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Abstract Epidemiological findings support the concept
of Developmental Origins of Health and Disease, sug-
gesting that early-life hormonal influences during a
sensitive period of development have a fundamental
impact on vascular health later in life. The endocrine
changes that occur during development are highly con-
served across mammalian species and include dramatic
increases in circulating IGF-1 levels during adolescence.
The present study was designed to characterize the
effect of developmental IGF-1 deficiency on the vascu-
lar aging phenotype. To achieve that goal, early-onset
endocrine IGF-1 deficiency was induced in mice by

knockdown of IGF-1 in the liver using Cre-lox technol-
ogy (Igf1f/f mice crossed with mice expressing albumin-
driven Cre recombinase). This model exhibits low-
circulating IGF-1 levels during the peripubertal phase
of development, which is critical for the biology of
aging. Due to the emergence of miRNAs as important
regulators of the vascular aging phenotype, the effect of
early-life IGF-1 deficiency on miRNA expression pro-
file in the aorta was examined in animals at 27 months
of age. We found that developmental IGF-1 deficiency
elicits persisting late-life changes in miRNA expression
in the vasculature, which significantly differed from
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those in mice with adult-onset IGF-1 deficiency (TBG-
Cre-AAV8-mediated knockdown of IGF-1 at 5 month
of age in Igf1f/f mice). Using a novel computational
approach, we identified miRNA target genes that are
co-expressed with IGF-1 and associate with aging and
vascular pathophysiology. We found that among the
predicted targets, the expression of multiple extracellu-
lar matrix-related genes, including collagen-encoding
genes, were downregulated in mice with developmental
IGF-1 deficiency. Collectively, IGF-1 deficiency during
a critical period during early in life results in persistent
changes in post-transcriptional miRNA-mediated con-
trol of genes critical targets for vascular health, which
likely contribute to the deleterious late-life cardiovascu-
lar effects known to occur with developmental IGF-1
deficiency.

Keywords Insulin-like growth factor 1 . miRNA .

Epigenetics . Post-transcriptional regulation .microRNA

Introduction

Epidemiological findings during the past two decades
support the concept of Developmental Origins of Health
and Disease, suggesting that early-life events during a
sensitive period of development have a fundamental
impact on the organism’s later development, tissue
structure and function and lifespan (Barker 2004a, b;
Gillman 2005). Increasing clinical and experimental
evidence, including parabiotic studies, suggest that the
endocrine milieu present during development, especial-
ly when rapid physical growth occurs, induces cellular
programs that affect the pathogenesis of age-related
disease (Barker et al. 1989, 2005; Bateson et al. 2004;
Eriksson et al. 1999, 2000, 2007; Kajantie et al. 2005;
Osmond et al. 2007).

The endocrine changes that occur during develop-
ment are highly conserved across mammalian species
and include dramatic increases in the anabolic hormone
IGF-1 during adolescence (due to a significant rise in
GH secretion) (Carter et al. 2002; D’Costa et al. 1993;
Deak and Sonntag 2012; Sonntag and Csiszar 2012;
Sonntag et al. 2000, 1999, 2005b). Levels of circulating
IGF-1 can increase several folds during this period
compared to pre-adolescent levels. Yet, this increase is
highly variable (Edouard et al. 2009; Sorensen et al.
2012). There is increasing experimental and clinical
evidence that alterations in IGF-1 levels during

development regulate multiple aspects of the aging pro-
cess and affect the incidence of multiple age-related
diseases (Sadagurski et al. 2015; Sonntag and Csiszar
2012). Importantly, developmental IGF-1 deficiency
was suggested to extend lifespan in certain murine
models of aging, including the Ames dwarf mice and
Snell dwarf mice (Panici et al. 2010). The lifespan-
extending effects of developmental IGF-1 deficiency
have been largely attributed to its anti-cancer effects
(Ikeno et al. 2003). On the basis of these observations,
hypotheses were put forward proposing that develop-
mental IGF-1 level is an evolutionarily conserved mech-
anism regulating the aging process (Bartke and Brown-
Borg 2004).

The cardiovascular system is an especially important
target organ for IGF-1 (Chisalita and Arnqvist 2004;
Chisalita et al. 2009; Johansson et al. 2008; Li et al.
2007; Toth et al. 2014, 2015), and there is increasing
evidence suggesting that early-life IGF-1 levels may
determine cardiovascular health in later life (Sonntag
et al. 2005a, 2013). Accordingly, previous studies dem-
onstrate that rodent models with developmental IGF-1
deficiency exhibit a cardiac and/or vascular phenotype
in adulthood (Csiszar et al. 2008; Helms et al. 2010;
Reddy et al. 2014). For example, adult growth hormone-
releasing hormone receptor null dwarf (Little) mice have
significantly lower peak and mean aortic velocity and
significantly higher aortic impedance than young wild-
type mice (Reddy et al. 2014). Adult Ames dwarf mice
exhibit cardiac and vascular mitochondrial oxidative
stress (Csiszar et al. 2008), whereas adult GH/IGF-1-
deficient Lewis dwarf rats exhibit impaired cardiac per-
formance (Cittadini et al. 1997; Longobardi et al. 2000)
and impaired vascular stress resistance phenotypes
(Bailey-Downs et al. 2012b; Ungvari et al. 2010). How-
ever, the mechanistic role of developmental IGF-1 defi-
ciency in regulation of the vascular aging process re-
mains obscure.

