt0, …, ytn), 

θ = (log(β), log(γ), log(μ), logit(ρ), α0, …, αk, log(φS), log(φI)), and
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Here p(Xti |Xti−1, θ) for i = 1, …, n are the transition probabilities of the continuous-time 

Markov chain (CTMC). However, this likelihood is intractable; there is no practical method 

to compute the finite time transition probabilities of the SIRS CTMC because the size of the 

state space of Xt grows on the order of N2. For the same reason, summing over X with the 

forward-backward algorithm [Baum et al., 1970] is not feasible. To use Bayesian inference 

despite this likelihood intractability, we turn to a particle marginal Metropolis-Hastings 

(PMMH) algorithm.

4. Particle filter MCMC

4.1. Overview

The PMMH algorithm, introduced by Beaumont [2003] and studied in Andrieu and Roberts 

[2009] and Andrieu et al. [2010], constructs a Markov chain that targets the joint posterior 

distribution π(θ,X|y), where X is a set of auxiliary or hidden variables, and requires only an 

unbiased estimate of the likelihood. To construct this likelihood estimate, we use a 

sequential Monte Carlo (SMC) algorithm, also known as a bootstrap particle filter [Doucet 

et al., 2001]. Thus, the PMMH algorithm proceeds as follows: at each Metropolis-Hastings 

step [Metropolis et al., 1953, Hastings, 1970], a new θ* is proposed from the proposal 

distribution q(·|θ), an SMC algorithm is used to estimate the marginal likelihood of the data 

given the proposed set of parameters, p̂(y|θ*), and to obtain a sample , and 

θ*, , and p̂(y|θ*) are accepted with a Metropolis-Hastings acceptance ratio which uses 

the estimated likelihood. An SMC algorithm is used to generate and weight K particle 

trajectories corresponding to the hidden state processes using the proposed parameter set θ* 

as follows. Let the superscript k ∈{1, …, K} denote the particle index, where K is the total 

number of particles, and the subscript ti ∈{t0, …, tn} denote the time; thus,  denotes the 

kth particle at time ti, and . At time ti = t0, we simulate initial states 

 for k = 1, …, K from the initial density of the hidden Markov state process, 

specifically from Poisson distributions with means φS and φI. We compute the k weights 

, and set . For i = 1, …, n, we 

resample  from  with weights . We sample K particles  from 

. We assign weights , compute normalized weights 

, and set .

The marginal likelihood is estimated by summing the weights of the SMC algorithm, since
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is an approximation to the likelihood p(yti |yt0:i−1, θ*), and therefore an approximation to the 

total likelihood is

A proposed  trajectory is sampled from the K particle trajectories 

based on the final particle weights of the SMC algorithm, and the proposed θ* and  are 

accepted with probability , where p(θ) is the prior 

distribution for θ. To sample Xti from p(·| X̄
ti−1), we simulate from a cholera transmission 

model with a time-varying environmental force of infection. CTMCs which incorporate 

time-varying transition rates are inhomogeneous. The details of the discretely-observed 

inhomogeneous CTMC simulations are now described.

4.2. Simulating inhomogeneous SIRS using tau-leaping

Gillespie developed two methods for exact stochastic simulation of trajectories with constant 

rates: the direct method [Gillespie, 1977] and the first reaction method [Gillespie, 1976]. 

Details of these methods are given in Appendix A. The exact algorithms work for small 

populations, but for large state spaces these methods require a prohibitively long computing 

time. This is a common problem in the chemical kinetics literature, where an approximate 

method called the tau-leaping algorithm originated [Gillespie, 2001, Cao et al., 2005]. This 

method simulates CTMCs by jumping over a small amount of time τ and approximating the 

number of events that happen in this time using a series of Poisson distributions. As τ 
approaches zero, this approximation theoretically approaches the exact algorithm. The value 

of τ must be chosen such that the rates remain roughly constant over the period of time; this 

is referred to as the “leap condition”.

