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Rapamycin and modified rapamycins (rapalogs) have been used to prevent allograft rejection after organ transplant for over 15
years. The mechanistic target of rapamycin (mTOR) has been determined to be a key component of the mTORC1 complex which
consists of the serine/threonine kinase TOR and at least five other proteins which are involved in regulating its activity. Some of the
best characterized substrates of mMTORC1 are proteins which are key kinases involved in the regulation of cell growth (e.g.,
p70S6K) and protein translation (e.g., 4E-BP1). These proteins may in some cases serve as indicators to sensitivity to rapamycin-
related therapies. Dysregulation of mMTORC1 activity frequently occurs due to mutations at, or amplifications of, upstream growth
factor receptors (e.g., human epidermal growth factor receptor-2, HER2) as well as kinases (e.g., PI3K) and phosphatases (e.g.,
PTEN) critical in the regulation of cell growth. More recently, it has been shown that certain rapalogs may enhance the effec-
tiveness of hormonal-based therapies for breast cancer patients who have become resistant to endocrine therapy. The combined
treatment of certain rapalogs (e.g., everolimus) and aromatase inhibitors (e.g., exemestane) has been approved by the United
States Food and Drug Administration (US FDA) and other drug regulatory agencies to treat estrogen receptor positive (ER+) breast
cancer patients who have become resistant to hormonal-based therapies and have progressed. This review will summarize recent

basic and clinical research in the area and evaluate potential novel therapeutic approaches.

Introduction

It has been shown that the PI3K/PTEN/Akt/mTORC1 kinase
cascade is frequently expressed aberrantly in breast and other
cancers, which can result in abnormal proliferation. One
clinical method to suppress the activity of this cascade is to
inhibit the mTOR kinase, a key component present in the
mTORC1 complex in this pathway. One approved drug family
which suppresses mTOR is the rapamycin family (as known as
rapalogs). Rapamycin was originally observed and prescribed
to prevent allograft rejection in organ transplant patients. Now
rapamycin and certain rapalogs are being used to treat various
cancer patients, including breast cancer patients.
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Breast cancer is one of the most frequent malignancies in
women as approximately one in eight women will develop
breast cancer in their lifetime. In the United States, this
corresponds to approximately 231 840 new cases of invasive
breast cancer each year, which will result in approximately
40 290 deaths [1].

One of the recent major advances in breast cancer therapy
is the discovery that certain breast cancers which remain hor-
mone receptor positive (HR+) but have become resistant to
endocrine therapy can be treated by the modified rapamycin,
everolimus. Everolimus (AFINITOR®), in combination with
the aromatase inhibitor exemestane (AROMASIN®), was
approved by the US FDA in 2012 to treat HR+, HER2— breast
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cancer. Everolimus targets the mTORC1 complex, which is of-
ten dysregulated in breast cancers that have become resistant to
hormone-based therapies. Suppression of mTORC1 results in in-
hibition of p70S6K and other proteins. The expression of these
proteins is dysregulated in breast cancer patient samples as com-
pared to normal tissues. p70S6K expression is associated with a
poor prognosis in breast cancer [2].

Rapamycin and rapalogs used in treatment of
human diseases

Rapalogs are synthetic drugs which are analogues of rapamycin.
Rapamycin was originally purified from the bacterium
Steptomyces hygroscopicus. The rapalogs have better pharmacoki-
netic kinetic properties than the natural rapamycin. mTORC1
blockers (rapalogs) have been evaluated in clinical trials with
breast and other cancer patients [3-7]. Interestingly, different
rapalogs have displayed different effects. For example, temsiro-
limus (TORISEL®) did not show any benefits when compared
with endocrine therapy alone. Sirolimus (RAPAMUNE®,
rapamycin) has shown promising results in phase II clinical
trials [7].

Rapamycin (sirolimus, RAPAMUNE®) was approved by the
US FDA to prevent rejection in kidney transplant patients.
Temsirolimus (TORISEL®) was approved by the US FDA and
European Medicines Agency (EMA) for the treatment of renal
cell carcinoma in 2007. Everolimus (AFINITOR®) was approved
for the treatment of advanced kidney cancer in 2009 and for
prevention of organ transplantation rejection after renal trans-
plant in 2010. In addition, it was approved for treatment of
subependymal giant cell astrocytoma (SEGA) that is associated
with tuberous sclerosis (TS) in 2010 in those patients who
cannot have surgical intervention. It was also approved in
2011 for treatment of patients containing inoperable or meta-
static neuroendocrine tumours of pancreatic origin. Everolimus
has been approved by the USA FDA for the prevention of organ
rejection in liver transplant patients since 2013. Since 2015,
sirolimus has been approved by the US FDA for the treatment
of lymphangioleiomyomatosis (LAM). LAM is a rare disease
affecting lungs, kidneys and the lymphatic system and is
progressive.

The rapalogs temsirolimus (TORISEL®) and everolimus
(AFINITOR®) are being used to treat breast and renal cancer
patients [7-9]. The identification of markers which could
predict response to therapy is important. Furthermore, the
effects of a combination of these rapalogs with other anti-cancer
drugs are being evaluated.