MicroRNAs (miRNA) are short, endogenous, non-
coding transcripts that regulate the expression of specif-
ic messenger RNA (mRNA) targets (Lee et al. 2014; Liu
et al. 2015). There is growing evidence that miRNAs
control lifespan and the pace of aging in model organ-
isms (Boehm and Slack 2005; Grillari and Grillari-
Voglauer n.d.; Ibanez-Ventoso et al. 2006) and that
changes in miRNA expression profile also have a role
in mammalian aging (Bates et al. n.d.; Inukai et al. 2012;
Inukai and Slack 2013; Ito et al. 2010; Maes et al. 2008;
Mercken et al. 2013; Smith-Vikos and Slack 2012;

240 AGE (2016) 38:239–258



Ungvari et al. 2013; Zhang et al. 2012; Zovoilis et al.
2011). Importantly, miRNAs were also reported to reg-
ulate several important aspects of endothelial biology
and vascular function (Bonauer et al. 2009; Chen et al.
2015; Doebele et al. n.d.; Hergenreider et al. 2012; Kim
et al. 2014; Kuehbacher et al. 2007; Leung et al. 2013;
Lovren et al. 2012; O’Rourke and Olson 2011; Rotllan
et al. 2013; Stellos and Dimmeler 2014; Weber et al.
2014; Zampetaki et al. 2014). Further, age-related
changes in miRNA expression were shown to contribute
to the development of cardiovascular aging phenotypes
(Boon et al. 2013; Csiszar et al. 2014; Ungvari et al.
2013) and the pathogenesis of cardiovascular diseases
(Ono et al. 2011). Expression of miRNAs in the cardio-
vascular system was reported to be regulated by neuro-
endocrine factors (Hua et al. 2012). Despite these ad-
vances, the effects of developmental IGF-1 deficiency
on vascular miRNA expression profile have not been
elucidated.

The present study was designed to characterize the
effect of developmental IGF-1 deficiency on the vascu-
lar aging phenotype. To achieve that goal early-onset,
isolated endocrine IGF-1 deficiency was induced mice
by developmental knockdown of IGF-1 specifically in
the liver using Cre-lox technology (Igf1f/f mice crossed
with mice expressing albumin-driven Cre recombinase)
(Ashpole et al. 2015). The animals were studied at an
age representing ∼75 % of maximal lifespan potential,
which corresponds to the biological age of a ∼67-year-
old human. To assess vascular health, endothelium-
dependent vasorelaxation and vascular ROS production
were tested. Due to the emergence of miRNAs as im-
portant regulators of vascular aging phenotype (Csiszar
et al. 2014; Ungvari et al. 2013), miRNA expression
profile in the aorta of mice with developmental IGF-1
deficiency was tested.

Materials and methods

Developmental liver-specific knockdown of Igf1
in mice

To target IGF-1 production early in development, mice
homozygous for a floxed exon 4 of the Igf1 gene (Igf1f/f;
in a C57BL/6 background (Toth et al. 2014)) were
crossed with mice expressing albumin-driven Cre
recombinase, as previously described (Ashpole et al.
2015). The Igf1f/f mice have the entirety of exon 4 of

the Igf1 gene flanked by loxP sites, which allows for
genomic excision of this exon when exposed to Cre
recombinase. Transcripts of the altered Igf1 gene yield
a protein upon translation that fails to bind the IGF
receptor. The albumin gene is induced within the liver
between post-natal day 10 and 15, thereby decreasing
effective IGF-1 production early after birth. Knockdown
of IGF-1 was verified by measuring circulating levels of
IGF-1 at 2, 12, and at 27 months of age as reported
(Ashpole et al. 2015). Mice were used for experimenta-
tion at 27 months of age.Wild-type C57BL/6 mice were
purchased from Jackson Laboratories (Bar Harbor,
Maine) and utilized as reference controls at 5 and
27 months of age.

As an additional control group, aortas isolated from
mice with adult-onset IGF-1 deficiency were also ana-
lyzed (Fig.1a). Adult-onset circulating IGF-1 deficiency
was induced in Igf1f/f mice by adeno-associated virus
(AAV8)-mediated expression of Cre recombinase in the
liver at 5 months of age, as reported (Ashpole et al.
2015). The AAV8 vector was purchased from the Uni-
versity of Pennsylvania Viral Vector Core (Penn Vector
Core, Philadelphia, PA, USA; http://www.med.upenn.
edu/gtp/vectorcore). Although AAV8 is effective at
transducing multiple tissues, the use of thyroxine
binding globulin (TBG) promoter allows for the restric-
tion of expression to hepatocytes, as described (Toth
et al. 2014). At 5 months of age, Igf1f/f mice were
administered approximately 1.3 × 1010 viral particles
of AAV8-TBG-Cre or AAV8-TBG-eGFP via retro-
orbital injection, as described (Ashpole et al. 2015;
Toth et al. 2014).

Animals were housed in the Rodent Barrier Facility
at the University of Oklahoma Health Sciences Center,
on a 12-h light/12-h dark cycle, and given access to
standard rodent chow (Purina Mills, Richmond, IN)
and water ad libitum. All procedures were approved
by and followed the guidelines of the Institutional An-
imal Care and Use Committee of OUHSC in accordance
with the ARRIVE guidelines.

Measurement of circulating IGF-1 levels

Venous blood was collected from the submandibular
veins of animals from each group (Medipoint, Mineola,
NY). Whole blood was centrifuged at 2500×g for
20 min at 4 °C to collect serum, which was then stored
at −80 °C. Measurement of serum IGF-1 (Franco et al.
2014; Hill et al. 2015; Rojanathammanee et al. 2014)
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levels was performed by ELISA (R&D Systems, Min-
neapolis, MN) according to the manufacturer’s protocol
and are reported in ng/mL.

Assessment of vascular endothelial function

Upon euthanasia, aortas were isolated and endothelial
function was assessed by measuring relaxation of aortic
ring preparations to acetylcholine as previously de-
scribed (Bailey-Downs et al. 2012a). Endothelial

function is an important measure of vascular health
(Alonso-Bouzon et al. 2014; Demirci et al. 2014;
Gonzalez-Guardia et al. 2014; Grabowska et al. 2015;
Heiss et al. 2015; Mourmoura et al. 2014; Walker et al.
2014). In brief, an aorta ring segment 2 mm in length
was isolated from each animal and mounted on 40-μm
stainless steel wires in myograph chambers (Danish
Myo Technology A/S, Inc., Denmark) for measurement
of isometric tension. The vessels were superfused with
Krebs buffer solution (118 mM NaCl, 4.7 mM KCl,

Fig. 1 Age-related endothelial dysfunction and increased oxida-
tive stress in aortas frommice with developmental IGF-1 deficien-
cy. a Experimental scheme. As a model of developmental IGF-1
deficiency Igf1f/f mice crossed with mice expressing albumin-
driven Cre recombinase (Igf1f/f x Alb-cre) were used. As a model
of adult-onset, post-pubertal IGF-1 deficiency Igf1f/f mice were
injected with TBG-iCre-AAV8 at 5 months of age. Mice were
analyzed at 27 month of age. b–c Relaxations in ring preparations
of aortas of aged (27 months old) Igf1f/f x Alb-cre mice and aged

(27 months old) and young (5 months old) control mice in
response to administration of increasing concentrations of acetyl-
choline (b) and the NO donor SNP (c). Data are mean ± SEM
(n = 6–8). d Representative confocal images showing ethidium
fluorescence (representing increased ROS levels) in section of
aortas of aged (27 months old) Igf1f/f x Alb-cre mice and aged
(27 months old) and young (5 months old) control mice. Summary
data for vascular ROS production are shown in e. Data are
mean ± S.E.M. *p < 0.05 vs. young control
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1.5 mM CaCl2, 25 mM NaHCO3, 1.1 mM MgSO4,
1.2 mMKH2PO4, and 5.6 mM glucose; at 37 °C; gassed
with 95 % air and 5 % CO2). After an equilibration
period of 1 h during which an optimal passive tension
was applied to the rings (as determined from the vascu-
lar length-tension relationship), relaxation of pre-
contracted (by 10−5 mol/L phenylephrine) vessels to
the endothelium-dependent vasodilator acetylcholine
(ACh; from 10−9 to 10−6 mol/L) and to an
endothelium-independent vasodilator, the NO donor so-
dium nitroprusside (SNP; from 10−9 to 10−6 mol/L) was
obtained.

Measurement of vascular ROS production

The oxidative fluorescent dye dihydroethidium (DHE)
was used to assess vascular O2

− production in segments
of the aortas as we have previously reported (Csiszar
et al. 2007; Pearson et al. 2008; Ungvari et al. 2003,
2010). In brief, freshly isolated aorta segments were
incubated with DHE (3 × 10−6 mol/L; for 30 min, at
37 °C, in the dark). The vessels were then washed three
times, embedded in OCT medium and cryosectioned.
Fluorescent images of the aorta sections were captured
using a Leica SP2 confocal laser scanning microscope
(Leica Microsystems GmbH, Wetzlar, Germany). Aver-
age nuclear DHE fluorescence intensities were assessed
using the Metamorph software (Molecular Devices
LLC, Sunnyvale, CA) and values for each animal in
each group were averaged as reported (Csiszar et al.
2007; Pearson et al. 2008; Ungvari et al. 2003, 2010).
Unstained aortas were used for background correction.

Quantitative real-time RT-PCR

A quantitative real time RT-PCR technique was used to
analyze miRNA expression profiles in the aorta of mice
from each experimental group as reported (Csiszar et al.
2014). In brief, total RNA was isolated with a
mirVana™ miRNA Isolation Kit (ThermoFisher Scien-
tific) and was reverse transcribed using TaqMan®
MicroRNA Reverse Transcription Kit as described pre-
viously (Bailey-Downs et al. 2012a; Csiszar et al. 2014).
The expression profile of 641 unique mouse miRNAs in
aortas derived from young and aged control mice and
aged mice with developmental IGF-1 deficiency was
analyzed using the TaqMan Array Rodent MicroRNA
A + B Cards Set v3.0 (ThermoFisher Scientific). Ex-
pression of miRNAs were normalized to ΔΔCt values

using the average of three replicated probes of
MammU6, and the resulting expression values were
then quantile normalized (Csiszar et al. 2014). Differen-
tial expression raw p values were determined using a
Student’s t test and corrected using Benjamini-
Hochberg multiple hypothesis correction at a q-value
(FDR) cutoff of 0.1.

miRNA target prediction and validations

To further understand the consequences of changes in
miRNA abundance on regulating vascular aging pheno-
types, we used a computational approach to predict
targets of differentially expressed miRNAs. After deter-
mining miRNAs that were differentially expressed with
developmental IGF-1 deficiency and age, we compiled
a list of candidate target genes matching the following
criteria: (1) Putative targets of miRNAs differentially
expressed in aortas of Igf1f/fxAlb-cre mice, (2)
expressed in aorta and show altered expression with
age in aorta, (3) co-expressed with IGF-1 across tissues
and experimental conditions, and (4) associated with
vascular pathophysiology in the published literature.
For criterion (1), a list of miRNA-target pairs was ob-
tained from miRBase (Kozomara and Griffiths-Jones
2014), and for each target gene in the database, the
number of targeting miRNAs that were significantly
up- or downregulated in aging or developmental IGF-1
deficiency was quantified and significance was assessed
using the binomial test. The hypothesis tested was that
the targeting miRNAs were consistent in their direction
of regulation with IGF-1 deficiency or age. For criterion
(2), mouse RNA microarray samples were identified in
NCBI GEO as deriving from aorta using GEOmetadb
(Zhu et al. 2008). Each aorta sample from GEO series
accession GSE40156 was annotated with the sample
age, and after quantile normalization, a log-linear model
was used to quantify the rate of expression change of
each gene with time. Additionally, the mean expression
of each gene in aorta was approximated by converting
each sample’s log-expression vector to a Z-score. Genes
with a mean Z-score less than 0 (indicating genes which
were expressed at a lower level than the average gene)
were excluded from further analysis. For criterion (3),
the GAMMA algorithm (Dozmorov et al. 2011; Wren
2009) was used to quantify the correlation of each
putative target mRNA with the IGF-1 transcript using
the Pearson’s correlation coefficient. For criterion (4),
the IRIDESCENT algorithm (Wren and Garner 2004)
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was used to mine the biomedical literature and quantify
the degree of association between each candidate
mRNA and terms relating to vascular pathophysiology
(e.g., “stroke,” “aneurysm,” “vascular fragility,” “ische-
mic heart disease,” etc.). IRIDESCENT uses a statistical
model to determine whether each gene co-occurs with a
term of interest (here, vascular pathophysiology-related
terms) more frequently than would be expected by
chance, and quantifies this in terms of the mutual infor-
mation measure. In order to retrieve the most relevant
targets, we chose the top-ranked miRNA target genes
predicted by these computational approaches. We next
validated these predictions with quantitative real-time
RT-PCR using TaqMan probes as reported (Csiszar et al.
2013; Toth et al. 2013; Tucsek et al. 2013, 2014).