Specifically, for our simulation, using the methods outlined in Cao et al. [2005], we define 

the rate functions h1(Xt) = (βIt + α(t)) St, h2(Xt) = γIt, and h3(Xt) = μRt, corresponding to 

the infinitesimal rates of the CTMC. Then k1 ~ Poisson(h1(Xt)τ) represents the number of 

infections in time [t, t+τ), k2 ~ Poisson(h2(Xt) τ) represents the number of recoveries in time 

[t, t + τ), and k3 ~ Poisson(h3(Xt) τ) represents the number of people that become 

susceptible to infection in time [t, t + τ). We make the assumption that the time-varying 

force of infection, α(t), remains constant each day. We define daily time intervals Ai := [i, i 
+ 1) for i ∈{t0, t0 + 1, …, tn − 1}, and α(t) = αAi for t ∈ Ai. Using τ ≤ 1 day, our rates now 

remain constant within each tau jump. See Appendix A for details regarding the selection of 

τ.
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4.3. Metropolis-Hastings proposal for model parameters

Our implementation of the PMMH algorithm consists of a pilot run with a burn-in and a 

post-burn-in period, and a final run. Both the pilot burn-in and the post-burn-in periods use 

independent normal random walk proposal distributions for the parameters. The pilot burn-

in period is thrown away; from the pilot run post-burn-in period, we calculate the 

approximate posterior covariance of the parameters and scale it by a factor to construct the 

covariance of the multivariate normal random walk proposal distribution in the final run of 

the PMMH algorithm. In all runs, parameters are proposed and updated jointly. Proposal 

covariance matrices are scaled such that acceptance rates for all final runs were between 

15% and 20%.

4.4. Prediction

One of the main goals of this analysis is to be able to predict cholera outbreaks in advance 

using environmental predictors. To assess the predictive ability of our model, we estimate 

the parameters of the model using a training set of data and then predict future behavior of 

the epidemic process. We examine the posterior predictive distributions of cholera counts by 

simulating data forward in time under the time-varying SIRS model using the accepted 

parameter values explored by the particle MCMC algorithm and the accepted values of the 

hidden states ST and IT at the final observation time, t = T, of the training data. Under each 

set of parameters, we generate possible future hidden states and observed data, and we 

compare the posterior predictive distribution of observed cholera cases to the test data. In the 

analyses below, the PMMH output is always thinned to 1000 iterations for prediction 

purposes by saving only every kth iteration, where k depends on the total number of 

iterations.

5. Simulation results

To test the PMMH algorithm on simulated infectious disease data, we generate data from a 

hidden SIRS model with a time-varying environmental force of infection. We then use our 

Bayesian framework to estimate the parameters of the simulated model and compare the 

posterior distributions of the parameters with the true values. To simulate endemic cholera 

where many people have been previously infected, we start with a population size of N = 

10000 and assume independent Poisson initial distributions for St0 and It0, with means φS = 

2900 and φI = 84. The other parameters are set at β = 5 × 10−5, γ = 0.12, and μ = 0.0018. All 

rates are measured in the number of events per day. The average length of the infectious 

period, 1/γ, is set to be 8 days, and the average length of immunity, 1/μ, is set to be about 1.5 

years. Parameter values are chosen such that the simulated data are similar to the data 

collected from Mathbaria, Bangladesh. We use the daily time intervals Ai := [i, i + 1) for i ∈
{t0, t0 + 1, …, tn − 1}, as in Section 4.2, and define α(t) = αAi for t ∈Ai where αAi = exp [α0 

+ α1C(i)]. Here C(i) = a(z) sin (2πi/365) for 365(z − 1) < i ≤ 365z and z ∈ (1, 2, 3, 4, 5), 

where a(1) = 2.1, a(2) = 1.8, a(3) = 2, a(4) = 2.2, and a(5) = 2. The intercept α0 and the 

amplitude α1 are parameters to be estimated. The frequency of the sine function is set to 

mimic the annual peak seen in the environmental data collected from Bangladesh. For the 

simulations we set α0 = −6 and α1 = 2. Using the modified Gillespie algorithm described in 

Appendix A, we simulate the (St, It) chain given in the left plot of Figure 2. The observed 
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number of infections yt ~ Binomial(It, ρ), where ρ = 0.009 and is treated as an unknown 

parameter.