Endocrine therapy-aromatase inhibitors (Als)
Commonly used non-steroidal Als include letrozole (FEMARA®)
and arimidex (ANASTROZOLE®). These non-steroidal Als inhibit
estrogen synthesis by a reversible competition for aromatase.
Exemestane (AROMASIN®) is an oral steroidal AL It binds
irreversibly to aromatase and inhibits its activity. It prevents
the conversion of cholesterol into pregnenolone thereby
suppressing the conversion of androgenic precursors into
estrogens. Al therapy has been used in the treatment of all
stages (0 to IV) of breast cancer. Al therapy has been used to
prevent metastasis of estrogen receptor positive (ER+) breast
cancers. Al therapies have been associated with musculoskel-
etal problems and hot flashes [9]. A diagram illustrating the
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site of action of certain estrogen-receptor antagonists and
Als and their effects on ERo-mediated gene expression is
presented in Figure 1.

Endocrine therapy estrogen-receptor antagonists
4-hydroxyl-tamoxifen (4HT, NOLVADEX®) binds to the ER
and competes with estrogen. 4HT belongs to the group of
compounds which are called selective estrogen-receptor modu-
lators (SERMYS) (Figure 1). Other SERMS include raloxifene and
toremifene. SERMS accelerate the proteasomal degradation of
ERa. Fulvestrant (FASLODEX®) is a pure estrogen receptor
antagonist. Exemestane treatment is superior to tamoxifen
treatment as documented in a phase III clinical trial [10]. The
superior effects of Als in comparison to tamoxifen, especially
in combination with rapalogs such as everolimus, have been
summarized recently [7-10].

Markers of sensitivity to therapy

The expression and localization of p70S6K1, p70S6K2 and
phosphorylated (activated) p70S6K (T389) were examined
in two large breast cancer studies. p70S6K1 was associated
with high proliferation, HER2 expression and cytoplasmic
Akt expression. p70S6K2 was associated with ER+, low prolif-
eration and nuclear Akt (S473) expression. The expression of
phosphorylated p70S6K (T389) was correlated with a low
benefit to treatment with tamoxifen. The cytoplasmic vs.
nuclear localization of p70S6K was determined to be related
to benefit with tamoxifen as nuclear p70S6K was associated
with reduced benefit to tamoxifen. In contrast, cytoplasmic
p70S6K was associated with a significant benefit to tamoxi-
fen. High p70S6K1 protein expression was associated with a
poor prognosis whether it was located in the nucleus or
cytoplasm. Thus, p70S6K expression and localization could
be a marker to predict those patients which may benefit from
tamoxifen [11].

Combining estrogen-receptor antagonists and
rapalogs in breast cancer therapy

Approximately 75% of breast cancer patients are HR+ and
may be initially sensitive to hormonal-based therapies which
target the HR. The development of resistance to hormonal-
based therapies is a significant problem in breast cancer treat-
ment. The PI3K/PTEN/Akt/mTORC1 pathway is frequently
hyper-activated in endocrine-resistant breast cancer.

A link between ERo and mTORC1 has recently been
discovered. mTORC1 can phosphorylate ERa on S$167 via
p70S6K which results in its activation. mTORC1 can phosphor-
ylate ERa. on S104/S106 which leads to the transcription of ERa-
target genes [12].

The results of a randomized phase II trial of the combination
of tamoxifen and everolimus in patients with HER2—, metasta-
tic breast cancer that had previously been treated with Al in
the TAMRAD study were presented. The TAMRAD study was a
randomized, noncomparative phase II study. The TAMRAD
study attempted to determine the efficacy and safety of tamox-
ifen in combination with everolimus in Al-resistant metastatic
breast cancer patients. The TAMRAD study revealed that the
combination of tamoxifen and everolimus increased the clinical
benefit rate (CBR) from 42% with tamoxifen alone to 61% with
everolimus and tamoxifen. The time to progression (TTP)
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increased from 4.5 months with tamoxifen alone to 8.6 months
in those patients treated with tamoxifen and everolimus. The
risk of death was reduced by 55% upon treatment with tamoxi-
fen and everolimus vs. tamoxifen alone [13]. A letter to the
editor commented on the appropriateness of the study design
in this clinical trial [14]. The TAMRAD trial showed benefits to
those patients who initially responded to Als but subsequently
became resistant. However, the combination did not appear to
be beneficial for patients with de novo, previously untreated
metastatic HR+ breast cancer [15].

Clinical samples were examined from 52 patients in the
TAMRAD trial. Subgroups were identified based on TTP and
examined for various markers. The tamoxifen/everolimus-
treated samples with the most improvement in TTP com-
pared with the tamoxifen-only treated subgroup patients
were determined to express high levels of p4EBP1, low levels
of 4EBP1, LKB1, pAkt and PI3K. In 45 patient samples
examined for mutation at PIK3CA and KRAS, 20% had
mutations at PIK3CA and one patient (2%) had a mutation
at KRAS. In this study, a positive correlation between down-
stream targets of mTORC1 and PI3K/PTEN/Akt/mTORC1
activation and everolimus efficiency was observed. The
authors pointed out that a larger number of patient samples
should be examined [15].