Statistical analysis

Statistical analysis was carried out by one-way
ANOVA followed by Tukey’s post-hoc test or
unpaired t test, as appropriate. Dose-response
curves for vascular relaxations were analyzed by
two-way ANOVA for repeated measures followed
by Bonferroni multiple comparison test. A p value
less than 0.05 was considered statistically signifi-
cant. Data are expressed as mean ± S.E.M.

Results

Developmental liver-specific knockdown of IGF-1

Basic physiological parameters of the experimental co-
horts used in the present study were similar to our
previous report (Ashpole et al. 2015). Body weight

was significantly decreased in the Igf1f/fxAlb-cre and
Igf1f/f + AAV8-TBG-Cre groups, compared to their
age-matched controls (Table 1). Similarly, circulating
IGF-1 levels were significantly reduced in the
Igf1f/fxAlb-cre and Igf1f/f + AAV8-TBG-Cre groups,
compared to their respective age-matched controls
(Table 1).

Endothelial dysfunction and oxidative stress

IGF-1 is known to exert multifaceted vasoprotective
effects (Bailey-Downs et al. 2012a, b; Csiszar et al.
2008; Higashi et al. 2010, 2012; Sonntag et al.
2013; Sukhanov et al. 2007; Ungvari and Csiszar
2012; Ungvari et al. 2010) but the role of devel-
opmental IGF-1 deficiency in regulating vascular
aging has never been investigated. We found that
endothelium-dependent aorta relaxation induced by
acetylcholine was significantly impaired in aged
control mice as compared to young control mice
(Fig. 1b). There was no significant difference be-
tween acetylcholine-induced responses in aortas of
aged Igf1f/fxAlb-cre mice and aged control mice
(Fig.1b). We also investigated the effect of the
endothelium-independent relaxing agent SNP, and
we found that there was no significant difference
among the groups (Fig. 1c).

Analysis of nuclear ethidium fluorescence inten-
sities showed that aging was associated with sig-
nificant increases in vascular O2

− production in
control mice (Fig. 1d–e). There was no significant
difference between O2

− production in aortas of
aged Igf1f/fxAlb-cre mice and aged control mice
(Fig. 1d–e).

Table 1 Description of experimental animals

Group n Age (days) Body weight (grams) IGF-1 levels (ng/mL)

5-month-old control 7 n.a. 25.7 ± 1.5 320.9 ± 65.4

27-month-old control 7 823.4 ± 2.6 26.8 ± 3.3 314.0 ± 49.9

Igf1f/f x Alb-Cre 7 823.4 ± 1.9 23.2 ± 1.8* 46.4 ± 12.0*

Igf1f/f x TBG-eGFP-AAV8 7 821.9 ± 5.6 26.4 ± 1.1 310.8 ± 68.0

Igf1f/f x TBG-Cre-AAV8 7 820.3 ± 5.8 23.5 ± 1.3* 53.2 ± 10.4*

Average age, body weight, and circulating IGF-1 levels at the time of tissue harvest in each experimental group. The asterisk indicates a
significant difference between the treatment group and its respective control group, *p < 0.05, mean ± S.D

n.a. data not available
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Changes in vascular miRNA expression profile in mice
associated with aging and with developmental
IGF-1deficiency

We assessed changes in miRNA expression profile in
the mouse aorta associated with aging and with devel-
opmental IGF-1 deficiency. Principal component analy-
sis and hierarchical clustering of miRNA expression
showed a clear separation between the young and aged
groups. Aged control mice and aged Igf1f/fxAlb-cre
mice were also separated in the principal component
analysis and hierarchical clustering. Figure 2a, b shows
changes in miRNA expression in the mouse aorta asso-
ciated with age and developmental IGF-1 deficiency,
respectively. GO terms enriched among miRNAs differ-
entially expressed with age and developmental IGF-1
deficiency are shown in Table 2 and Table 3,
respectively.

To differentiate between the effects of IGF-1 defi-
ciency during development and post-pubertal IGF-1
deficiency on vascular phenotype, miRNA expression
in aortas of Igf1f/fxAlb-cre mice and Igf1f/f + AAV8-
TBG-Cre mice was compared. Figure 2c shows that
expression of miRNAs that are differentially expressed
in the aortas of Igf1f/fxAlb-cre mice was not altered
significantly in aortas of Igf1f/f + AAV8-TBG-Cre mice,
suggesting that developmental IGF-1 status has a critical
role in regulation of vascular miRNA expression. The
only exception identified was miR-204 whose expres-
sion was similarly altered both in Igf1f/fxAlb-cre mice
and Igf1f/f + AAV8-TBG-Cre mice Igf1f/fxAlb-cre mice
and Igf1f/f + AAV8-TBG-Cre mice.

Changes in vascular expression of miRNA target genes

Since the discovery of miRNA regulation of genes,
several studies have been focused on predicting the
biologically relevant target genes for miRNAs. We have
designed a novel selection strategy to predict putative
biological targets of differentially expressed miRNAs as
shown in Fig. 3a. The top-ranked miRNA target genes
predicted by these computational approaches were val-
idated using qPCR. We found that our method success-
fully predicted miRNA target genes whose aortic ex-
pression is significantly impacted by developmental
IGF-1 deficiency and age (Fig. 3b). The effects of
developmental IGF-1 deficiency and aging on aortic
mRNA expression of predicted biological targets of
differentially regulated miRNAs are shown in Fig. 3c.

Comparison of aortic expression of selected miRNA
targets shows that developmental IGF-1 deficiency
(Igf1f/f x Alb-cre) and adult-onset IGF-1 deficiency
(Igf1f/f + TBG-iCre-AAV8) differentially alter expres-
sion of a number of targets genes related to extracellular
matrix homeostasis and maintenance of vascular struc-
tural integrity (Fig. 3d).

Discussion

The principal new finding of this study is that IGF-1
deficiency through a critical period during early in life
determines the vascular aging phenotype in mice by
altering miRNA-mediated post-transcriptional gene
regulation.

