Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Dec 15;89(24):11664–11668. doi: 10.1073/pnas.89.24.11664

Suppression of the onset of myelination extends the permissive period for the functional repair of embryonic spinal cord.

H S Keirstead 1, S J Hasan 1, G D Muir 1, J D Steeves 1
PMCID: PMC50616  PMID: 1281541

Abstract

In an embryonic chicken, transection of the thoracic spinal cord prior to embryonic day (E) 13 (of the 21-day developmental period) results in complete neuroanatomical repair and functional locomotor recovery. Conversely, repair rapidly diminishes following a transection on E13-E14 and is nonexistent after an E15 transection. The myelination of fiber tracts within the spinal cord also begins on E13, coincident with the transition from permissive to restrictive repair periods. The onset of myelination can be delayed (dysmyelination) until later in development by the direct injection into the thoracic cord on E9-E12 of a monoclonal antibody to galactocerebroside, plus homologous complement. In such a dysmyelinated embryo, a subsequent transection of the thoracic cord as late as E15 resulted in complete neuroanatomical repair and functional recovery (i.e., extended the permissive period for repair).

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caroni P., Schwab M. E. Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron. 1988 Mar;1(1):85–96. doi: 10.1016/0896-6273(88)90212-7. [DOI] [PubMed] [Google Scholar]
  2. David S., Aguayo A. J. Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats. Science. 1981 Nov 20;214(4523):931–933. doi: 10.1126/science.6171034. [DOI] [PubMed] [Google Scholar]
  3. Dorfman S. H., Fry J. M., Silberberg D. H. Antiserum induced myelination inhibition in vitro without complement. Brain Res. 1979 Nov 9;177(1):105–114. doi: 10.1016/0006-8993(79)90921-1. [DOI] [PubMed] [Google Scholar]
  4. Dyer C. A., Benjamins J. A. Glycolipids and transmembrane signaling: antibodies to galactocerebroside cause an influx of calcium in oligodendrocytes. J Cell Biol. 1990 Aug;111(2):625–633. doi: 10.1083/jcb.111.2.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eidelberg E. Consequences of spinal cord lesions upon motor function, with special reference to locomotor activity. Prog Neurobiol. 1981;17(3):185–202. doi: 10.1016/0301-0082(81)90013-7. [DOI] [PubMed] [Google Scholar]
  6. Glover J. C., Petursdottir G. Regional specificity of developing reticulospinal, vestibulospinal, and vestibulo-ocular projections in the chicken embryo. J Neurobiol. 1991 Jun;22(4):353–376. doi: 10.1002/neu.480220405. [DOI] [PubMed] [Google Scholar]
  7. Hartman B. K., Agrawal H. C., Kalmbach S., Shearer W. T. A comparative study of the immunohistochemical localization of basic protein to myelin and oligodendrocytes in rat and chicken brain. J Comp Neurol. 1979 Nov 15;188(2):273–290. doi: 10.1002/cne.901880206. [DOI] [PubMed] [Google Scholar]
  8. Hollyday M., Hamburger V. An autoradiographic study of the formation of the lateral motor column in the chick embryo. Brain Res. 1977 Aug 26;132(2):197–208. doi: 10.1016/0006-8993(77)90416-4. [DOI] [PubMed] [Google Scholar]
  9. Kosik K. S., Finch E. A. MAP2 and tau segregate into dendritic and axonal domains after the elaboration of morphologically distinct neurites: an immunocytochemical study of cultured rat cerebrum. J Neurosci. 1987 Oct;7(10):3142–3153. doi: 10.1523/JNEUROSCI.07-10-03142.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Macklin W. B., Weill C. L. Appearance of myelin proteins during development in the chick central nervous system. Dev Neurosci. 1985;7(3):170–178. doi: 10.1159/000112285. [DOI] [PubMed] [Google Scholar]
  11. Mastaglia F. L., Carroll W. M., Jennings A. R. Spinal cord lesions induced by antigalactocerebroside serum. Clin Exp Neurol. 1989;26:33–44. [PubMed] [Google Scholar]
  12. McClellan A. D. Locomotor recovery in spinal-transected lamprey: role of functional regeneration of descending axons from brainstem locomotor command neurons. Neuroscience. 1990;37(3):781–798. doi: 10.1016/0306-4522(90)90108-g. [DOI] [PubMed] [Google Scholar]
  13. Okado N., Oppenheim R. W. The onset and development of descending pathways to the spinal cord in the chick embryo. J Comp Neurol. 1985 Feb 8;232(2):143–161. doi: 10.1002/cne.902320202. [DOI] [PubMed] [Google Scholar]
  14. Ozawa K., Saida T., Saida K., Nishitani H., Kameyama M. In vivo CNS demyelination mediated by anti-galactocerebroside antibody. Acta Neuropathol. 1989;77(6):621–628. doi: 10.1007/BF00687890. [DOI] [PubMed] [Google Scholar]
  15. Ranscht B., Clapshaw P. A., Price J., Noble M., Seifert W. Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2709–2713. doi: 10.1073/pnas.79.8.2709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schnell L., Schwab M. E. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature. 1990 Jan 18;343(6255):269–272. doi: 10.1038/343269a0. [DOI] [PubMed] [Google Scholar]
  17. Sergott R. C., Brown M. J., Silberberg D. H., Lisak R. P. Antigalactocerebroside serum demyelinates optic nerve in vivo. J Neurol Sci. 1984 Jun;64(3):297–303. doi: 10.1016/0022-510x(84)90177-1. [DOI] [PubMed] [Google Scholar]
  18. Shimizu I., Oppenheim R. W., O'Brien M., Shneiderman A. Anatomical and functional recovery following spinal cord transection in the chick embryo. J Neurobiol. 1990 Sep;21(6):918–937. doi: 10.1002/neu.480210609. [DOI] [PubMed] [Google Scholar]
  19. Sholomenko G. N., Steeves J. D. Effects of selective spinal cord lesions on hind limb locomotion in birds. Exp Neurol. 1987 Feb;95(2):403–418. doi: 10.1016/0014-4886(87)90148-8. [DOI] [PubMed] [Google Scholar]
  20. Steeves J. D., Sholomenko G. N., Webster D. M. Stimulation of the pontomedullary reticular formation initiates locomotion in decerebrate birds. Brain Res. 1987 Jan 20;401(2):205–212. doi: 10.1016/0006-8993(87)91406-5. [DOI] [PubMed] [Google Scholar]
  21. Valenzuela J. I., Hasan S. J., Steeves J. D. Stimulation of the brainstem reticular formation evokes locomotor activity in embryonic chicken (in ovo). Brain Res Dev Brain Res. 1990 Oct 1;56(1):13–18. doi: 10.1016/0165-3806(90)90158-u. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES