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Abstract

Purpose—To predict pathological response of breast cancer to neoadjuvant chemotherapy (NAC) 

based on quantitative, multi-region analysis of dynamic contrast enhancement magnetic resonance 

imaging (DCE-MRI).

Materials and Methods—In this institutional review board-approved study, 35 patients 

diagnosed with stage II/III breast cancer were retrospectively investigated using 3T DCE-MR 

images acquired before and after the first cycle of NAC. First, principal component analysis (PCA) 

was used to reduce the dimensionality of the DCE-MRI data with a high-temporal resolution. We 

then partitioned the whole tumor into multiple subregions using k-means clustering based on the 

PCA-defined eigenmaps. Within each tumor subregion, we extracted four quantitative Haralick 

texture features based on the gray-level co-occurrence matrix (GLCM). The change in texture 

features in each tumor subregion between pre- and during-NAC was used to predict pathological 

complete response after NAC.

Results—Three tumor subregions were identified through clustering, each with distinct 

enhancement characteristics. In univariate analysis, all imaging predictors except one extracted 

from the tumor subregion associated with fast wash-out were statistically significant (p< 0.05) 

after correcting for multiple testing, with area under the ROC curve or AUCs between 0.75 and 

0.80. In multivariate analysis, the proposed imaging predictors achieved an AUC of 0.79 (p = 

0.002) in leave-one-out cross validation. This improved upon conventional imaging predictors 

such as tumor volume (AUC=0.53) and texture features based on whole-tumor analysis 

(AUC=0.65).

Conclusion—The heterogeneity of the tumor subregion associated with fast wash-out on DCE-

MRI predicted pathological response to neoadjuvant chemotherapy in breast cancer.
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INTRODUCTION

Neoadjuvant chemotherapy (NAC) is used to treat primary breast cancer with the aim of 

tumor shrinking to increase the likelihood of successful breast-conserving surgery. However, 

a significant proportion (up to 30%) of patients do not benefit from NAC with poor 

pathological response, and yet suffer from the toxicity and side effects associated with 

chemotherapy (1). Therefore, the ability to identify responders versus non-responders early 

during the course of treatment would enable the use of alternative, potentially more effective 

therapies (2).

A number of studies have investigated the value of dynamic contrast enhancement magnetic 

resonance imaging (DCE-MRI) for assessing or predicting treatment response to 

neoadjuvant chemotherapy in breast cancer (3–19). For instance, Hylton et al. (14) 

investigated the predictive value of semi-quantitative image features (morphologic and 

kinetic) derived from DCE-MRI in post-treatment images as compared to pre-treatment 

images. Nariya et al. (15) performed parametric response map analysis with 

pharmacokinetic parameters extracted from DCE-MRI for early prediction of pathological 

response to NAC. More recently, Li et al. (10) combined measurements from DCE-MRI and 

diffusion-weighted MRI (DW-MRI) obtained before and after the first cycle of NAC for 

predicting response. Ashraf et al. (13) explored the associations between kinetic texture 

features extracted from DCE-MRI and response to NAC in a small cohort of 15 patients.

Most previous approaches are limited by the lack of considering spatial information, where 

the image features (including texture) were calculated as aggregate measures on the entire 

tumor volume. These approaches implicitly assume that the tumor is either homogeneous, or 

heterogeneous but uniformly mixed throughout the whole volume. In reality, however, 

regional variations within the tumor are often apparent on imaging and may have differing 

prognostic potential (20–24). Imaging could be used to depict regional phenotypic variations 

within a tumor that reflect differing fundamental biological processes (25).

We hypothesized that some parts of the tumor are biologically more aggressive and 

treatment-resistant than others, and therefore sub-region analysis may be more useful 

compared with whole-tumor aggregate approaches to predict therapy response, disease 

progression, and survival. The purpose of this work was to predict pathological response of 

breast cancer to NAC using DCE-MRI acquired early during therapy, based on quantitative 

image features extracted from relevant tumor subregions.