We simulate four years of training data. There is not enough information in the data to 

estimate the means of the Poisson initial distributions, φS and φI, since estimation of these 

parameters is only informed by the very beginning of the observed data. We set these 

parameters to different values and compare parameter estimation and prediction between 

models with parameter assumptions which differ from the truth. We also assume that we 

know the population size, N = 10000.

We assume independent normal prior distributions for the elements of θ, with means and 

standard deviations chosen such that the mass of each prior distribution is not centered at 

true value of the parameter in this simulation setting. We use relatively uninformative, 

diffuse priors for log(β), α0, and α1, centered at log(1.25×10−4), −8, and 0, respectively, and 

with standard deviations of 5. The prior distribution for logit(ρ) is centered at logit(0.03) and 

has a standard deviation of 2. For log(γ), the prior is centered at log(0.1) with a relatively 

small standard deviation of 0.09, since this value is well studied for cholera. The prior for 

log(μ) is centered at log(0.0009) with a standard deviation of 0.3. Thus, a priori 1/γ falls 

between 8.4 to 11.9 days with probability 0.95, and 1/μ falls between 1.7 and 5.5 years.

Using these data, the PMMH algorithm starts with a pilot run with a burn-in period of 30000 

iterations, a pilot post-burn-in period of 20000 iterations, and a final run of 400000 

iterations. To thin the chains, we save only every 10th iteration. We use K = 100 particles in 

the SMC algorithm. We compare results from models with different assumptions on the 

values of φS and φI : assumed φS/N and φI/N are above the true values (0.39 and 0.0168), at 

the true values (0.29 and 0.0084), below the true values (0.19 and 0.0042), or further below 

the true values (0.095 and 0.0021). Marginal posterior distributions for the parameters of the 

SIRS model from the final runs of these PMMH algorithms are in Appendix B. The 

posterior distributions are similar, regardless of assumed values for φS and φI. Trace plots, 

auto-correlation plots, bivariate scatterplots, and effective sample sizes for the posterior 

samples under the situation in which the true values of φS and φI were assumed are also 

given in Appendix B. We report β × N and ρ × N, since in sensitivity analyses we found 

these to be robust to assumptions about the total population size N. From the posterior 

distributions, it is clear that the algorithm is providing good estimates of the true parameter 

values, though estimates of the parameters μ and ρ × N are slightly different than the truth 

when φS and φI are not set at the true values.

5.1. Prediction results

To test the predictive ability of the model, we use multiple cut off times to separate our 

simulated data into staggered training sets and test sets. The simulated observed data are 

shown in the right plot of Figure 2. For each cut off time, parameters were drawn from the 

posterior distribution based on the training data. These parameter values were then used to 

simulate possible realizations of reported infections after the training data until the next cut 

off, 28 days later. The distributions of these predicted reported cases are shown in the top 

plot of Figure 3. The test data are denoted by the purple diamonds, connected by straight 

lines to help visualize ups and downs in the case counts. Case counts are observed once 
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every 14 days. On each observation day, the colored bar represents the distribution of 

predicted counts for that day. The distributions of predicted counts on the cut off days come 

from the accepted values of the hidden states ST and IT at the final observation time, t = T, 

of the training data. As desired, the posterior predictive distribution shifts its mass as time 

progresses to follow the case counts in the test data. The plot of the predicted hidden states 

in the bottom row of Figure 3 also shows that our model is capturing the formation and 

decline of the epidemic peak well, as seen in the trajectory of the predicted fraction of 

infected individuals. This plot shows that the predictive distributions are capturing the true 

simulated fraction of susceptible and infected individuals and illustrates the interplay of the 

hidden states of the underlying compartmental model. During an epidemic, the fraction of 

susceptibles decreases while the fraction of infected individuals quickly increases. 

Afterwards, the fraction of infected individuals drops and the pool of susceptibles slowly 

begins to increase as both immunity is lost and more susceptible individuals are born.

These predictions were made under the assumption that φS and φI are set to the true values. 

To test sensitivity to these assumptions, we compare predictions made from models that 

assume other values; these are shown in Appendix D. Predicted distributions are similar for 

all values of φS and φI. In addition, we study the effects of misspecification of the data 

generating process on estimation and prediction. We simulate data from a more biologically 

realistic model for cholera transmission, and fit the parameters of the SIRS model to this 

simulated data. Despite the model misspecification, we find that we can still predict 

outbreaks well. See Appendix G for details.