The BRE-43 study examined the effects of a combination
of everolimus and the complete ER antagonist fulvestrant
(FASLODEX®) in ER+ patients with metastatic breast cancer.
The phase II trial examined this drug combination with
postmenopausal woman that were previously treated with
an Al who exhibited disease progression or relapse. It was
determined that everolimus plus fulvestrant was effective in
Al-pretreated ER+ breast cancer patients whose cancer had
metastasized. However, not all patients benefited from this
therapeutic approach. The discovery of additional biomarkers
may allow the selection of patients who will benefit [16].

Combining aromatase inhibitors and rapalogs
in breast cancer therapy
The effects of everolimus has been examined in combination
with the nonsteroidal Al letrozole (FEMARA®) in metastatic ER
+ breast cancer patients in a phase II randomized study. The
addition of everolimus to letrozole increased the response rate
from 59.1 to 68.1%. Downregulation of phosphoribosomal
protein S6 (rpS6) was detected in the everolimus-treated
patients [17].

The effects of combining letrozole with temsirolimus
have been examined in a phase III clinical trial as a first line

Br ] Clin Pharmacol (2016) 82 1189-1212 1191



BICP L. S. Steelman et al.

endocrine therapy in postmenopausal women who had
locally advanced or metastatic breast cancer [18]. This study
revealed that adding temsirolimus to letrozole did not appear
to improve the progression-free survival (PES) in this group of
Al-naive breast cancer patients.

Everolimus in combination with exemestane for
HR+, HER2— metastatic breast cancer patients
The Breast Cancer Trials of Oral Everolimus-2 (BOLERO-2)
study evaluated the effects of combining everolimus and
exemestane for endocrine-resistant HR+, HER2— breast
cancer [19]. The FDA approved the combination of everoli-
mus and exemestane to treat HR+, HER2— breast cancer
patients who progressed on treatment with letrozole or
anastrazole (Arimidex®, a nonsteroidal AI) Al treatments.
The everolimus and exemestane combined treatment re-
sulted in better therapeutic outcomes [19]. The primary
end point in the BOLERO-2 clinical trial was PFS and indi-
cated that the combination of everolimus and exemestane
improved by more than two-fold PFS in HR+, HER2-
breast cancer patients that had progressed after treatment
with nonsteroidal Als. In contrast, analysis of the second-
ary end point, which was overall survival (OS), did not
result in a statistically significant difference (Clinical Trial
#NCT00863655) [20].

The BOLERO-2 clinical trial also revealed that treatment
with everolimus and exemestane had positive effects on bone
marrow turnover and progressive disease in bone [21].

Inflammation of the mucous membrane of the mouth
(stomatitis) is the most frequent side effect associated with
everolimus treatment. If stomatitis is severe, it may result
in either discontinuation of everolimus treatment or
methods to relieve the stomatitis (steroid-based mouth
rinses) [22].

A summary of a meta-analysis of randomized breast
cancer clinical trials with patients treated with Als with or
without everolimus has been published [23]. The analysis
was obtained from six studies which included 3693 women
who were treated with everolimus plus exemestane or
placebo plus exemestane. Everolimus plus exemestane in-
creased the overall response rate (ORR), relative risk, PFS
and clinical benefit compared to placebo control as well
as the adverse side effects compared to the placebo control
(stomatitis, rash, hyperglycaemia, diarrhoea, anorexia and
pneumonitis).

Everolimus in combination with letrozole as
frontline therapy for HR+, HER2— metastatic
breast cancer patients

The Breast Cancer Trials of Oral Everolimus-4 (BOLERO-4)
study is a phase II clinical trial determining the effects of
everolimus plus letrozole as a first-line therapy for HR+,
HER2— metastatic breast cancer patients [24]. This trial will
evaluate whether there is a role for continuing everolimus
and Al treatment after progression. This trial will also exam-
ine whether the combination of everolimus plus letrozole
can be used after progression in those breast cancer patients
treated with everolimus plus exemestane [25].
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Activation of the PI3K/PTEN/AKT/MTOR
pathway in endocrine- resistant breast cancer
The PI3K/PTEN/AKT/mTORC pathway is frequently dysregulated
in many different cancer types including: breast [26, 27], pancre-
atic [28, 29], prostate [30], brain [31, 32], leukaemia [33, 34] and
others [35-38]. This pathway is regulated at many steps by
tumour suppressor and oncogenes [35, 36]. Mutations can occur
at multiple steps in this pathway [37, 38]. In some cases dysregu-
lation of this signalling pathway can result in drug and therapeu-
tic resistance [39]. The mutation rates of components of this and
other pathways in breast and other cancers can be found at The
Cancer Atlas Data Base: https://tcga-data.nci.nih.gov/tcga/. There
are many different mechanisms which can result in alteration of
the activity of the PI3K pathway. Activating mutations at many
different genes can occur (e.g., PIK3CA), while mutations which
silence tumour suppressor genes can occur (e.g., PTEN). In
addition, epigenetic mechanisms as well as miRNAs and IncRNAs
can alter the activity of this pathway [40, 41]. A diagram illustrat-
ing where some of the mutations that occur in signalling path-
ways is presented in Figure 2.

Targeting the PI3K/PTEN/Akt/mTORC1 pathway is a very
active area of basic and clinical research as well as patient
therapy [42, 43]. Various components of this pathway have
been targeted including PI3K [44], PTEN [45, 46], Akt [47],
mTORCI1 [44] as well as critical downstream components in-
cluding GSK-3 [37, 38] and NF-«B [48]. A diagram illustrating
the PI3K/PTEN/Akt/mTORC1 pathway and some sites where
inhibitors target key components is presented in Figure 3.

