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Abstract

Caring for individuals with dementia is frequently associated with extreme physical and emotional 

stress, which often leads to depression. Smart home technology and advances in machine learning 

techniques can provide innovative solutions to reduce caregiver burden. One key service that 

caregivers provide is prompting individuals with memory limitations to initiate and complete daily 

activities. We hypothesize that sensor technologies combined with machine learning techniques 

can automate the process of providing reminder-based interventions. The first step towards 

automated interventions is to detect when an individual faces difficulty with activities. We propose 

machine learning approaches based on one-class classification that learn normal activity patterns. 

When we apply these classifiers to activity patterns that were not seen before, the classifiers are 

able to detect activity errors, which represent potential prompt situations. We validate our 

approaches on smart home sensor data obtained from older adult participants, some of whom 

faced difficulties performing routine activities and thus committed errors.

Index Terms

Smart homes; machine learning; activity recognition; one-class classification

I. Introduction

The world’s population is aging, with the estimated number of individuals over the age of 85 

expected to triple by 2050 [1]. The increase in the number of individuals crossing higher life 

expectancy thresholds has made a large section of the older population susceptible to 

cognitive impairments such as Alzheimer’s disease and dementia. An estimated 5.5 million 

Americans have Alzheimer’s disease in 2014. By 2050, the global number of people who are 

65 and older with some form of cognitive impairment may nearly triple.

Data collected from the smart home studies are available at http://casas.wsu.edu/datasets.html.
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There are currently 15.5 million [2] family and friends providing unpaid care to those with 

Alzheimer’s and other dementias. These individuals face extreme physical and emotional 

stress due to caregiving, resulting in depression. Therefore, we must consider innovative 

technology-driven solutions to reduce caregiver burden. Moreover, technology-driven long-

term care facilities in individual homes can provide a low-cost alternative to spending 

substantial amount of time and money in hospitals, nursing homes or health clinics.

With recent advances in sensor technologies and machine learning, it is possible to 

transform a regular home into a smart home with bare minimum infrastructural 

modifications and at a reasonable cost [3]. We hypothesize that solutions derived from smart 

home technologies can reduce caregiver burden and provide long-term low cost care 

facilities in individuals’ homes. Studies have shown that smart environment technologies can 

detect errors in activity completion and might be utilized to extend independent living in 

one’s own home without compromising safety [4], [5]. One type of intervention that is 

valuable for individuals with cognitive impairment is automated prompts that aid with 

activity initiation and completion. To date, most applications of the smart home technology 

for intervention have relied upon partial or full expert design of prompting rules [6]. Our 

approach to automating prompting-based intervention for activity completion is to predict 

activity errors in real time from streaming sensor data in a smart home while an individual 

performs everyday activities. In our previous work [7], we designed machine learning 

algorithms that map activity steps to “prompt” and “no-prompt” labels based on training 

data provided by actual experimenters who provided needed prompts to the participants. 

However, this approach assumes that the streaming sensor data collected from a smart home 

is labeled with the corresponding activity and sub-activity (for example, retrieving a broom 

from a supply closet is a sub-activity step for the Sweeping and Dusting activity). To address 

this limitation, we propose an unsupervised approach to error detection by utilizing one-

class classification-based algorithms that do not require training data for the activity errors.

The proposed approach, DERT, or Detecting Activity Errors in Real Time, is trained only on 

the activity data of the participants for whom the experimenters reported no errors. Data that 

do not contain activity errors comprise the target class for an activity. The remainder of the 

data for the same activity from the participants who committed errors, also called the test 
samples, are used to validate the efficacy of DERT in detecting activity errors in real time. 

As with most outlier detection techniques, DERT detects the outliers in the test samples. For 

an automated prompting application these outliers can be considered as activity errors. We 

use the sensor data from 580 participants who were part of two smart home studies. 

Statistical features that are capable of capturing activity errors are extracted from the raw 

sensor data before training our algorithms. We also postulate that including information 

about activity errors could improve the performance of our proposed method. In order to 

further improve error detection, we utilize knowledge gathered from classifier-identified 

errors to build ensemble-based error classifiers.

DERT assumes that activity labels are available in real time. This assumption is based on the 

activity recognition algorithm proposed by Krishnan and Cook [8]. This algorithm has been 

tested on 12 daily activities that are similar in nature to the ones analyzed in this paper (e.g., 

cook, eat, clean) but are performed in an unscripted fashion in actual smart homes with an 
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average accuracy over 20 real-world smart homes of 99%. In our current experiments, we 

use activity labels collected from human annotators. In the future, these will be provided by 

the real-time activity recognizer. As most of the one-class classification features require the 

activity start time, we assume that the beginning of the activities can be successfully 

detected using the activity recognition algorithm. In addition, we also assume that the 

activities are performed when the smart home has one resident and the activities are not 

interleaved or concurrent. The contribution of this paper is not another activity recognizer or 

a new one-class SVM. The contribution is activity error detection with the assumption that 

activity recognition works reliably well in real time. We use Scholkopf’s one-class SVM 

after performing statutory parameter tuning to make it suitable for our application.