IGF-1 is a critical regulator of development; yet,
circulating levels of IGF-1 levels are highly variable
during puberty (range: from ∼100 to 800 ng/mL)
(Bidlingmaier et al. 2014; Sorensen et al. 2012). In
children with short stature, the prevalence of primary
IGF-1 deficiency reaches 20%. The significant variabil-
ity in peripubertal IGF-1 levels is largely attributed to
environmental factors, including socioeconomic status
and diet. Protein intake is a key determinant of circulat-
ing IGF-1 levels in humans (Fontana et al. 2008), and
clinical studies emphasize that nutritional deficiency
associated with poverty (which affects over 8 million
children in the USA) is a critical factor in the alarming
incidence of peripubertal IGF-1 deficiency. Taken to-
gether, developmental IGF-1 deficiency and its long-
term consequences are significant public health con-
cerns, which affect millions of individuals in addition
to those with rare genetic conditions of inherited IGF-1
deficiency.

In invertebrate model organisms, disruption of the
insulin/IGF-1 pathway during development was report-
ed to regulate lifespan and/or delay age-related patho-
physiological alterations (Kimura et al. 1997). In mam-
mals, the loss of insulin signaling during development is
lethal. In recent years, the concept has emerged that
alterations in developmental IGF-1 levels in mammals
can also regulate aging processes, conferring both anti-
and pro-aging effects later in life in an organ system-
specific manner (Leiser and Miller 2010; Maynard and
Miller 2006; Murakami et al. 2003; Nieves-Martinez
et al. 2010; Page et al. 2009; Panici et al. 2010; Ramsey
et al. 2002; Sadagurski et al. 2015; Salmon et al. 2005;
Sonntag et al. 2005a; Ungvari et al. 2010, 2011; Wang
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Fig. 2 Changes in miRNA expression profile in aortas associated
with developmental IGF-1 deficiency and aging. a–b Effects of
age (a) and developmental IGF-1 deficiency (b) on aortic miRNA
expression. The y axis represents the average log2 fold change in
miRNA expression levels in aortas derived from aged (27 months
old) Igf1f/f x Alb-cre mice and aged (27 months old) control mice,
relative to the corresponding control values. Significant (p < 0.05)
changes are highlighted. The x-axis indicates the miRNA rank
from the most upregulated to the most downregulated. n = 5–9 for
each data point. c Comparison of the effects of developmental

IGF-1 deficiency and adult-onset, post-pubertal IGF-1 deficiency.
The expression of selected miRNAs significantly dysregulated in
aortas of Igf1f/fxAlb-cre mice was analyzed in aortas of
Igf1f/f + AAV8-TBG-Cre mice by qPCR. Data are normalized to
the mean miRNA expression in the aorta of the respective aged
control group and are expressed as mean ± SEM (*p < 0.05). The
data shows that developmental IGF-1 deficiency and adult-onset
IGF-1 deficiency differentially alter miRNA expression in the
mouse aorta
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and Miller 2012). Although early studies proposed that
developmental IGF-1 deficiency contributes to the ex-
tension of lifespan in Ames dwarf mice and Snell dwarf
mice (Panici et al. 2010), recent studies demonstrate that
mice with isolated developmental endocrine IGF-
1deficiency do not exhibit a longevity phenotype
(Sonntag and Aspole, 2016, in preparation). Yet, in the
same model, developmental endocrine IGF-1deficiency
has been linked to marked alterations in healthspan
(Ashpole et al. 2015). Interestingly, patients with Laron
syndrome (congenital IGF-1 deficiency caused by

Table 2 GO terms enriched among miRNAs differentially
expressed with age in the aorta

GO terms enriched among miRNAs differentially expressed with
age in the aorta

Extracellular matrix

Chromatin silencing

Rab protein signal transduction

Signal transduction

Endopeptidase activity

Rac GTPase binding

Activation of protein kinase activity

Negative regulation of cyclin-dependent protein kinase activity

Chromatin DNA binding

Microtubule

Regulation of transcription

Cell migration

Endosome membrane

Intracellular protein transport

Negative regulation of cell death

Cytokine-mediated signaling pathway

Positive regulation of GTPase activity

Endosome

Stress-activated protein kinase signaling cascade

Regulation of mitotic cell cycle

Protein tyrosine/serine/threonine phosphatase activity

Positive regulation of protein targeting to mitochondrion

Cytokine production

Negative regulation of extrinsic apoptotic signaling pathway

Core promoter proximal region sequence-specific DNA binding

Regulation of protein kinase activity

Negative regulation of ERK1 and ERK2 cascade

At least one gene annotated with the GO category listed is targeted
by miRNAs that are differentially regulated in the aged mouse
aorta. Significance (p < 0.05) was determined by Fisher’s exact
test

Table 3 GO terms enriched among miRNAs differentially
expressed with developmental IGF-1 deficiency in the aorta

GO terms enriched among miRNAs differentially expressed with
developmental IGF-1 deficiency

Pattern recognition receptor signaling pathway

Production of miRNAs involved in gene silencing by miRNA

RISC-loading complex

Extracellular matrix

Blood vessel remodeling

Micro-ribonucleoprotein complex

miRNA loading onto RISC involved in gene silencing by miRNA

Pre-miRNA binding

Negative regulation of translation involved in gene silencing by
miRNA

RISC complex

RNA polymerase II transcription factor binding

Negative regulation of cell proliferation

Pre-miRNA processing

miRNA binding

Transcription factor activity, RNA polymerase II core promoter
proximal region sequence-specific binding

SMAD binding

Regulation of transforming growth factor beta receptor signaling
pathway

Endoplasmic reticulum membrane

Positive regulation of protein kinase activity

Regulation of transcription from RNA polymerase II promoter

Positive regulation of receptor-mediated endocytosis

Cytoplasmic mRNA processing body

RNA polymerase II transcription coactivator activity

Regulation of actin cytoskeleton organization

Regulation of protein localization

Phospholipid translocation

Negative regulation of microtubule depolymerization

Adaptive immune response

Positive regulation of apoptotic signaling pathway

Frizzled binding

mRNA polyadenylation

Protein tyrosine phosphatase activity

Cellular response to cAMP

Protein localization to cell surface

PDZ domain binding

Transcription factor complex

Vesicle organization

Negative regulation of BMP signaling pathway

Negative regulation of extrinsic apoptotic signaling pathway

Negative regulation of transforming growth factor beta receptor
signaling pathway
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primary GH insensitivity), who do not exhibit a longev-
ity phenotype, seem to be protected against cancer at old
age (Guevara-Aguirre et al. 2011; Steuerman et al.
2011), yet, are also affected by organ-specific symptoms
of accelerated aging including osteoporosis, cognitive
impairment, and marked obesity (Laron et al. 1999).
Additionally, rodent models with developmental IGF-1
deficiency exhibit organ-specific signs of accelerated
aging in the central nervous system and the

musculoskeletal system (Ekenstedt et al. 2006;
Sonntag et al. 2013).