6. Using cholera incidence data and covariates from Mathbaria, Bangladesh

Huq et al. [2005] found that water temperature (WT) and water depth (WD) in some water 

bodies had a significant lagged relationship with cholera incidence. Therefore, we use these 

covariates and cholera incidence data from Mathbaria, Bangladesh collected between April 

2004 to September 2007 and again from October 2010 to July 2013. Between April 2004 

and September 2007, physicians made bimonthly visits to the thana health complex in 

Mathbaria and counted the number of cholera cases that were observed on each day during a 

three day period. Environmental data were also collected approximately every two weeks 

from multiple water bodies in the area. Water bodies include rivers, lakes, and ponds. From 

October 2010 to July 2013, physicians made three day visits weekly during periods in which 

seasonal outbreaks were expected and made monthly three day visits when few cases were 

expected. Environmental data were collected from multiple water bodies on the same 

schedule, approximately once a week during seasonal outbreaks and monthly between 

outbreaks. Further details of the clinical and environmental surveillance are given by Sack et 

al. [2003] and Huq et al. [2005]. We use data from five to six water bodies in each phase of 

data collection. To get a smooth summary of the covariates using data from the water bodies, 

we fit a cubic spline to the covariate values. We then slightly modify our environmental 

force of infection to allow for a lagged covariate effect. Let κ denote the length of the lag. 

We consider the daily time intervals Ai := [i, i + 1) for i ∈{t0, t0 + 1, …, tn − 1} and define 

the environmental force of infection α (t) = αAi for t ∈Ai and t ≥ κ where αAi = exp [α0 + 

α1CWD(i − κ) + α2CWT (i − κ)]. Here the covariates are the smoothed standardized daily 
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values  and , where X̄ is the 

mean of the measurements for all i and sX is the sample standard deviation. We consider and 

compare results from models assuming three different lags: κ = 14, κ = 18, and κ = 21. 

Predictions from all three models are similar, so we report only results from the model 

assuming κ = 21, in order to receive the earliest warning of upcoming epidemics; see 

Appendix C for details and prediction comparisons. The smoothed, standardized, 21 day 

lagged covariates and cholera incidence data are shown in Figure 4.

The population size N, which quantifies the size catchment area for the medical center, is 

assumed to be 10000 for computational convenience. We do not know the true value of N, 

but 10000 is a reasonable estimate and is small enough that simulations run quickly. We 

studied sensitivity to this assumption by setting N to different values, obtaining similar 

results. We also again set φS and φI to various values and the results were insensitive. See 

Appendix D for details.

In these analyses, we use relatively uninformative, diffuse normal prior distributions on the 

time-varying environmental covariates α1 and α2, centered at 0 and with standard deviations 

of 5. The diffuse normal prior distributions on the transformed parameter values log(β) and 

α0 are centered at log(1.25 × 10−7) and −8, respectively, with standard deviations of 5. We 

know that the average infectious period for cholera, 1/γ, should be between 8 and 12 days. 

Thus, the transformed parameter log(γ) is given a normal prior distribution with mean 

log(0.1) and standard deviation 0.09 to give 0.95 prior probability of 1/γ falling within the 

interval (8, 12). In addition, we know that a reasonable length of immunity under this model 

should be between one and six years. We use a normal prior distribution for log(μ) centered 

at log(0.0009) with a standard deviation of 0.3, giving a 0.95 prior probability of 1/μ falling 

between 1.7 and 5.5 years. We also know that ρ should be very close to zero, since only a 

small proportion of cholera infections are symptomatic and a smaller proportion will be 

treated at the health complex [Sack et al., 2003]. Thus, the transformed parameter logit(ρ) is 

given a normal prior distribution with mean logit(0.0008) and standard deviation equal to 2, 

to give 0.95 prior probability of ρ falling within the interval (1.6 × 10−5, 0.04).