II. Related work

Intelligent prompting technologies have been in existence for quite some time [9]. Existing 

solutions can be broadly classified into four categories that are based on: rules (time and 

context) [10], reinforcement learning [11], planning and supervised learning [12], [13] Many 

existing prompting technologies are designed for activity initiation. Automated prompting at 

the granularity of sub-activities (activity steps), however, is a harder problem. Automated 

prompting in real-time on streaming sensor data is even harder. There are only a few 

research groups who have worked on sub-activity prompting. Most of these solutions are 

either based on video analysis [14], [15] or monitoring interactions with a variety of objects 

of daily use [16], [17] in the smart home using sensors, such as RFID tags.

Hoey et al. [15] proposed a real-time computer vision system to assist dementia patients 

with hand washing. The proposed approach combines a Bayesian sequential estimation 

framework for tracking hands and towel. A decision theoretic framework is used for 

computing policies of all possible actions. The decision policies which dictate system 

actions are computed using a POMDP using a point-based approximate solution. The 

tracking and decision making systems are coupled using a heuristic method for temporally 

segmenting the input video stream based on the continuity of the belief state. This approach 

performs prompts well for appropriate activity steps. However, it can cause major privacy 

concerns to the participants due to the use of video input. Moreover, due to reliance of this 

technique on video analysis, it is not easily generalizable to other activities of daily living.

On the other hand, some approaches [16], [17], [18] use sensor platforms that can provide 

deep and precise insight into sub-activity steps. For example, usage of RFID tags with smart 

home objects of daily use is a very common strategy to gather a 1:1 mapping between 

sensors and activity steps. Some of these approaches use complex plan recognition models 

for predicting the probability of a action for a state when the activity is modeled as a 

stochastic process such as a Markov chain.

To evaluate the effectiveness of technology-based prompts, Seelye et al. [19] experimented 

with a hierarchy of audio, video, direct, and indirect prompts to investigate the type of 

prompts that are effective for assisting individuals with mild cognitive impairment, in 

completing routine activities. It was found in this study that the technology-based prompts 

enabled participants to correct critical errors in activities and get back on track. Moreover, 
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user feedback from participants indicated that in general they perceived the prompting 

technology to be very helpful and appropriately timed.

In our smart home infrastructure, we avoid using any sensor technology that represents a 

potential threat to privacy. This, however, causes major hurdles in sensing fine-grained 

activity information. On the other hand, we are motivated to propose an efficient, non-

intrusive and generic solution to the automated sub-activity level prompting problem by 

automatically detecting activity errors. To the best of our knowledge, this problem with the 

given infrastructural limitations has not been addressed in the past. The same machine 

learning-based techniques are applicable for any type of sensor-based data, including data 

from wearable sensors, smart phone sensors, and other sensor platforms.

III. Problem analysis

To determine the ability of machine learning algorithms to detect activity errors, we 

performed two studies in our smart home test bed with community-dwelling older adults. 

Our on-campus smart home is equipped with a variety of sensors. Passive infrared motion 

detectors are used to collect the location information of the participant in the apartment. 

Magnetic door sensors monitor open and close events of doors, closets, cabinets, microwave 

and refrigerator. Pressure-based item sensors monitor use of household objects such as water 

cup, cup noodles and medication dispenser. Accelerometer-based vibration sensors are used 

to track the use of household objects such as broom, dustpan and brush. In addition, other 

sensors to measure ambient light level, temperature, water and power use are also used. The 

sensors are wireless and utilize a Control4 ZigBee wireless mesh network [8].

Every sensor in the smart home logs time stamp, sensor ID and current state, whenever there 

is a change of its state. For example, when a cabinet door is opened, the door sensor 

associated with it logs an OPEN state into the database. The sensor logs are stored in a 

database. Table I shows an example of raw sensor data collected in the smart home.