Tamoxifen will inhibit the growth of bulk adherent breast
cancer cells (BC) but not the breast cancer stem cells (CSCs).
Tamoxifen-treated CSCs were determined to express proteins in-
volved in the PI3K/PTEN/Akt/mTORC1 pathway including pro-
teins associated with ribosome biogenesis and mRNA translation
including p70S6K1, rpS6 and eukaryotic translation initiation
factor 4E-binding protein 1 (4E-BP1). Combined treatment of
the breast CSCs with tamoxifen and rapamycin or the rapalog
everolimus or the dual PI3K/mTOR inhibitor PF-04691502
suppressed mammosphere formation. These studies indicate
the importance of the mTORC1 pathway in mammosphere
formation and endocrine resistance [49].

Everolimus in combination with other drugs to
treat herceptin-resistant breast cancer patients
Activation of the PI3K/PTEN/Akt/mTORC1 pathway has
been shown to be involved in herceptin resistance in HER2+
breast cancers. A phase Il safety and clinical activity trial with
oral sirolimus, in combination with herceptin (trastuzumab),
was performed with patients with metastatic breast cancer
who exhibited disease progression after prior herceptin
therapy. The combination of sirolimus and herceptin
appeared to be well tolerated in this study. There was also
some disease activity. Thus, in some HER-resistant tumours,
mTOR inhibition may overcome herceptin resistance [50].

It was known that rapalogs would suppress herceptin
resistance in PTEN-deficient tumours and make the normally
herceptin-resistant tumours sensitive to herceptin. The BOLERO-
1 clinical trial (ClinicalTrials.gov, number NCT00876395)
examined the safety of combining everolimus and herceptin
and paclitaxel in the treatment of advanced HER2+ breast cancer
patients. The advanced breast cancer patients enrolled in this
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Genetic mutations which result in activation of the Ras/PI3K/PTEN/Akt/mTORC1 and Ras/Raf/MEK/ERK signalling pathways and contribute to
malignant transformation and therapy resistance. Sometimes dysregulated expression of growth factor receptors occurs by genetic mutations,
translocations or genomic amplifications which can lead to activation of the Ras/Raf/MEK/ERK, Ras/PI3K/PTEN/Akt/mTORCT and other signalling
pathways. Genes in the Ras/PI3K/PTEN/Akt/mTORC1 and Ras/Raf/MEK/ERK pathways that have activating mutations detected in human cancer
and proliferative diseases are indicated in red ovals and squares. Other key genes are indicated in green ovals. Red arrows indicate activating
events in pathways. Blocked black arrows indicating inactivating events in pathways

study had not been treated with either herceptin or chemo-
therapy within 12 months of randomization. This study
revealed that the PFS was not significantly different between
the full analysis population (everolimus and herceptin and
paclitaxel vs. placebo and herceptin and paclitaxel).
Although this study did not meet its prespecified criteria for
significance, the authors reported that the HR-/HER2+ popu-
lation treated with everolimus needs further evaluation as in
this subgroup, a 7.2-month prolongation was observed in
the arm that received everolimus and herceptin and pacli-
taxel in comparison to placebo and herceptin and paclitaxel
[51].

The BOLERO-3 phase III clinical trial examined the effects of
everolimus in combination with other drugs (vinorelbine,

NAVELBINE®) in HER2+, herceptin-resistant breast cancer pa-
tients. Addition of everolimus to the combination of herceptin
plus vinorelbine prolonged PFES in advanced herceptin-resistant
breast cancer patients who had previously been treated with
taxanes (ClinicalTrials.gov number NCT01007942) [52]. While
the BOLERO-3 trial was statistically significant, the clinical
usefulness may be limited and did not lead to an indication in
this breast cancer subtype.

Use of rapalogs to overcome herceptin resistance
in HER2+ breast cancers

In a RNA interference study of 8000 genes, only PTEN suppres-
sion was determined to be responsible for herceptin resistance
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Figure 3

Overview of the HER2/PI3K/PTEN/Akt/mTORC pathway and potential sites for intervention with small molecule membrane-permeable inhibitors and
monoclonal antibodies (MoAbs). The HER2 receptor is indicated in blue. In this figure it is depicted as a homodimer, although it can also heterodimerize
with other EGFR family members. The downstream PI3K/PTEN/Akt/mTORC1 pathway is regulated by Ras (indicated in green ovals), PTEN indicated in a
black octagon, insulin regulated substrate 1 (IRS1) Shc, Grb2, Sos and p-catenin are indicated in orange ovals. Kinases are indicated in green ovals. The
p85 regulatory subunit of PI3K (p85PI3Ka) is indicated in a green oval. The phosphatases which inhibit steps in this pathway are indicated in black oc-
tagons. TSC1 and TSC2 are indicated in black squares. PIP2 and PIP3 are indicated in yellow ovals. The mTORC1 blockers (rapalogs), PI3K and mTOR
inhibitors are indicated in red octagons. The AMPK activator metformin is indicated in a green octagon. mTOR interacting proteins, which positively
regulate mTOR activity, are indicated in yellow ovals. mTOR interacting proteins which negatively regulate mTOR activity are indicated in black ovals.
Transcription factors activated by either ERK or Akt phosphorylation are indicated in yellow diamonds. The FKHR transcription factor that is inactivated
by Akt phosphorylation is indicated by a black diamond and a white P in a black circle. FKHR is also activated by GSK-3B phosphorylation which is
indicated by a white P in a red circle. mRNA initiation factors and proteins associated with the ribosome are indicated in magenta ovals. mTORC1
phosphorylates the unc-51-like kinase 1 (ULK1) which results in the suppression of autophagy. ULK1 is indicated in a black oval. In contrast, AMPK ac-
tivates both ULK1 and autophagy as well as TSC activity. Proteins involved in the regulation of translation are indicated in purple ovals. Red arrows
indicate activating events in pathways. Black arrows indicate inactivating events in pathways. Activating phosphorylation events are depicted in red
circles with Ps with a black outlined circle. Inactivating phosphorylation events are depicted in black circles with Ps with a red outlined circle