MATERIALS AND METHODS

Patient Cohort

The details of the patient cohort have been previously reported (10). A subset of 35 breast 

cancer patients was selected in this IRB-approved study. The detailed selection criteria were: 

1) the patients with pathologically proven stage II/III invasive breast cancer, 2) the longest 

dimension of the tumor was at least 1 cm, 3) the patients went through NAC, 4) the patient 
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had DCE-MRI before and after first cycle of NAC and 5) the patients were assessed after 

NAC in terms of their pathological response.

Imaging Protocol

The details of the MR imaging protocol have been previously reported (10). The DCE-MR 

imaging was performed on a Philips 3T Achieva MR scanner (Philips Healthcare, Best, The 

Netherlands), with TR = 7.9 ms, TE = 4.6 ms and flip angle = 20°. The MR image matrix 

was 192×192×20 with spatial resolution 1.3×1.3×5.0 mm3 over a sagittal field of view 

220×220 mm2. Each patient was dynamically scanned 25 times with a 16-second interval for 

a total duration of under 7 minutes. The contrast agent of gadopentetate dimeglumine, 

gadolinium-diethylenetriamine penta-acetic acid, (Magnevist, Wayne, NJ) (with the dose of 

0.1 mmol/kg) was delivered at 2 mL/sec through a catheter placed within an antecubital vein 

via a power injector (Medrad, Warrendale, PA) after the acquisition of first three dynamic 

scans.

For each patient, the DCE-MRI was acquired at three time points: before chemotherapy 

initialization (pre-NAC), after the first cycle of chemotherapy (during-NAC) and after all 

cycles of chemotherapy (post-NAC), respectively. The detailed MR imaging schema was 

shown in Figure 1. The median time between pre-NAC and during-NAC MR scanning was 

14 days (range: 7–29 days). The median time between the end of 1st cycle NAC treatment 

and during-NAC MR scanning was 1 day (range: 0–11 days).

Pathologic Response

Pathologic complete responder (pCR) was defined as no histologic evidence of invasive 

tumor cells in breast and lymph nodes after therapy. On the contrary, patients with residual 

invasive cancer or progressive disease were regarded as non-pCR. In the studied cohort of 35 

patients, 12 patients (34.3%) were pCR and 23 patients (65.7%) were non-pCR.

Overview of the Proposed Method

In this study, we investigated whether computational texture features extracted from intra-

tumor subregions on DCE-MR images acquired after the first cycle of NAC would predict 

the pathological response of breast cancer after completion of chemotherapy. Briefly, 

principal component analysis (PCA) was used to reduce the dimensionality of the DCE-MRI 

data with a high-temporal resolution. We then performed intra-tumor partitioning based on 

the PCA-defined eigenmaps. We extracted textural features to quantify the heterogeneity 

within each tumor subregion, and evaluated the change in texture between pre-NAC and 

during-NAC as potential predictors of pathological response. Figure 2 summarizes the 

proposed framework, and the details are described in the following sections.

Tumor Segmentation

In this study, we adopted a similar tumor segmentation scheme as proposed in (10). First, a 

region of interest (ROI) was manually drawn to define the breast region excluding lung and 

heart (J.W., who had 3 years’ experience in breast DCE-MR imaging analysis). Within this 

ROI, the tumor voxels were defined as the , where  and  referred to 
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the average intensity at 3 pre-enhancement time points and the average intensity at post-

enhancement time points. Additionally, the calculated tumor mask was further processed to 

remove small islands (voxel size < 100) and to fill in the holes.

Temporal Dimensionality Reduction via Principal Component Analysis

To reduce the temporal dimensionality of the DCE-MRI (with 25 dynamic scans), we 

performed PCA transform the original DCE-MRI data to a set of uncorrelated eigenvectors 

or eigenmaps. As the image signal at each tumor voxel (i.e., the enhancement pattern) was 

highly correlated in the temporal domain, PCA can effectively remove redundancy and 

suppress noise in the data. We performed population-level PCA by cumulating the tumor 

voxels from the entire cohort at both pre-NAC and during-NAC. Finally, several temporal 

modes (i.e., principal components) were uncovered to describe the population-level 

enhancement patterns, and the corresponding eigenmaps (i.e., eigenvalue mapped back to 

original tumor location) showed the intra-tumor heterogeneity in terms of the associated 

enhancement patterns. Here, we only kept those eigenvectors that had > 1% energy.