Clinically-trained psychologists watch over a web camera as the older adult participants 

perform activities of daily living, such as the following: Study 1: Sweeping and Dusting, 

Medication Dispenser, Writing Birthday Card, Watching DVD, Watering Plants, Answering 

Phone Cal, Cooking, Selecting Outfit; Study 2: Sweeping and Dusting, Cleaning 

Countertops, Medication Dispenser, Watering Plants, Washing Hands, Cooking. These 

activities represent instrumental activities of daily living (IADLs) [20] that can be disrupted 

in Mild Cognitive Impairment (MCI) and can help discriminate healthy aging from MCI 

[21].

Participants are instructed how to execute an activity. For example, in the Sweeping and 
Dusting activity, the participants were instructed to retrieve a broom, dustpan/brush, and 

duster from a specified closet and then to sweep the kitchen floor and dust the furniture in 

the living and dining rooms. For activities such as Writing Birthday Card, the location of the 

activity is tracked with motion sensors and by vibration sensors attached with a box that 

contains stationaries to write a birthday card, such as pens and cards. During activity 

Das et al. Page 4

IEEE J Sel Top Signal Process. Author manuscript; available in PMC 2016 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



execution, the experimenters manually note the presence of an activity error and the 

corresponding time.

An external annotator determines the activity start and end as well as the timing of activity 

errors based the sensor data and experimenter-recorded error time and context. Table I shows 

a snippet of annotated sensor data. An error label is assigned to a single sensor event and 

indicates the beginning of an error. The error continuous until the participant detects and 

corrects the error. In this paper, we experiment with errors that could be identified by a 

human annotator from the sensor data. We focus our experiments to the following activities 

from Study 1: Sweeping and Dusting, Medication Dispenser, Watering Plants, and Cooking; 

and all activities from Study 2. We note that cameras are only used in our on-campus smart 

home test bed to record ground truth information, which in turn is only used to train our 

machine learning models. Once the algorithm is deployed in real homes, the activity 

recognition and automated prompting systems would work without any human intervention.

IV. Detecting Activity Errors in Real Time - Proposed Approach

Activity errors can occur in a variety of ways. Modeling each separate class of errors is 

impractical. Therefore, we formulate the problem of activity error detection as an outlier 

detection problem. For a specific activity, the sensor data from participants for whom no 

errors were reported by the psychology experimenters are used to train the target class. 

Sensor data for the same activity from participants who made errors is used as the test data 

to evaluate the efficacy of the proposed approach in accurately detecting activity errors. 

When a participant performs an activity, the algorithm labels every sensor event occurring in 

the smart home either as “normal” or “error”. Therefore, a data sample in our methodology 

corresponds to a single sensor event and is represented by a corresponding feature vector. 

We extract temporal and contextual features from the sensor events. All data samples 

belonging to the target class are labeled as “normal”. However, the test samples obtained 

from the sensor data of the participants who committed errors, have both “normal” and 

“error” labels. Specifically, a test sample corresponding to a sensor event that is labeled as 

the beginning of an error state, is labeled as “error”.

In the following sections, we provide details of our proposed feature extraction and error 

detection algorithms. Our error detection methods start with a simple outlier detection 

algorithm and then evolve into more complex algorithms by adding additional features and 

creating ensembles.

A. Feature extraction

We extract statistical features from sensor events that capture contextual information while 

an activity is performed. The features can be broadly classified into longitudinal and cross-
sectional features. Longitudinal features are calculated from the sensor data of an individual 

participant collected from the beginning of the activity. On the other hand, cross-sectional 

features are derived from data across a set of participants. A feature vector, comprising the 

features listed below, are generated for every sensor event of an activity. An event, ej, where 

1 < j < z and j ∈ ℤ+, represents a time step from the beginning of an activity performed by a 
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participant. That is, while e1 corresponds to the first event of an activity, ez corresponds to 

the last event.

1) Longitudinal features

a) Sensor Identifier: A nominal feature that uniquely identifies the sensor associated with 

the current sensor event in the smart home. This feature gives an idea of the sensors that are 

commonly triggered for a particular activity, as indicated by the target class data instances.

b) Event Pause: A temporal feature that represents the time elapsed (in milliseconds) 

between the previous and current sensor events.

c) Sensor Pause: A temporal feature that represents the time elapsed (in milliseconds) since 

the last event that was generated by the same sensor and the current event.

d) Sensor Count: The contextual information of a participant’s progress in an activity is 

obtained by keeping a count of the number of times each sensor generated an event, from the 

beginning of the activity up through the current sensor event. This information is stored in 

the multi-dimensional feature Sensor Count, where every dimension corresponds to a 

specific sensor. For an event ej in a particular activity, if l represents the total number of 

sensors associated with the activity, Sensor Count is the number of times sensors si (where i 
= 1…l) was triggered until the current event.

2) Cross-sectional features

a) Support: Not all sensors in a smart home are triggered frequently for a particular activity. 