in cells which overexpressed HER2 [53]. Moreover, this study de- it was demonstrated that activation of the PI3K/PTEN/Akt/
termined that PTEN-deficient tumours had lower responses to mTOR pathway was associated with shorter PFS in herceptin-
herceptin than PTEN-positive tumours. In subsequent studies, treated patients [54]. When everolimus was combined with
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Table 1

(Continued)

Type of cancer

Official

Publications

Intervention

Status of trial

Phase of trial patient in trial

Clinical trial #

trial name

with locally advanced or
metastatic breast cancer

*Everolimus (RAD0OT, AFINITOR®), Temsirolimus (CCl-779, TORISEL®). tEverolimus (RAD001), Temsirolimus (CC1-779), Deforolimus (Ridaforolimus, AP23573, MK-8669) and Trastuzumab

(Herceptin). Everolimus (RAD001), Temsirolimus (CCI-779) and EGFR/HER2 Inhibitor (Lapatinib [TYKERB®], EGFR inhibitor Erlotinib [TARCEVA®]) and IGF-R1 Inhibitors (IMC-A12, Cixutumumab).

§Everolimus (RAD001), Ridaforolimus (Deforolimus), Temsirolimus (CCI-779), and Hormonal Therapy (Exemestane [AROMASIN®], Fulvestrant [FASLODEX®], Letrozole [FEMARA®].

mTOR inhibitors in breast cancer therapy
BJCP

chemotherapy, sensitivity to herceptin was observed in breast
cancer models which overexpressed HER2 [55].

Combining everolimus and chemotherapeutic
drugs to treat triple negative breast cancer
(TNBC)

The effects of combining everolimus and chemotherapeutic
drugs (e.g., carboplatin) have been examined in a clinical trial
with metastatic TNBC. The trial with everolimus and
carboplatin demonstrated efficacy in PES for 3 months. In this
study, clinical benefit was defined as (complete remission (CR)
+ partial remission (PR) + stable disease (SD) lasting > 6 months).
This trial demonstrated a clinical benefit of 36% (ClinicalTrials.
gov NCT01127763) [56].

The effects of combining everolimus with neoadjuvant
chemotherapy with paclitaxel for 12 weeks followed by S5-
flurouracil, epirubicin and cyclophosphamide every three weeks
for four cycles was evaluated in patients with TNBC. In this
study, no significant differences were observed between the
everolimus-treated and the nontreated groups [57].

Markers of sensitivity to rapamycin/rapalogs

A total of 302 tumour specimens from HR+, HER2— patient
samples from participants of the BOLERO-2 clinical trial were
examined by next-generation sequencing for genetic muta-
tions. Interestingly, it was determined that the benefit from
everolimus on PFS was present regardless of genetic alter-
ations in PIK3CA, FGFR1 and CCNDI1 or dysregulation of
the signalling pathways of which they are components. How-
ever, differences in everolimus benefit were observed in
PI3KCA exon specific mutations (exon 20 vs. exon 9) as well
as the degree of chromosomal instability [58].

Detection of single nucleotide polymorphism (SNP)
signatures may be an approach to find patients which show
activation of mTOR. Such signatures may define patients
who are sensitive to rapalog treatment [59].

Combining everolimus with metformin

The effects of combining everolimus with the adenosine 5'-
monophosphate-activated protein kinase (AMPK) activator met-
formin have been evaluated. The site of action of metformin is
shown in Figure 3. This combination was determined to inhibit
the growth and mammosphere formation better than either drug
by itself. The combination of everolimus and metformin also
suppressed the phosphorylation of downstream targets including
rpS6 and 4E-BP1 in HCC1429 cells. The combination of everoli-
mus and metformin was also determined to suppress the develop-
ment of xenografts better than treatment with either drug by itself
[60]. There is a clinical trial examining the effects of everolimus
and metformin in breast cancer therapy (NCT01627067).

Combining everolimus with PI3K and TOR
inhibitors

Recently, it has become apparent that blocking signalling
pathways at multiple levels may be more effective than
blocking a pathway at a single position. This may result from
multiple mechanisms including intricate negative and posi-
tive feedback pathways as well as mutations at different com-
ponents. TOR inhibitors actually block the kinase activity of

Br | Clin Pharmacol (2016) 82 1189-1212 1203


http://ClinicalTrials.gov
http://ClinicalTrials.gov

L. S. Steelman et al.

(sanunuod)

J190Ued I583Iq

payipow si 3ng rjeyseIaw aissaiboid yym

‘une|ds o} pajejal sjuaned pajeanyaid-aulpAoelyjue pue

si uipejdoque) -unejdogied -auexe) ul ure|dogied SNOUdARIIUL YHM

papiroid 10N UMM UoneuIquIod Ul L00dVY umouun 11 S/¥0£6001ON uoneuIqwod Ul (L00AYY) SNWI03A]

(DOINID) dnoun ABojoouo

A9s13[ MaN Jo 23n33su| JadueD

321YaA A1anlap e 33 Jo Apnis v “19dued Isealq

se ujwinge o} papuoq JIje)SeIaW 10 padueApe A|jedo|

Joxeyiped s auexelqy UUM UsWwom ul L00avy pue

papiroid JoN ‘auexelqe ‘SNWI0I9A] buiinidal jou ‘buiobuQ 1Y $68¥£6001DON auexeiqe Ap@am jo Apnis /] aseyd

sanpuadoud juessasddnsounwiw 19dURD )SB3( dljeIseIdW Y}IM

‘Kioyewiwejyul-inue sey yeyy sbnip syuaned up [axe3adop snid 100AVY

|ep1043)s /p1od1310200n|6 uoljeuUIqWod 3y} Jo sonaupodewleyd

e ‘auoseyjawexap pue ‘Ajijiqela)oy ‘Ayaes ayy jo Apnis

papiaoid JoN ‘L00Avy ‘|9xe1sdoQ [SEIIVIVINEY 81£€SZ001DON uolje|edsa asop ‘|age| uado ‘| aseyq

J1adUed I5ealq
oeysedw aanebau-a|diy
yum syuaned ur unejdogled
[95] unejdoques 'L00AVY pa3sjdwod o9 I €9//71101DN snid 100Qvy 4O [ety || 3seyd
suonediqngd uoIUAAIU| el Je11} ui Juanjed ern jo # [eray aweu e}
Jo snjejg a3dued jo adLy aseyd [esrurd [eny3o0

(9107 |1dy 03 dn) ulwioaW JO SI0NIYU] dSeuy Sjnd3jow [jews Jo Adesayiowayd pue sbojedes yym sjeidy [edjul)d Jadued isealqg

¢olqel

1204 Br) Clin Pharmacol (2016) 82 1189-1212



(sanunuod)

)RR} DUIQ|2IOUIA Bupinial SINOWN} PIjOS PAdUBAPE U dUIC[I0UIA
papinoid 10N ‘snuljoIswa L 10U 1nq ‘BujobUO ‘29 9leN _ 85ZSSLLOIDON pue snwijouIsWa) JO [eLy [ed1ul | 9seyd

sapueubijew pijos
JuUe)SISaI Ul SNWIOJISWS) pue
papiaoid JoN |9Xe1220p ‘sNwWiIjoJISWa | paie|dwo)d saueubljew pijos Juelsisay $279€0/00.1DN |9xe1220p Jo Apnis | aseyd

192UED URLIEAO pUE [RLIISWOPUD
Ajpuadau ‘}se1q JUB1INd31 10 padueApe Ul ( XAjeeD/

Pa1JLI9A U JOU sey 13DUBd UBLIBAO “I9dUed olIxoQ ‘a1d) upignioxop jewosody|
uoneWIOUI Y} 3sNeddq |elIBWopuUd ‘Og paiejABad pue (g [asii0]) snwijodiswa)
papiroid JoN a1d/snwijoliswa] UMOUUN S| JUBWHNIDDY JUBLIND3I/PIdURAPY 1£9286001ON JO uoneuIqwod jo Apnis q| aseyd v

>
(o
[
—
%
<
e
—
[
o
c
4]
o
)
wv
S
[
—_
o
£
wv
—
o
=
o
<
=
o
O
[
E

190U Jsealq

Josuods Buiaes) J1jeIseIaW 40y duigedaded yym

10yebnsanul jedpurd uoneuIqWod Ul |0OAVY 10MgIyul Yo 1w

papiroad JoN L00avy ‘auigeypaded 0} aNp pajeuIwIa] S00E/¥00LDN Jeso 3y jo Apnis jopid | aseyd v

Jadued jsealq dniejselawl Yyiim
Joxeyped syusned | 00Qvy pue ‘|oxeyped
papiroid 30N ‘SN0 ‘une|dsid pajsjdwod ol I 85/089001ON ‘uneidsid jo Apnis | aseyd v

suonedi|qng uonuIAINU| Jern Jeu} ug yuaned Jein jo # e aweu [ely
Jo snmyejg a3sued jo adAy aseyd [eaund 1enyjo
(panunuod)