We run the PMMH algorithm with a pilot run with a burn-in period of 30000 iterations, a 

pilot post-burn-in period of 20000 iterations, and a final run of 400000 iterations. We again 

save only every 10th iteration and use K = 100 particles in the SMC algorithm. We check 

sensitivity to the number of particles, using 1000 particles instead of 100 and obtaining 

similar results; see Appendix D for details. Posterior medians and 95% Bayesian credible 

intervals for the parameters β × N, γ, μ, α0, α1, α2, and ρ × N generated by the final run of 

the PMMH algorithm are given in Table 1. We report β × N and ρ × N since we found these 

parameter estimates to be robust to changes in the population size N during sensitivity 

analyses. For more details, see Appendix D. The credible intervals for α1 and α2 do not 

include zero, so both water depth and water temperature have a significant relationship with 

the force of infection. Decreasing water depth increases the force of infection, likely due to 

the higher concentration and resulting proliferation of V. cholerae in the environment; 

increasing water temperature increases the force of infection [Huq et al., 2005].
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The basic reproductive number, R0, is the average number of secondary cases caused by a 

typical infected individual in a completely susceptible population [Diekmann et al., 1990]. 

In Table 1, we report (β × N)/γ, the part of the reproductive number that is related to the 

number of infected individuals in the population under our model assumptions. Our estimate 

of 3.92 is fairly large; it is very similar to the reproductive number of 5 (sd=3.3) estimated 

by Longini et al. [2007] using data from Matlab, Bangladesh. However, posterior median 

values for α(t) range from 0.000003 to 0.27, while posterior median values for βIt only 

range from 0 to 0.04, suggesting that the epidemic peaks in our model are driven mostly by 

the environmental force of infection. During epidemic peaks, when It is largest, the posterior 

median for α(t) is larger than the posterior median for βIt. See Appendix F for more details. 

However, the infectious contact rate is not zero and is not negligible compared to the 

environmental force of infection.

6.1. Prediction Results

For the data collected from Mathbaria, we begin prediction at multiple points around the 

time of the two epidemic peaks that occur in 2012 and 2013. Figure 4 shows the full cholera 

data with smoothed and standardized covariates. Figure 5 shows the posterior predictive 

distribution of observed cholera cases (top row) and hidden states from the time-varying 

SIRS model (bottom row). Parameters used to simulate the SIRS forward in time have been 

sampled using the PMMH algorithm applied to the training data, with data being cut off at 

different points during the 2012 and 2013 epidemic peaks. From each of these cut offs, 

parameter values are then used to simulate possible realizations of the test data. Predictions 

are run until the next cut off point, with cut off points chosen based on the length of the lag 

κ. Realistically, at time t we have covariate information to use for prediction only until time t 
+ κ, where κ is the covariate lag. Since the smallest lag considered is 14 days, we make only 

14 day ahead predictions where possible to mimic a realistic prediction set up. Due to the 

sparse sampling between epidemic peaks (June 2012 to February 2013), we use longer 

prediction intervals for these cut-offs than would be possible in real time data analysis in 

order to evaluate our model predictions.

In the top row of Figure 5, the coloring of the bars again represents the distribution of 

predicted cases. Between the two peaks of case counts (June 2012 to February 2013), the 

frequency of predicted zero counts is very high, so we conclude that the model is doing well 

with respect to predicting the lack of an epidemic. During the epidemics, the distribution of 

the counts shifts its mass away from zero. The plot in the bottom row of Figure 5 again 

illustrates the periodic nature and interplay of the hidden states of the underlying 

compartmental model. When the fraction of infected individuals quickly increases during an 

epidemic, the fraction of susceptibles decreases. Afterwards, the fraction of infected 

individuals drops to almost zero and the pool of susceptibles is slowly replenished. When the 

fraction of infected individuals is low, there is more uncertainty in the prediction for the 

fraction of susceptibles (September 2012 to March 2013). The fraction of infected 

individuals increases to a slightly higher epidemic peak 2013 (March 2013 to May 2013) 

than in 2012 (March 2012 to May 2012), as observed in the test data for those years. The 

predicted fraction of infected people in the population increases before an increase can be 

seen in the case counts, which could allow for early warning of an epidemic.
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We also use a quasi-Poisson regression model similar to the one used by Huq et al. [2005] to 

predict the mean number of cholera cases (Appendix E). Although the quasi-Poisson model 

predicts reasonably well the timing of epidemic peaks, it appears to overestimate the 

duration of the outbreaks. The predicted means under both the quasi-Poisson and SIRS 

models most likely underestimate the true mean of the observed counts, with the quasi-

Poisson model performing slightly better. However, the SIRS predicted fraction of infected 

individuals — a hidden variable in the SIRS model — provides a more detailed picture of 

how cholera affects a population. By providing not only accurate prediction of the time of 

epidemic peaks, but also the predicted fraction of the population that is infected, the SIRS 

model predictions could be used for efficient resource allocation to treat infected individuals. 