Intra-Tumor Partitioning to Identify Relevant Tumor Subregions

To comprehensively characterize intra-tumor spatial heterogeneity, we performed clustering 

analysis on the PCA-defined eigenmaps for each tumor. In particular, unsupervised k-means 

clustering was used to partition the whole tumor into several spatially distinct subregions, 

where tumor voxels with similar enhancement patterns were grouped together. K-means 

clustering was applied to the tumor voxels on DCE-MRI from all patients at both pre-NAC 

and during-NAC. To determine the number of subregions (i.e., cluster number k), we set k 
from 2 to 10 and selected the one with optimal Calinski-Harabasz value (26).

Texture Analysis to Quantify Heterogeneity of Tumor Subregions

To quantify spatial heterogeneity within each tumor subregion, we extracted Haralick textual 

features of each individual eigenmap at pre-NAC and during-NAC. In details, we calculated 

the gray-level co-occurrence matrix (GLCM) from the eigenmaps within each subregion. 

The gray level was set to 64, and GLCM with a 1-voxel offset of angle 0, 45, 90 and 135 

degrees were computed and averaged. From GLCM, four Haralick texture features, 

including contrast, correlation, energy, and homogeneity, were extracted for each patient at 

pre-NAC and during-NAC, respectively. The longitudinal change of these texture features 

(i.e., Δ = textureduringNAC - texturepreNAC) were proposed as potential predictors of 

pathological response.

Evaluation of the Proposed Imaging Predictors

The receiver operating characteristics (ROC) curve analysis and area under the curve (AUC) 

was used to assess the prediction capability of the proposed imaging predictors. Both 

univariate and multivariate analysis were performed in order to assess the predictive power 

of individual predictors and their complementary value. Logistical regression was used to 

build univariate and multivariate prediction models to classify tumors into pCR and non-

pCR groups. For multivariate analysis, the least absolute shrinkage and selection operator 

(LASSO) algorithm (27) was combined with logistic regression for feature selection. To 
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avoid over-fitting, leave-one-out cross-validation (LOOCV) was used to evaluate the 

performance.

Comparison with Conventional Approaches

To systematically evaluate whether the proposed imaging predictors indeed improve upon 

conventional ones, we derived from the same DCE-MRI without either dimensionality 

reduction or intra-tumor partitioning. These conventional imaging predictors included 

Haralick texture features directly from contrast uptake or washout maps and from the 

eigenmaps (consider the entire tumor as one single ROI). Table 1 listed details of all three 

groups of the studied imaging predictors in this study.

Statistical Analysis

To adjust for multiple statistical testing, the Benjamini-Hochberg method (28) was used to 

control the false discovery rate (FDR). The statistical significance of AUCs and whether one 

AUC was higher than another were assessed via stratified resampling. Specifically, we 

bootstrapped samples of size 50 with 100 repetitions from 1) original predictor and 2) 

permuted predictor or predictor in comparison, and then the AUC distributions of 1) and 2) 

were analyzed by the Wilcoxon signed rank test. A p-value < 0.05 was considered as 

statistically significant. All statistical analysis was carried out in R.

RESULTS

Clustering of PCA-Based Eigenmaps Identified Three Distinct Intra-tumor Subregions

Principal component analysis of the DCE-MRI showed two major temporal enhancement 

modes (i.e., principal components), where the first one (containing 95.8% energy) 

represented the contrast agent wash-in pattern and the second (containing 1.9% energy) 

represented the contrast agent wash-out pattern, as shown in Figure 3. In the feature space 

spanned by these 2 modes, all tumor voxels were clustered into 3 subgroups or subregions. 