If a sensor, that appears infrequently in normal occurrences of an activity, appears when a 

participant performs that activity, it could possibly indicate an activity error. This property is 

captured by support. Thus, for a specific activity, support is the ratio between the number of 

participants that triggered a specific sensor, and the total number of participants. Thus,

(1)

b) Probability of Event Number: This feature represents the probability of the elapsed 

time from the activity beginning until the current event. We assume that the amount of time 

participants spend from the beginning of an activity to a certain event number ej, represented 

as timeej, is distributed normally across all the participants. Thus,

(2)

c) Probability of Event Time: This feature also represents the probability of elapsed time 

from activity beginning until the current event. We assume that the amount of time 

participants spend from the beginning of an activity to a certain event number ej, represented 
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as timeej, is distributed normally across all the participants. Therefore, Probability of Event 
Time can be represented as follows:

(3)

d) Poisson Probability of Sensor Count: The longitudinal feature Sensor Count captures 

the count of events for all sensors through the current event. However, as the training data 

representing the target class samples consists of feature vectors for all sensor events of the 

participants, there is a very high variance in the Sensor Count feature values. This is because 

the feature vectors representing sensor events at the beginning of an activity with low sensor 

event count are put together in the same target class with feature vectors corresponding to 

sensor events towards the end of the activity that have high sensor event count. Therefore, 

we need additional features that take the event number into consideration, as the event 

number indicates the progress in the activity. As the sensor counts are discrete, we assume 

that the counts of events of the sensors until a certain event across all the participants follows 

a Poisson distribution. Poisson Probability of Sensor Count represents the probabilities of 

the counts of events for all sensors for a specific event number calculated using the Poisson 

probability mass function.

(4)

where, ksi,ej is the count for sensor si at event ej, λsi,ej is the mean of counts for sensor si at 

event ej for all participants, and i belongs to the set of all relevant sensors for an activity.

B. Baseline

DERT detects activity errors on streaming sensor data where a data sample at time t has a 

strong correlation with the sample at time (t − 1). As we take an outlier detection based 

approach to predict errors, the streaming aspect of the sensor data should be taken into 

consideration. No standard outlier detection algorithm fits this criterion. Therefore, we 

design a simple error detection algorithm that we refer to as Baseline, to provide a basis for 

comparison with alternative approaches.

Baseline uses only the Sensor Counts features corresponding to sensor events to detect 

activity errors. While training the target class, using the activity data of the participants who 

did not commit any errors, the data samples corresponding to an event, ej, are assumed to 

follow a multivariate Poisson distribution across all participants. We estimate the Poisson 

distribution parameter, λ, corresponding to all l sensors of an activity, represented as λej = 

{λ1, …, λl}. A test sample, x, obtained from the activity data of those participants who 

committed errors, is evaluated on the basis of the probability derived from the Poisson 

probability mass function:

Das et al. Page 7

IEEE J Sel Top Signal Process. Author manuscript; available in PMC 2016 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(5)

If the product of all probabilities, , is less than an empirically derived 

threshold τ, then the test sample x is classified as an error; otherwise, it belongs to the target 

class. The threshold corresponds to the maximum F1-score optimized on a validation set that 

consists of both target and outlier class samples. The Baseline approach is illustrated 

algorithmically in Figure 1.

C. One-class support vector machine

We use a one-class support vector machine for our second method. The OCSVM, one-class 

support vector machine, proposed by Schölkopf [22] is the core component of this approach. 

OCSVM finds a hyper-plane that separates all target class samples from the origin with 

maximum margin during training. Given n target class samples x = {x1, x2, …, xn}, the 

objective is to separate the dataset from the origin by solving the following quadratic 

program:

(6)

Here, ν ∈ (0, 1] is an upper bound on the fraction of outliers and a lower bound on the 

fraction of support vectors (SV). More explanation on the role of ν is offered later. Φ :  → 
F is a kernel map which transforms the training samples to a high-dimensional feature space 

and (w, ρ) represents the kernel’s weight vectors and offset parameterizing a hyperplane in 

the feature space. Non-zero slack variables ξi are penalized in the objective function. 

Therefore, if w and ρ solve this problem, then the decision function

(7)

will be positive for most examples xi contained in the training set. Because many non-linear 

problems may be linearly separable after proper transformations, kernel transformations Φ(·) 

are normally employed to transfer an input sample from one feature space to another. Φ is a 

feature map  → F into a high-dimensional feature space F such that the inner product of 

the transformed samples in F can be computed by evaluating a simple kernel function

(8)
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such as the Gaussian kernel

(9)

For new sample xt, if f(x) > 0, it is classified as a target class sample, otherwise it is regarded 

as an outlier.