Vascular endothelial and smooth muscle cells abun-
dantly express IGF1R and are more sensitive to IGF-1
than to insulin (Chisalita and Arnqvist 2004; Chisalita
et al. 2009; Johansson et al. 2008). Several lines of
evidence suggest that normal developmental IGF-1
levels promote vascular health later in life (Ungvari
and Csiszar 2012). Epidemiological studies demonstrate
that poverty and malnutrition in adolescent children,
which is known to be associated with low IGF-1 levels,
increases risk for cerebrovascular diseases later in life
(Forsdahl 1978; van Abeelen et al. 2012). Further,
shorter stature, which is often a consequence of lower-
than-normal developmental levels of IGF-1, has been
associated with significantly increased risk of coronary
heart disease and stroke (Eriksson et al. 2000; Goldbourt
and Tanne 2002; Parker et al. 1998). Importantly, in
Lewis dwarf rats, restoration of IGF-1 levels in a critical
time window of ∼10 weeks around puberty was also
shown to increase lifespan by delaying a specific age-
related vascular pathology—spontaneous intracerebral
hemorrhages (Sonntag et al. 2005a, 2013). In the present
study, we found that aged Igf1f/fxAlb-cre mice exhibited
significant endothelial dysfunction and vascular

Table 3 (continued)

GO terms enriched among miRNAs differentially expressed with
developmental IGF-1 deficiency

Poly(A) RNA binding

Glycoprotein binding

Chromatin DNA binding

Peptidyl-tyrosine dephosphorylation

Chaperone-mediated protein folding

Core promoter proximal region sequence-specific DNA binding

Sequence-specific DNA binding

Metallopeptidase activity

Transcription regulatory region DNA binding

Histone deacetylase binding

Endocytic vesicle

Negative regulation of translation

Positive regulation of gene expression

Single-stranded RNA binding

Endosome membrane

mRNA export from nucleus

Cytoskeleton

Intracellular protein transport

Integral component of membrane

Regulation of cell proliferation

Positive regulation of gene expression

Positive regulation of JNK cascade

Membrane raft

Cell differentiation

Vesicle

Transcription factor binding

Plasma membrane

Angiogenesis

Sequence-specific DNA binding

Negative regulation of transcription

At least one gene annotated with the GO category listed is targeted
by miRNAs that are differentially regulated in the aorta of mice
with developmental IGF-1 deficiency. Significance (p < 0.05) was
determined by Fisher’s exact test

Fig. 3 a Scheme illustrating the selection strategy adopted to
predict putative biological targets of differentially regulated
miRNAs for qPCR analysis (see Methods). b Percentage of
predicted miRNA target genes whose aortic expression is
significantly changed with developmental IGF-1 deficiency and
age. c qPCR data showing the effect of developmental IGF-1
deficiency and aging on aortic mRNA expression of predicted
biological targets of differentially regulated miRNAs. d
Comparison of aortic expression of selected miRNA targets
(qPCR data) shows that developmental IGF-1 deficiency (Igf1f/f

x Alb-cre) and adult-onset IGF-1 deficiency (Igf1f/f + TBG-iCre-
AAV8) differentially alter expression of genes related to
extracellular matrix homeostasis and maintenance of vascular
structural integrity. Data are mean ± SEM. *p < 0.05. e Proposed
model for epigenetic mechanisms induced by IGF-1 in a critical
peripubertal time window impacting vascular health later in life.
The scheme depicts preadult periods of adaptive plasticity in the
transition between juvenility to adolescence and to adulthood. This
transition between developmental stages, which is governed in
part by IGF-1, determines cardiovascular health span(Csiszar
et al. 2008; Reddy et al. 2014; Sonntag et al. 2005a) and
establishes longevity(Panici et al. 2010). We predict that
persistent epigenetic mechanisms, including miRNA
dysregulation and consequential alterations in extracellular
matrix homeostasis contribute to the continued effects of the
peripubertal IGF-1 surge later in life

b
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oxidative stress and were not protected from the adverse
vascular effects of aging (Fig. 1). Previous studies in
human Laron syndrome patients (Guevara-Aguirre et al.
2011), Ames dwarf mice (Csiszar et al. 2008), mice
harboring a liver-specific Igf1 deletion (Troncoso et al.
2012) and Lewis dwarf rats (Bailey-Downs et al. 2012b;
Cittadini et al. 1997; Longobardi et al. 2000; Ungvari
et al. 2010) also show that developmental IGF-1 defi-
ciency compromises cardiovascular health in adulthood.
The available data suggest that developmental IGF-1
deficiency also exerts detrimental effects on stress resis-
tance pathways, inflammatory processes and/or changes
in structural characteristics of the vasculature later in life
(Bailey-Downs et al. 2012b; Csiszar et al. 2008; Reddy
et al. 2014; Ungvari et al. 2010). Collectively, our pres-
ent findings and the aforementioned data from the liter-
ature do not support the often-cited hypothesis that
developmental GH/IGF-1 deficiency exerts universal
anti-aging effects (Panici et al. 2010).

To our knowledge, this is the first study to demon-
strate that developmental IGF-1 deficiency elicits
persisting late-life changes in miRNA expression profile
in the vasculature (Fig. 2). These findings raise the
possibility that changes in post-transcriptional control
of expression of genes critical targets for vascular health
underlie the late-life cardiovascular effects of develop-
mental IGF-1 deficiency. The available evidence sup-
ports the concept that a link exists between circulating
IGF-1 levels and miRNA expression (Bake et al. 2014;
Bates et al. 2010; Fenn et al. 2013; Marino et al. 2010;
Victoria et al. 2015). Demonstration of IGF-1-
dependent changes in miRNA biology in the vascula-
ture is particularly important (Bonauer et al. 2009; Chen
et al. 2015; Doebele et al. n.d.; Hergenreider et al. 2012;
Kim et al. 2014; Kuehbacher et al. 2007; Leung et al.
2013; Lovren et al. 2012; O’Rourke and Olson 2011;
Rotllan et al. 2013; Stellos and Dimmeler 2014; Weber
et al. 2014; Zampetaki et al. 2014) as changes inmiRNA
expression have been causally linked to the develop-
ment of cardiovascular aging phenotypes (Boon et al.
2013; Csiszar et al. 2014; Ungvari et al. 2013) and the
pathogenesis of cardiovascular diseases (Ono et al.
2011).