Zolqel

1205

Br | Clin Pharmacol (2016) 82 1189-1212



©
-
(]
[
E
o
(V]
-
(%]
%)
—

‘UIWIOMIBIA| pUR SNWIOJISW |

‘SNWIN0IAATE (90ZZ-NIN) S103IqIyu| By pue snwijolojepiys “(qisijoldeq

'S€2739) YOLW/MENd “(aisiledng ‘0Z LIANG) MEldd “(UlqiaJoulA ‘Buexe] ‘Pxelded ‘IdeInodn|i- ‘uidigniid3 ‘joxersdoq ‘spiweydsoydopdAd ‘uneldst) ‘unejdogie) ‘suigeinaded ‘aulpAdeiyiuy
‘auexe.qy) Adessyrowsyd pue (6998-MIN ‘€£S€ZdV ‘snwijologaq) snwijoloyepry ‘(snwijoais sunwedey ‘uppAwedey) snwijodis ‘(,[9SHOL ‘6//-1DD) snwiljodiswa] ‘(4 410MUlY ‘L00AYY) SNWI0IAT,

oy12ads [020304d “anowiny
p1jos ynpe paydadsun
‘ewoydwiA| Jadued Hun)
10ued Asupry ‘1adued
JelydWOPUD ‘g

SNWIjoJISWa)

papiroid JoN ‘3PLIOJY20IPAY UIWLIOLBIA paysjdwod

90ZZ-N “(Jonqiyut
Aemyyed buijjeubis yojou e
‘10)Iq1Yul 95€121095 PWIWED)
ZSZ0-M ‘snwijoiojepry

paisjdwo) J1adUed PIaduURApPY

[s6 ‘vel

ewiouldIed |32 |eual
onejselaw ‘Og
JljeIseldwW ‘sinowiny
pljos pasueApy

YOLW pue Yeid Jo
louquyut [enp e ‘57739
+100avy

papiroid JoN pajajdwo)

sinowiny pijos pasueApe
Ul UILLIOJ3W )M UOIFeUIquIod Ul

89565900.LDON snwijodiswa) jo Apms | aseyd v

192Ued padueApe YlIm

syuaned ur (IN-IIN) s3B|qnop
TSLO-MW + (snwijolojepll) 6998
A PUR 90ZZ-MIA + (Snwijolojepls)
6998-MIA Jo |0d2030.4d [9]jeled | aseyq

C€956CL01DON

sinowiny p1jos pasueApe

yam syuaned ur GEZZ3g Yam
uoneulquiod Ul (;0)ULY ‘SNWIj0IdA3)
L00avy jo Apms buipuy-asop | aseyd

9G1Z8¥L0LDON J23U9d)INW ‘|3qej-uado uy

Isionqiyur yoLw/MNEld 40 NEld Pue snwijosdA]3

suonedi|qng uonuIAINU| Jern Jeu} ug yuaned Jein jo # e aweu |eu)
Jo snmyejg a3sued jo adAy aseyd [eaund 1enyjo

(panunuod)

Zolqel

1206 Br] Clin Pharmacol (2016) 82 1189-1212



TOR, specifically the TOR serine/threonine kinase that is
present in both mTORC1 and mTORC2. Rapalogs block the
activity of mTORC1 but not normally mTORC2. There are
also dual PI3K and TOR inhibitors which block both PI3K
and TOR. The effects of combining the mTORC1 blocker
everolimus with PI3K and TOR kinase inhibitors has been
examined in a panel of 30 breast cancer cell lines. A correla-
tion between everolimus ICs, values and p70S6K phosphory-
lation was observed in these studies. In contrast, a correlation
between everolimus ICs values and Akt or ERK phosphoryla-
tion was not observed. The effects of combining everolimus
and the kinase inhibitors were also examined on four
everolimus-resistant cell lines and inhibition of proliferation
was observed. Thus, it may be possible to enhance the effects
of everolimus with mTOR and PI3K inhibitors on certain
breast cancers [61].

Resistance to rapamycin

In some breast cancer models, activated Akt signalling is
associated with rapamycin resistance. This may be due to
phosphorylation of the transcriptional repressor 4E-BP1.
While rapamycin or the Akt inhibitor MK2206 solo treatment
did not have significant effects on suppressing 4E-BP1
phosphorylation, growth or mobility of tumour cells, the
combined treatment did have benefits both in vitro and
in vivo. The combined treatment suppressed the phosphory-
lation of the proline-rich Akt substrate of 40 kDa (PRAS40)
on S183 and T246 which are normally mediated by mTORC1
and Akt respectively. This resulted in enhanced binding of
dephosphorylated PRAS40 to Raptor/mTOR which repressed
mTORC1-mediated 4E-BP1 phosphorylation and protein
translation. These studies provide a mechanism of how
rapamycin and Akt inhibitors may enhance suppression of
tumour growth [62].

The epithelial mesenchymal transition (EMT) has been
proposed to confer rapamycin resistance. The epithelial
protein E-cadherin was observed to be expressed at higher
levels in rapamycin-sensitive cells. In contrast, E-cadherin
was expressed at lower levels in mesenchymal breast cancer
cells that were less sensitive to rapamycin. MCF-7 breast
cancer cells transfected with the constitutively active Snail
transcription factor were resistant to rapamycin. Inhibition
of ZEB1 transcription factor by transfection of ZEB siRNA in
mesenchymal breast cancer cells promoted mesenchymal to
epithelial transition (MET), E-cadherin expression and
sensitivity to rapamycin. The effects of rapamycin on cell
growth could be enhanced by treatment of the mesenchymal
cells with the MEK inhibitor trametinib [63].