According to Schölkopf’s proposition [22], if the solution of Equation 6 satisfies ρ ≠ 0, the 

following statements hold true for the parameter ν:

1. ν is an upper bound on the fraction of outliers

2. ν is a lower bound on the fraction of SVs

3. If the data {x1, …, xn} is generated independently from a distribution P(x) 

which does not contain discrete components, and if the kernel is analytic 

and non-constant, with probability 1, asymptotically, ν equals both the 

fraction of SVs and the fraction of outliers.

The parameter ν plays an important role in determining what fraction of the test data, with 

both target class and outlier samples, will be classified as outliers. In our application 

domain, the fraction of outliers defines the false positive rate of OCSVM in predicting errors 

or prompt situations in an activity. A larger fraction of outlier would mean more frequent 

interventions, which limits the practicality of the system. Therefore, a balance between 

outlier and target sample prediction is desired. The fraction of outliers on the test data is also 

dependent on the kernel parameter . We perform experiments on all activities separately 

to choose appropriate values for ν and γ.

D. Activity error classification and ensembles

Currently, there is a limited understanding of the course of functional change that occurs 

between normal aging and dementia [23]. To better characterize the nature of this change, it 

is important to evaluate the error types. We coded activity errors for Studies 1 and 2 based 

on previously-published criteria [24] and categorized them into 4 and 9 different types, 

respectively. For example, a Substitution error is coded when an alternate object, or a correct 

object but an incorrect gesture, is used and disrupts accurate completion of the activity. 

Dusting the kitchen instead of the living room is an example of a Substitution error for the 

Sweeping and Dusting activity. Descriptions of the error types are given in Table II. Note 

that the error types in Study 2 in some cases represent more detailed versions of the error 

categories used for Study 1.

We use smart home sensor data to classify the errors into different error types. The 

distribution of error data samples among all the error types is given in Table II. Classifiers 

such as decision trees, naive Bayes, nearest neighbors, logistic regression and support vector 

machine are used in our experiments. The results are described in Section V-C.
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We also explore if the knowledge of error types can be harnessed to boost the performance 

of OCSVM in accurately predicting the errors or outliers. Here, the knowledge of error types 

together with normal data samples is used to learn an ensemble that consists of OCSVM and 

the error classification model. We use two methodologies to build this error classification 

model. The first method considers all error samples from different activities to belong to a 

single class and a one-class SVM is trained on this error class. The second method considers 

the error samples to have error-type class labels and a multi-class classifier is trained on all 

the error samples. Thus, we introduce two ensemble techniques:

OCSVM + OCEM This technique is an ensemble of OCSVM trained on normal activity 

data and OCEM, One-Class Error Model, which is a second OCSVM trained on only error 

data samples. The model selection for OCEM is done in the same way as OCSVM. That is, 

the ν and γ parameters are determined empirically.

OCSVM + MCEM It is the ensemble of OCSVM trained on normal activity data and a 

classifier trained on MCEM, Multi-Class Error Model. Conventional multi-class classifiers 

output a distribution of membership probability of a test sample on all the classes the 

classifier is trained upon. We use this property of the classifiers to devise a technique that 

determines if a test sample belongs to any of the error classes, or if it is “out-of-vocabulary”, 

that is, if the test sample is actually a normal data sample. This is done by assigning a 

threshold value on the membership probabilities. Specifically, if the membership probability 

of the test sample on any of the error classes is greater than the threshold, then the test 

sample is considered to belong to that class; else, the test sample is not an error. The 

threshold value of the membership probability is determined empirically from a randomly 

selected validation set. F1-scores obtained by the ensemble is plotted against the threshold 

values between 0 and 1. The threshold value that gives the highest F1-score of OCSVM

+MCEM is chosen final threshold value.

The final class label of a test sample is decided as a logical “and” operation between the 

OCSVM and either of the classifiers for the error model.

E. Performance measures for evaluation

The performance of the proposed approach is evaluated using Recall, Precision and F − 1-

score. In addition, as this approach is intended to work on streaming sensor data in real-time, 

we need an idea of the temporal accuracy, that is, how far (in time) before or beyond an 

actual prompt situation, the algorithm predicted a prompt. There could be multiple prompt 

predictions in the temporal vicinity of the actual prompt as shown in Figure 2. For every 

actual prompt, we consider temporal accuracy to be the minimum between (a) the time 

difference between the actual prompt and the beginning of a series of prompt predictions 

before that, and (b) the time difference between the actual prompt and the beginning of a 

series of prompt predictions after that. That is, in Figure 2, the minimum between tprev and 

tnext is considered as the temporal accuracy of the proposed algorithm. If the algorithm fails 

to do any prompt prediction for a particular participant, temporal accuracy is considered as 

the maximum between: (a) the time differences between the beginning of the activity to 

actual prompt, and (b) the time difference between the actual prompt to end of the activity. 
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Temporal accuracy of the algorithm on all test participant data can be calculated by the root 

mean squared errors given below:

• RMSE(seconds) Root mean square error of prompt prediction in seconds 

is calculated as .