The mechanisms by which developmental IGF-1
deficiency alters miRNA expression that persists later
in life are presently unknown. Recent studies showed
changes in developmental IGF-1 levels during a critical
time window in Lewis dwarf rats (Ungvari et al. 2011)
and Snell dwarf mice (Pit1dw/dw, which are

phenotypically identical to Ames dwarf mice) (Panici
et al. 2010) elicits long-lasting changes in cellular phe-
notypes, which persists in cell culture. These findings
are consistent with the concept that changes in develop-
mental IGF-1 levels result in epigenetic modifications to
the genome. Recent studies have demonstrated that
epigenetic mechanisms, including DNA methylation
and histone modification, not only regulate the expres-
sion of protein-encoding genes, but also miRNAs, such
as miR-203 (Sato et al. 2011). In that regard, it is
significant that miR-203 is among the miRNAs selec-
tively regulated by developmental IGF-1 deficiency.
Further studies are warranted to test experimentally the
role of IGF-1-mediated epigenetic regulation of
miRNAs in the vasculature.

Dysregulation of miRNA pathways with develop-
mental IGF-1 deficiency likely have important patho-
physiological consequences in the cardiovascular sys-
tem (Table 2). miRNA-dependent pathways have been
shown to regulate multiple aspects of cellular physiolo-
gy relevant for vascular aging, including angiogenesis
(Kuehbacher et al. 2007; Suarez et al. 2007, 2008; Yang
et al. 2005), structural integrity of the vessels, replicative
senescence (Menghini et al. 2009; Vasa-Nicotera et al.
2011), mechanotransduction (Wu et al. 2011), NO pro-
duction (Suarez et al. 2007; Wu et al. 2011), endothelial
apoptosis (Asada et al. 2008), and inflammation (Suarez
et al. 2007). Among the miRNAs whose expression is
regulated by developmental IGF-1 deficiency, upregu-
lation of miR-125a-5p has been linked to impaired
angiogenesis and endothelial dysfunction (Che et al.
2014), endothelial apoptosis (Svensson et al. 2014),
and dysregulation of endothelial tight junctions
(Reijerkerk et al. 2013). miR-92a promotes atheroscle-
rosis, endothelial dysfunction (Loyer et al. 2014), and
neointima formation (Daniel et al. 2014). miR-126 is a
biomarker of clinical atherosclerosis (Kim et al. 2015).
miR-376b was reported to inhibit angiogenesis by
targeting the VEGFA/Notch1 signaling pathway (Li
et al. 2014). A functional link between upregulation of
miR-138 and endothelial dysfunction has also been
proposed (Sen et al. 2014).

Changes in miRNA expression induced by develop-
mental IGF-1 deficiency likely also play important func-
tional roles in impairing the structural integrity of the
vessels, targeting components of the extracellular ma-
trix. Accordingly, miR-328 is a negative regulator of
collagen (Col1a1) expression (Rutnam et al. 2013;
Rutnam and Yang 2012). miR-21 (Rutnam et al. 2013)
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and miR-29 (Rutnam et al. 2013) also target collagens,
whereas miR-671 downregulates fibronectin (Rutnam
and Yang 2012). A link between miR-125a-5p (Rutnam
et al. 2013) and impaired synthesis of extracellular
matrix has been also documented. Changes in extracel-
lular matrix synthesis and remodeling in the vascular
wall during atherosclerosis, development of aneurysms,
and the pathogenic processes leading to vascular rup-
tures (aorta dissection, hemorrhagic stroke, cerebral
microhemorrhages) are governed by a wide range of
growth factors and cytokines. These autocrine/
paracrine mediators and their receptors can also be
regulated by miRNAs. Accordingly, miR-224 was re-
ported to modulate extracellular matrix synthesis via
regulation of connective tissue growth factor (Chen
et al. 2014).

To better understand the pathophysiological rele-
vance of late-life miRNA dysregulation induced by
developmental IGF-1 deficiency, we analyzed expres-
sion of predicted targets of altered miRNAs known to be
involved in maintenance of structural and functional
integrity of the vascular system. Using a novel compu-
tational approach, we identified miRNA target genes
that associate with IGF-1 deficiency, aging, and vascular
pathophysiology. Our method accurately predicted
genes whose expression was dysregulated in mice with
developmental IGF-1 deficiency (Fig. 3). We found that
many age-related changes in vascular expression of
miRNA target genes were exacerbated in mice with
developmental IGF-1 deficiency (Fig. 3b). Further, de-
velopmental IGF-1 deficiency and adult-onset IGF-1
deficiency differentially altered expression of the pre-
dicted miRNA target genes in the mouse aorta (Fig. 3c).
The aforementioned findings provide strong support for
the concept that early-life changes in the hormonal
milieu have significant impact on cardiovascular
health-span later in life, accelerating vascular aging.

Importantly, we confirmed that the expression of
multiple extracellular matrix-related genes, including
collagen-encoding genes, were preferentially down-
regulated in mice with developmental IGF-1 deficiency
(Fig. 3c). These results extend previous findings dem-
onstrating that developmental IGF-1 deficiency pro-
motes structural impairment and extracellular matrix
remodeling in vessels of aged Lewis dwarf rats, increas-
ing their propensity to spontaneous rupture (Sonntag
et al. 2005a). Interestingly, developmental IGF-1 defi-
ciency is also associated with decreased collagen ex-
pression in the cardiovascular system of Ames dwarf

mice (Helms et al. 2010). Future studies are evidently
needed to experimentally dissect the IGF-regulated
pathways regulating extracellular matrix homeostasis
and vascular remodeling (Bruel and Oxlund 2002;
Shai et al. 2010; Ungvari and Csiszar 2012) in the
models used.