See Appendix E for additional details.

7. Discussion

We use a Bayesian framework to fit a nonlinear dynamic model for cholera transmission in 

Bangladesh which incorporates environmental covariate effects. We demonstrate these 

techniques on simulated data from a hidden SIRS model with a time-varying environmental 

force of infection, and the results show that we are recovering well the true parameter 

values. We also estimate the effect of two environmental covariates on cholera case counts in 

Mathbaria, Bangladesh while accounting for infectious disease dynamics, and we test the 

predictive ability of our model. Overall, the prediction results look promising. Based on data 

collected, the predicted hidden states show a noticeable increase in the fraction of infected 

individuals weeks before the observed number of cholera cases increases, which could allow 

for early notification of an epidemic and timely allocation of resources. The predicted 

hidden states show that the fraction of infected individuals in the population decreases 

greatly between epidemics, supporting the hypothesis that the environmental force of 

infection triggers outbreaks. Estimates of βIt are low, but not negligible, compared to 

estimates of α(t), suggesting that most of the transmission is coming from environmental 

sources.

Computational efficiency is an important factor in determining the usefulness of this 

approach in the field. We have written an R package which implements the PMMH 

algorithm for our hidden SIRS model, available at https://github.com/vnminin/bayessir. The 

computationally expensive portions of the PMMH code are primarily written in C++ to 

optimize performance, using Rcpp to integrate C++ and R [Eddelbuettel and François, 2011, 

Eddelbuettel, 2013]; however there is still room for improvement. Running 400000 iterations 

of the PMMH algorithm on the six years of data from Mathbaria takes 3 days on a 4.3 GHz 

i7 processor. Since we can predict three weeks into the future using a 21 day covariate lag, 

we do not think timing is a big limitation for using our model predictions in practice.

Plots of residuals over time, shown in Appendix C, show that we are modeling well case 

counts between the epidemic peaks but not the epidemic peaks themselves, either due to 

missing the timing of the epidemic peak or the latent states not being modeled accurately. 

This possible model misspecification might be fixed by including more covariates, using 

different lags, or modifying the SIRS model. Also, we assume a constant reporting rate, ρ, 

rather than using a time-varying ρt [Finkenstädt and Grenfell, 2000]. With better quality data 
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we might be able to allow for a reporting rate that varies over time; we will try to address 

these model refinements in future analyses. Another related assumption of this model is that 

individuals act independently. However, these data come from a carefully conducted 

observational study of cholera over many years with strict protocol across time and 

locations. Thus, it is unlikely that there would be systematic differences in reporting or 

treatment seeking behaviors of people. We tested this using a basic split of the data, altering 

our SIRS model to include a separate reporting rate for each phase of data collection, and 

found no significant difference between the two reporting rates. Also, there is no evidence 

that people do not act independently, at least with respect to their treatment seeking 

behavior. Surveys currently in the field will allow us to test these assumptions in future 

work.

In the future, we will extend this analysis to allow for variable selection over a large number 

of covariates. This will allow us to include many covariates at many different lags and 

incorporate information from all of the water bodies in a way that does not involve 

averaging. In the current PMMH framework, choosing an optimal proposal distribution to 

explore a much larger parameter space would be difficult. We want to include a way of 

automatically selecting covariates or shrinking irrelevant covariate effects to zero with 

sparsity inducing priors. The particle Gibbs sampler, introduced by Andrieu et al. [2010], 

would allow for such extensions. Approximate Bayesian computation is also an option for 

further model development [McKinley et al., 2009]. In addition, the available data consist of 

observations from multiple thanas during the same time period. Future analyses will look 

into sharing information across space and time and accounting for correlations between 

thanas. Another challenging future direction involves exploring models which incorporate a 

feedback loop from infected individuals back into the environment to capture the effect of 

infected individuals excreting V. cholerae into the environment. To accomplish this, we 

could add a water compartment to our SIRS model that quantifies the concentration of V. 
cholerae in the environment, similar to the model of Tien and Earn [2010]. However, adding 

an additional latent state leads to identifiability problems, even with fully observed data 

[Eisenberg et al., 2013], so such an extension will require rigorous testing and fine tuning.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
State transitions for Susceptible-Infected-Recovered-Susceptible (SIRS) model for cholera. 