• RMSE(events) Root mean squared error of prompt prediction in events is 

calculated as .

Here, n represents the total number of test participants.

V. Results

A. Model selection for OCSVM

The sensitivity of OCSVM on the outlier class is dependent on the parameters ν and γ. 

While ν is an upper bound on the fraction of outliers, γ is the inverse of kernel width c. 

Appropriate values for ν and γ are obtained by performing an empirical test on the training 

data with various values of ν and γ and monitoring the fraction of support vectors (SVs) 

chosen by the OCSVM. ν values are varied from 1.0 to 0.01, γ values are varied 

exponentially from the set {25, 23, …, 2−1, 2−3, …, 2−59}. The point in the ν and γ plane, 

beyond which there is no significant decrease in the fraction of SVs, is chosen for the 

OCSVM activity model. Model selection for each activity is done independently.

B. Baseline vs OCSVM

We first compare the performance of OCSVM trained on “normal” activity data with the 

performance of Baseline in correctly predicting the activity errors. Figure 3 compares the 

performance of Baseline and OCSVM in terms of recall and precision on datasets available 

from the two studies. The results obtained from Study 1 indicate that OCSVM performs 

significantly better (p < 0.05) than Baseline in terms of recall on the Sweeping and Dusting 
and Cooking activities. The recall of OCSVM for the Medication Dispenser activity is at par 

with Baseline. This means that the temporal features such as Event Pause and Sensor Pause 

do not play any role in predicting Medication Dispenser activity errors. However, these 

features do play an important role in reducing the number of false positives, and thus 

precision of OCSVM on Medication Dispenser is better than Baseline. In fact, in terms of 

precision, OCSVM performs significantly better (p < 0.05) than Baseline for all activities 

except Cooking.

In Study 2, OCSVM achieves statistically significant improvement over Baseline in terms of 

recall only for Washing Hands and Cleaning Kitchen Countertops activities. For the rest of 

the activities, the performance of OCSVM is almost at par with Baseline. The precision of 

OCSVM achieves significant improvement over Baseline for all classes except Sweeping 
and Dusting and Cooking.

From these observations we can conclude that, although Baseline does a fairly good job of 

predicting activity errors just on the basis of Poisson probability values for various sensors, 
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low precision on all activities implies that Baseline gives a high false positive rate. The high 

false positive rate in our application domain implies a higher rate of intervention for the 

smart home residents, which might be unnecessary. The additional set of features that 

include temporal features and importance of a specific sensor in an activity (represented by 

support), play a very important role in reducing the number of false positives. Also, for some 

of the activities, these features help in predicting the activity errors better than Baseline.

In spite of the better performance of OCSVM over Baseline in terms of precision, the 

precision values are still quite low. This can be attributed to the extreme imbalance of class 

distribution between normal and outlier data samples. For example, only 0.67% of all test 

samples in the Sweeping and Dusting task from Study 2 are actual outliers. Therefore, the 

number of false positives is much higher than the number of true positives. As precision is 

calculated as , a high value of FP causes the precision to be low.

We also evaluate the proposed approaches in terms of temporal accuracy. This represents 

how close in time the OCSVM error prediction is to the actual error occurrence. Temporal 

accuracies, represented in RMSE values in seconds and number of sensor events, obtained 

by OCSVM and Baseline are compared in Figure 4. The results show that most of the errors 

predicted by OCSVM are in the window of 4 sensor events before or after the actual error. In 

terms of time, this is < 20 seconds before or after the actual error occurrence for most of the 

activities.

C. Error classification

As mentioned earlier, successful classification of activity errors into predefined error types 

can provide better insight into the changes dementia brings into one’s daily life. Therefore, 

we first treat classification of errors as an independent problem to see how well these errors 

can be classified based on the sensor data obtained from the smart home when the everyday 

activities were performed by the participants. We perform a 5-fold cross validation of five 

commonly used classifiers on error samples labeled with error type classes. The classifiers 

that are used in this experiment are as follows: C4.5 decision tree, naive Bayes, k-nearest 

neighbor, logistic regression and SMO support vector machine. Tables III and IV report the 

performance of the classifiers on all error types separately.