The feature values for tumor voxels within each subgroup were shown in Figure 4. Cluster A 

represented tumor voxels that had a moderate uptake speed and a slow wash-out rate, cluster 

B represented tumor voxels with a slow uptake and a fast wash-out rate, while cluster C 

represented tumor voxels with a quick uptake and a moderate wash-out rate. Figure 5 shows 

the details of the whole process of intratumor partition for one pCR and non-pCR.

Univariate Analysis

First, the tumor burden related features (Δvolume or Δproportion) were evaluated and 

reported in Table 2. However, none of these predictors were directly predictive of 

pathological response, for cases both with and without intratumor partition. Next, Table 3 

summarizes the performance of individual texture-related imaging predictors from three 

feature groups. In general, our proposed imaging predictors (i.e., the texture features of 

eigenmaps within tumor subregions) consistently outperformed the other two groups of 

features. As can be seen, none of the enhancement map features were statistically 

significant. With temporal dimensionality reduction, the predictors started to improve, but 

still only one out of eight was significant after adjusting for multiple testing. When the 

whole tumor was divided into three different subregions, the performance of these texture 
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features was significantly improved (p-value < 0.05). All imaging predictors except one 

extracted from the tumor subregion associated with fast wash-out (cluster B) were 

statistically significant after adjusting for multiple testing, with AUC between 0.75 and 0.80. 

Furthermore, we implemented a clustering analysis of all imaging features to explore their 

correlations as well as their association with response outcome. As shown in Figure 6, the 

imaging features associated with high washout rate (Cluster B) had a clear correlation with 

pathological response at the individual level, while other types of features did not.

Multivariate Analysis

Figure 7 shows the ROC plots based on the cross-validated multivariate analysis results of 

all three feature groups. The change of tumor volume (i.e., Δ = during-NAC – pre-NAC) was 

included as the baseline for comparison. The proposed feature group achieved the highest 

prediction accuracy, with an LOOCV AUC = 0.79 (p-value = 0.002) and the optimal cutoff 

point had specificity 78% and sensitivity 75%. For the other two feature groups, the 

enhancement map group achieved an AUC = 0.67 (p-value > 0.05) and the eigenmap alone 

group achieved an AUC = 0.65 (p-value > 0.05), and they shared the same optimal cutoff 

with specificity 70% and sensitivity 58%. Furthermore, the proposed feature group achieved 

statistically better (p-value < 0.05) prediction performance compared with other predictive 

models.

DISCUSSION

In this work, we identified a clinically relevant tumor subregion associated with rapid 

washout of contrast agent, whose change in heterogeneity measured by a GLCM texture 

feature (i.e., correlation) on DCE-MRI before and during NAC was predictive of 

pathological response of breast cancer to NAC. Biologically, the heterogeneous perfusion 

associated with rapid washout vasculature might be caused by angiogenesis and hypoxia, 

which are known biomarkers for aggressive phenotypes and poor prognosis (29). Our 

findings suggest that the tumor subregion with most aggressive phenotype, rather than the 

whole-tumor average behavior, plays a dominant role in determining clinical outcomes such 

as therapy response and disease progression. This warrants further investigation in future 

studies.

Our study adds to the growing body of literature demonstrating that intra-tumor 

heterogeneity measured by a variety of texture features is associated with aggressive, 

treatment-resistant disease and poor prognosis (13, 23, 30–35). Related to our work, 

Chaudhury et al. (36) recently showed that heterogeneity in intra-tumoral regions with rapid 

gadolinium washout was associated with estrogen receptor status and nodal metastasis. As 

tumor response to neoadjuvant chemotherapy and nodal metastasis are correlated with 

disease-free survival and overall survival (37), it would be interesting to investigate the 

potential prognostic value of these imaging features in breast cancer.

Strengths of our study include the uniform acquisition protocol of the DCE-MRI across 

patients, despite some variations in the timing of imaging. Different from most previous 

work based on whole-tumor analysis, we applied a clustering-based approach to intra-tumor 

partitioning to characterize the regional heterogeneity of breast cancer based on DCE-MRI. 
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We used well-established statistical technique or PCA to effectively reduce redundancy and 

suppress noise in DCE-MRI with a high temporal resolution.