In addition to collagen encoding genes, we found that
other factors controlling vascular integrity are also
downregulated in mice with developmental IGF-1 defi-
ciency (Fig. 3d). Bone morphogenetic proteins are im-
portant regulators of extracellular matrix homeostasis.
Interestingly, our data suggest that developmental IGF-1
deficiency results in dysregulation of BMP signaling
pathways in the vascular wall. We found that develop-
mental IGF-1 deficiency results in downregulation of
the adapter protein Crk, which is involved in growth
regulation, cell migration, and cell adhesion. It is signif-
icant that genetic deletion of Crk results in increased
vascular fragility (Park et al. 2006). Vascular expression
of paxillin was also downregulated in mice with devel-
opmental IGF-1 deficiency. Paxillin is expressed at focal
adhesions, which adhere the cytoskeleton of smooth
muscle cells to the extracellular matrix in the vascular
wall and thereby contribute to the tensile strength of the
vasculature. We found that developmental IGF-1 defi-
ciency alters the expression of laminin, a major constit-
uent of basement membranes dysregulated in aging
(Gavazzi et al. 1995) and α6 integrin, a specific laminin
receptor. Both aging and developmental IGF-1 deficien-
cy tend to upregulate Wilms’ tumor 1-associating pro-
tein (WTAP), a nuclear protein that interacts with the
Wilms’ tumor 1 tumor suppressor gene product (WT1).
WTAP is a newly discovered component of the m6 A
methyltransferase complex, which plays a critical role in
epitranscriptomic regulation of RNA metabolism (Ping
et al. 2014). Recent studies show thatWTAP inhibits the
proliferation of vascular smooth muscle cells and endo-
thelial cells and promotes apoptosis, regulating vascular
remodeling (Small et al. 2006, 2007). During develop-
ment of the vasculature IGF-1 was shown to downreg-
ulate WTAP, which is necessary for IGF-1 to confer its
antiapoptotic effects, regulating smooth muscle cell fate
(Small and Pickering 2009). Another factors affected by
developmental IGF-1 deficiency are endothelin receptor
A, versican and O-GlcNAc transferase (Ogt), and
Wwtr1. Endothelin receptor A is important for vascular
development and maintenance of vascular integrity
(Donato et al. 2014). Importantly, genome-wide associ-
ation studies identify EDNRA as a possible factor in the
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pathogenesis of intracranial aneurysms (Low et al.
2012; Yasuno et al. 2011). The proteoglycan versican
has a key role in extracellular matrix assembly and
contributes to the pathogenesis of intracranial aneu-
rysms (Sathyan et al. 2014). Changes in the O-linked-
N-acetylglucosamine (O-GlcNAc) modification of cy-
toplasmic and nuclear proteins, catalyzed by O-GlcNAc
transferase, regulates a wide range of cellular functions
and have been associated with a number of age-related
diseases (Fulop et al. 2008).Wwtr1 (TAZ) is a transcrip-
tional coactivator that links mechanosensing of extra-
cellular matrix stiffness to activity of nuclear transcrip-
tion factors in vascular cells (Dupont et al. 2011). Inter-
estingly, while the aforementioned miRNA target genes
were uniquely regulated by developmental IGF-1 defi-
ciency, other targets, such as TJP1 (ZO-1, which plays a
role in assembly of tight junctions, regulating
endothelial permeability and vascular development)
and CRIM1 (which regulates vascular stability and an-
giogenesis) appear to be affected by post-pubertal IGF-1
status.

Taken together, out of the results of the miRNA
profiling experiments and the target validations studies
the concept emerges that IGF-1 deficiency during a
critical period through development impacts extracellu-
lar matrix biology and smoothmuscle phenotype later in
life via miRNA-regulated pathways, thereby altering the
composi t ion and organizat ion of the t issue
microenenvironment and contributing to the pathogen-
esis of age-related vascular diseases. In support of this
concept, there is growing evidence that in humans and
experimental animals, the origins of pathologies associ-
ated with structural weakening of the vascular wall (e.g.,
intracerebral hemorrhages) occur during puberty, a time
of rapid changes in the cerebral circulation and structural
brain development (Blakemore et al. 2010; Blanton
et al. 2012; Giedd et al. 2006; Goddings et al. 2014;
Manz et al. 1979; Peper et al. 2011; Satterthwaite et al.
2014).

Limitations of the study

There are important limitations of our study, including
the limited endpoints tested. Further studies are warrant-
ed to assess vascular miRNA expression profile and
their predicted targets in young Igf1f/f x Alb-cre mice
and in aged Igf1f/f x Alb-cre mice with peripubertal IGF-
1 replacement. Our recent studies suggest that the con-
sequences of a loss of circulating IGF-1 on vertebral

bone aging are different in male and female mice due to
compensatory changes in IGF-1 signaling (Ashpole
et al. 2015). Thus, future studies should determine
whether late-life effects of developmental IGF-1 defi-
ciency on vascular health are also sex-specific. There are
studies suggesting that IGF-1 deficiency determines
intima-media thickness in human patients (Colao et al.
2004); thus, future studies should also determine how
experimental IGF-1 deficiency affects neointima forma-
tion in our models.

Conclusions

The findings of the present study provide additional
experimental evidence in support of the concept that
IGF-1 levels in a critical period early in life influence
vascular health later in life (Fig. 3e). Among the possi-
ble diverse developmental epigenetic processes regulat-
ed by IGF-1, our data provide evidence for persistent
changes in miRNA-mediated post-transcriptional gene
regulation in the vasculature. Importantly, our findings
suggest that developmental IGF-1 levels significantly
impact post-transcriptional regulation of expression of
genes regulating structural integrity of the vasculature,
including components of the extracellular matrix. Future
studies should fully elucidate the mechanistic effects of
developmental IGF-1 levels on the pathogenesis of spe-
cific vascular diseases that involve remodeling/
degradation of the extracellular matrix (including intra-
cerebral hemorrhages, atherosclerosis, aneurysm), to
characterize the peripubertal time window for the late-
life effects of developmental IGF-1 on vascular health-
span and to study the contribution of individual
miRNAs or miRNA clusters regulated by developmen-
tal IGF-1 deficiency in controlling gene expression that
underlie extracellular matrix remodeling and microvas-
cular aging.
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