We find that most of the classifiers produce fairly good results on the Study 1 dataset. In 

spite of the fact that Substitution and Irrelevant Action errors have very few samples which 

results in an imbalanced class distribution, the weighted average F1-score is more than 0.73 

for C4.5, kNN and SMO classifiers. Study 2 dataset has nine different error types which 

makes the classification problem harder. Out of the nine classes, Help, Wandering, Microslip 
and Error Detection are in the minority. Therefore, most of the classifiers do not adequately 

learn these classes from the training data. The highest F1-score is 0.53, achieved by the 

kNN.

It should be noted that Microslip is not a critical activity error and can be excluded from the 

error classes we analyze in this paper. It is coded when a participant initiates and terminates 

an incorrect action before the error is completed. For example, in the Cooking activity, when 
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the participant begins to make action toward the sink as if she is going to fill water with 

faucet water but then corrects behavior and obtains the pitcher from the refrigerator. The 

total number of training examples available for the Microslip class is only 14. As this class is 

highly under-represented in the dataset, the classifiers do not learn any common pattern. 

Thus, the C4.5 decision tree yields 0.00% true positive rate, 0.01% false positive rate, 

100.00% false negative rate, and 98.94% true negative rate for the Microslip class.

Among all classifiers, C4.5 seems to perform consistently well and is computationally less 

expensive than classifiers such as logistic regression or SMO. Therefore, we use a C4.5 

decision tree as the base classifier for the multi-class error model in the ensemble OCSVM + 

MCEM. We report the performance of the ensembles in the following section.

D. Ensembles

In this section, we explore the knowledge of error types to boost the performance of 

OCSVM by building an ensemble of OCSVM and the error type classification model. The 

primary motivation of using an ensemble is to improve the precision of error prediction on 

all activities. As mentioned in Section IV-D, we use two ensembles that differ in the error 

classification model. The first ensemble, OCSVM+OCEM, is an ensemble of the primary 

OCSVM and a second OCSVM trained on all error samples. The second ensemble, OCSVM

+MCEM, is an ensemble of the primary OCSVM and a C4.5 decision tree trained on multi-

class error samples. A test sample is evaluated by both the primary OCSVM and the 

classifier designated for the error classification model. If both classifiers predict the test 

sample as an “error”, then the final outcome of the ensemble is “error” as well; otherwise, it 

is “normal”. This approach helps in restricting the number of false positives.

Figure 5 compares the performance of the ensembles with OCSVM and Baseline in terms of 

recall and precision. The ensembles achieve similar precision scores as that of OCSVM, 

apart from a couple of exceptions. OCSVM+MCEM and OCSVM+OCEM perform better (p 
< 0.01) than OCSVM for the Medication Dispenser and Watering Plants activities, 

respectively, in both datasets. However, there is no improvement in recall. In fact, the 

ensembles either perform worse or are at par with OCSVM. In some cases, such as 

Medication Dispenser in Study 1 and Sweeping and Dusting in Study 2, the ensembles yield 

lower recall than Baseline. The F1-score for all the techniques are reported in Table V.

Between OCSVM+OCEM and OCSVM+MCEM there is no clear winner. OCSVM+ 

MCEM achieves higher precision than OCSVM+OCEM for Medication Dispenser in both 

datasets. However, the situation is just the opposite for Watering Plants where OCSVM

+OCEM performs best. These observations reinforce the fact that due to the differences in 

the ways daily activities are usually performed, there is no one-size-fits-all solution for all 

activities.

The temporal accuracy of the ensembles is not an improvement over OCSVM either. RMSE 

values in terms of seconds and number of events is given in Figure 6. In most of the cases, 

the RMSE of ensembles is at par with OCSVM and worse than OCSVM in some cases. 

However, the performance is definitely better than Baseline.
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VI. Discussion

A. High false positive rate

The results obtained by the proposed approaches validate our hypothesis that machine 

learning techniques, particularly, outlier detection algorithms, are capable of recognizing 

activity errors from sensor data in smart homes. We get an average of 60% recall in 

predicting activity errors. However, the average false positive rate of our approach on all 

activities is about 45%. We believe, the reason behind a fairly high false positive rate is 

rooted in the way activity errors were annotated in the sensor data. As mentioned in Section 

III, annotations of activity errors only give an idea of when the errors start. However, the 

duration of the activity error varies vastly. For example, opening the wrong cabinet during 

Medication Dispenser is an error that corresponds to a single event of the door sensor 

attached to the wrong cabinet. On the other hand, errors such as wandering in the apartment 

or failing to return items used in Cooking, can last for quite a while. In our approache, every 

sensor event is considered as a data sample, thus the events corresponding to an error after it 

has already started, are labeled as “normal”. However, in reality these sensor events are 

errors as well. Moreover, annotation of sensor data also depends on the perspective of the 

annotators. The inter-annotator consistency that we found for activity annotations was 

roughly 80%. Therefore, if we are able to overcome all of these limitations, we can achieve a 

much lower false positive rate.