S, I, and R denote the numbers of susceptible, infected, and recovered individuals. From the 

current state (S, I, R), the system can transition to one of three new states. These new states 

correspond to a susceptible becoming infected, an infected recovering from infection, or a 

recovered individual losing immunity to infection and becoming susceptible. The parameter 

β is the infectious contact rate, α(t) is the time-varying environmental force of infection, γ is 

the recovery rate, and μ is the rate at which immunity is lost.
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Fig 2. 
Plots of simulated hidden states (counts of susceptible, St, and infected, It, individuals) and 

the observed data (number of observed infections = yt ~ Binomial(It, ρ)) plotted over time, t. 
Simulation with seasonally varying α(t) generates data with seasonal epidemic peaks. The 

dashed vertical black line represents the first cut off between the training sets and the test 

data. Data before the line are used to estimate parameters, and we use those estimates to 

predict the data after the line. Other data cut offs are shown in Figure 3
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Fig 3. 
Summary of prediction results for simulated data. We run PMMH algorithms on training sets 

of the data, which are cut off at each of the dashed black lines in the bottom plot. Cut off 

times occur at days 1456, 1484, 1512, 1540, 1568, and 1596. Future cases are then predicted 

until the next cut off. The top plot compares the posterior probability of the predicted counts 

to the test data (diamonds connected by straight purple lines). The coloring of the bars is 

determined by the frequency of each set of counts in the predicted data for each time point. 

The bottom plot shows how the trajectory of the predicted hidden states changes over the 

course of the epidemic. The gray area and the dot-and-dash line denote the 95% quantiles 

and median, respectively, of the predictive distribution for the fraction of susceptibles. The 

short dashed lines and the long dashed line denote the 95% quantiles and median, 

respectively, of the predictive distribution for the fraction of infected individuals. The solid 

blue and red lines denote the true simulated fraction of susceptible and infected individuals.
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Fig 4. 
Barplot of cholera case counts in Mathbaria, Bangladesh and the standardized covariate 

measurements over time. The covariates are shown with a lag of three weeks. No data were 

collected from October 2007 through November 2010. The ranges of the unstandardized 

smoothed covariates are 1.4 to 2.8 meters for water depth and 21.6 to 33.1°C for water 

temperature.
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Fig 5. 
Summary of prediction results for the second to last and last epidemic peaks in the 

Bangladesh data. We again run PMMH algorithms on training sets of the data, which are cut 

off at each of the dashed black lines in the bottom plot, and future cases are predicted until 

the next cut off. The top plot compares the posterior probability of the predicted counts to 

the test data (purple diamonds and line), and the bottom plot shows how the trajectory of the 

predicted hidden states changes over the course of the epidemic. See the caption of Figure 3 

for more details. The black horizontal bar at the top of the bottom plot marks where our 

model predicts an increase in the fraction of infected individuals, warning of the upcoming 

epidemic. This increase is predicted weeks before an increase can be seen in the case counts.
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Table 1

Posterior medians and 95% equitailed credible intervals (CIs) for the parameters of the SIRS model estimated 

using clinical and environmental data sampled from Mathbaria, Bangladesh.

Coefficient Estimate 95% CIs

β × N 0.47 (0.33, 0.65)

γ 0.12 (0.1, 0.14)

μ 0.002 (0.001, 0.002)

(β × N)/γ 3.92 (2.84, 5.19)

α0 −6.49 (−7.39, −5.41)

α1 −1.94 (−2.49, −1.37)

α2 2.35 (1.85, 2.98)

ρ × N 37.1 (27.2, 50.2)
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