Our study has several limitations. This is a retrospective study with a relatively small cohort. 

Our preliminary findings need to be further validated in larger prospective cohorts. The 

small size of our cohort limited our ability to adjust for the confounding effects of different 

neoadjuvant regimens and other prognostic factors. Although the AUC based on quantitative 

analysis of DCE-MRI alone was reasonably good, it would be interesting to combine with 

other imaging modalities such as DW-MRI (10) or FDG-PET (38, 39), for further 

improvements in the prediction of treatment response.

In conclusion, intra-tumor partitioning identified spatially resolved subregions within breast 

tumors, each with distinct enhancement characteristics on DCE-MRI. The heterogeneity of 

the tumor subregion associated with fast wash-out predicted pathological response to 

neoadjuvant chemotherapy in breast cancer.
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Figure 1. 
Time of MRI execution schema.
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Figure 2. 
Flowchart of the proposed analysis pipeline.
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Figure 3. 
The first two principal components after PCA, which captured two distinct enhancement 

patterns of DCE-MRI.
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Figure 4. 
Box plot of the eigenvalues for the tumor voxels of the entire cohort, grouped into three 

subregions after intra-tumor partition, with eigenvalues of principal component 1 and 2 

shown in a) and b), respectively. Note the eigenvalues were z-scored to have a zero mean 

and unit variance. ANOVA test was implemented to investigate group wise difference among 

three clusters.
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Figure 5. 
Illustration of intratumor partitioning results of one non-pCR and pCR at the stage of pre-

NAC and during-NAC. First column shows the subtraction image (image acquired at 3 min 

delay – pre-contrast image) superimposed with tumor contour. Second and third columns 

show the color coded 1st and 2nd eignmaps, respectively. Last column shows three identified 

clusters within each tumor after intratumor partition. The tumor volume decrease for non-

pCR and pCR patients are 0.70 cc and 0.75 cc, respectively. One texture changes 

(correlation) of PC2 in Cluster B for these two patients after normalization are -1.15 and 

0.98, respectively.
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Figure 6. 
Clustering analysis of all studied texture related imaging features (for all three feature 

groups). In the heatmap, all features (presented in different rows and color coded by their 

types, ie, I, II, IIIA, IIIB or IIIC) from all 35 patients (presented in each column) are 

correlated with their pathological response (color coded in the bottom). All features were 

standardized to have a zero mean and unit standard deviation.
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Figure 7. 
Receiver operating characteristic (ROC) curves from multivariate analysis of three feature 

groups with leave-one-out cross validation. The volume change (Δ = during-NAC – pre-

NAC) was also evaluated as the comparison baseline.
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Table 1

List of Three Groups of Texture Related Imaging Predictors

Group 1, Enhancement Map Group 2, Eigenmap Group 3, Eigenmap in tumor subregions 
(proposed)

Energy, Contrast, Correlation, and Homogeneity of 
GLCM of Wash-in Slope (WIS) Map, Energy, Contrast, 
Correlation, and Homogeneity of GLCM of Wash-out 
Slope (WOS) Map

Energy, Contrast, Correlation, and 
Homogeneity of GLCM for Each 
Eigenmap

Energy, Contrast, Correlation, and 
Homogeneity of GLCM for Each 
Eigenmap in Each Tumor Subregion

J Magn Reson Imaging. Author manuscript; available in PMC 2017 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript
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Table 2

Univariate Analysis of Various Tumor Burden Related Features for Predicting Pathological Response

Whole Tumor Cluster A Cluster B Cluster C

Δ Volume 0.53 (0.30–0.76) 0.53 (0.33–0.74) 0.53 (0.33–0.73) 0.50 (0.28–0.73)

Δ Proportion _ 0.53 (0.33–0.73) 0.57 (0.36–0.77) 0.61 (0.40 – 0.83)

Note Δ = value of during-NAC – value of pre-NAC
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