B. Analysis of false positives

To better understand the reasons for DERT generating false positives in error detection, we 

enlisted the help of a psychologist who is involved in the smart home studies conducted with 

older adults. We randomly chose five participants each for the Sweeping and Dusting and 

Cooking activities from Study 1, for whom activity errors were reported by the psychology 

experimenters. We evaluate this data subset with OCSVM. The top 33% of the false 

positives, ranked on the basis of ν and values γ, are used for evaluation.

The psychologist watched the smart home video recordings for the chosen participants. Out 

of a total of 45 false positives, 15 were found to be continuation of errors that had not been 

annotated - only the beginning of errors were annotated. In 8 additional cases, the 

psychologist thought that they should have been reported as errors. The remainder of the 22 

false positives were part of regular activity steps.

From this clinical evaluation we can conclude that a precise annotation of the error start and 

end times is crucial for evaluating the performance of our algorithms. This will reduce the 

false positives that correspond to the continuation of previously occurred errors. Moreover, 

an experimenter’s perspective in reporting errors also plays an important role. For instance, 

some of the “false positive” cases were actually true positives that were not initially caught 

by the experimenters. This indicates that automated approaches to error detection could 

potentially improve upon human-only methods for detecting errors and prompting 

individuals with memory limitations to correctly complete critical daily activities.
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VII. Conclusion

In this paper, we propose a novel one-class classification-based approach to detect activity 

errors. Our activity error detection approach, DERT, automatically detects activity errors in 

real time while an individual performs an activity. Successful detection of activity errors can 

help us identify situations to prompt older adults to complete their daily activities. Sensor-

based daily activity data from two studies that were conducted on 580 participants are used 

to train the one-class models for the activities. DERT learns only from the normal activity 

patterns of the participants and does not require any training examples for the activity errors. 

Activity data from participants who committed errors are used to evaluate the efficiency of 

DERT. Test samples that are classified as outliers, are potential prompt situations. We also 

use smart home sensor data to classify various error types. This information is important for 

psychologists and gerontologists to characterize the nature of functional changes among 

older adults due to dementia.
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Fig. 1. 
Baseline algorithm for outlier detection.
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Fig. 2. 
Temporal accuracy.
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Fig. 3. 
(left) Recall and (right) precision values for tested activities.
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Fig. 4. 
RMSE values in (left) seconds and (right) number of events for tested activities.
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Fig. 5. 
(left) Recall and (right) precision values for all methods.
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Fig. 6. 
RMSE in (left) seconds and (right) number of events for all methods.
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TABLE I

Human annotated sensor events.

Time Sensor Message Activity Error

14:59:54.934979 D010 CLOSE cooking

14:59:55.213769 M017 ON cooking

15:00:02.062455 M017 OFF none

15:00:17.348279 M017 ON cooking Error

15:00:34.006763 M018 ON cooking

15:00:35.487639 M051 ON cooking
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TABLE II

Distribution of error data samples on activity error types.

Study 1

Error Type Description #samples

Omission When a step or subtask necessary for accurate task completion is not performed 71

Substitution When an alternate object, or a correct object but an incorrect gesture, is used and disrupts accurate 
activity completion

7

Irrelevant action When an action that is unrelated to the activity, and completely unnecessary for activity completion, 
is performed

9

Inefficient action When an action that slows down or compromises the efficiency of task completion is performed 125

Study 2

Substitution When an alternate object, or a correct object but an incorrect gesture, is used and disrupts accurate 
completion of the activity

179

Additional Task Related 
Activity

When a participant is engaging in a task that appears to be task or goal related, but might not be 
necessary

214

Additional Non-Task 
Related Activity

When a participant engages in an activity that is not related to the goal of the overall task 15

Perseveration When a participant engages in task after it has been completed 19

Searching When a participant is actively searching through cupboards/drawers/closets for an item 110

Help When participant asks the experimenter a question or for help on a task 6

Wandering When a participant is wandering around apartment and appears directionless 2

Microslip When a participant initiates and terminates an incorrect action before the error is completed 14

Error Detection When a participant completes an error, recognizes that she made an error and rectifies it before the 
end of the task

22
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