Resveratrol is a stilbenoid (natural phenol) found in the
skin of red grapes, blueberries, raspberries, mulberries and
other plants. Resveratrol is induced when the plant is
attacked by bacteria or fungi. The effects of rapamycin and
resveratrol on the induction of apoptosis and autophagy
have been examined in breast cancer cells. Breast cancer cells
may often become resistant to rapamycin treatment by up-
regulation of the Ras/PI3K/PTEN/Akt/mTORC1 pathway
due to the induction of autophagy which results in the
prevention of apoptosis. Addition of rapamycin and resvera-
trol to ER+ breast cancer cells was shown to induce apoptosis
while inhibiting Akt activation [64].
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Lipins are multifunctional proteins involved in lipid metab-
olism. Lipins can act as enzymes by dephosphorylating
phosphatidic acid to diacylglycerol. Lipins can also function as
co-transcriptional regulators. The role of lipin-1 in rapamycin
sensitivity has recently been investigated. Lipins have been
observed to be upregulated in certain tumours including breast
cancers. Lipins stimulate the proliferation of breast tumour lines
as knock-down of lipin-1 reduced proliferation of breast cancer
cells but not of normal cells. Knock-down of lipin-1 resulted in
activation of RhoA which suppressed cell migration. Autophagy
was also induced when lipin-1 was suppressed. Propranolol is a
sympatholytic nonselective beta blocker which will inhibit
lipins. Suppression of lipins with propranolol increased sensitiv-
ity of the cells to rapamycin [65].

p27%"P! has recently been shown to be a predictive
biomarker for the response to rapamycin in certain patient-
derived xenograft (PDX) models. Breast cancer cells which
expressed high levels of p275'P! were observed to be sensitive
to rapamycin. Rapamycin treatment was determined to
decrease phosphorylation of p70S6K and 4E-BP1 [66].

PDX breast cancer models are being developed by many
investigators and there are some models commercially available
[67, 68]. All the human intrinsic breast cancer subtypes are
represented in various breast PDX models. Many small molecule
inhibitors (e.g., Bcl-2 inhibitors), drugs such as rapalogs and
hormonal-based therapies and others either have been or will
be evaluated in PDX models of breast cancer [69, 70].

p70S6K and 4E-BP1 are two key downstream substrates of
mTORCI1. Knock-down of both p70S6K and 4E-BP1 resulted in
a transforming growth factor-p (TGF-p) dependent G, arrest in
the TNBC MDA-MB-231 cell line. Nanomolar concentrations
of rapamycin led to inhibition of p70S6K phosphorylation in
MDA-MB-231 cells; however, much higher doses (micromolar)
were required to inhibit 4E-BP1 phosphorylation, which
resulted in the liberation of elF4E to promote protein transla-
tion. Micromolar concentrations of rapamycin were required
to induce G; arrest indicating the importance of 4E-BP1. G,
arrest was determined to be increased by TGF-B signalling and
downregulation of Rb phosphorylation by p70S6K and 4E-BP1
respectively [71].

Phorbol esters (PMA) can induce either proliferation or cell
cycle arrest depending on the cell type and culture conditions.
PMA will hyperactivate the Raf/MEK/ERK pathway in SKBr3
breast cancer cells which in turn induces p21“*™, cell cycle
arrest, and cellular senescence (geroconversion). mTOR and
p70S6K were involved in geroconversion. PMA has been shown
to induce cell cycle arrest while constitutively active mTOR me-
diated geroconversion. Rapamycin suppressed geroconversion
and maintained quiescence. PMA elicited its effects via phos-
phorylation of p70S6K on T389 and S6 on $240/244, which
was inhibited by rapamycin treatment. In contrast, in the pres-
ence of PMA, phosphorylation of p70S6K on T421/S424 and
S6 on S$235/236 were rapamycin-insensitive. These studies
indicated that rapamycin can decrease geroconversion induced
by PMA without preventing PMA-induced cell cycle arrest [72].

Rapamycin and autophagy

The effects of rapamycin and the anti-malarial drug
hydroxychloroquine on autophagy in cancer patients have
been examined. Rapamycin and chemotherapy are known
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to enhance autophagy while hydroxychloroquine may
inhibit it. Analysis of a limited patient cohort suggested that
rapamycin and hydroxychloroquine treatment in combina-
tion with chemotherapy resulted in the classification of
autophagy as an oncotarget [73].

Other approaches to targtet mTORC1 activity —
mTOR inhibitors

AZD2014 is a novel mTOR kinase inhibitor which blocks the
activity of both mTORC1 and mTORC2. It has proved to be
more effective in inducing growth inhibition in several breast
cancer cell lines than everolimus. AZD2014 has been examined
in combination with fulvestrant. This combination resulted in
tumour growth inhibition or regression in ER+ breast cancer
models. The effects of AZD2014 have also been examined in
the CTC174 explant model which has a mutated ER. AZD2014
is currently in phase II clinical study development [74].

AZD2014 is being examined in at least six clinical trials
with breast cancer patients. Some are in combination with:
fulvestrant (NCT01597388 and NCT02216786), the cyclin-
dependent kinase4/6 inhibitor, palbociclib (IBRANCE®) and
fulvestrant (NCT02599714), the MEK inhibitor Selumetinib
(NCT02583542), the oral Akt inhibitor AZD5363 (NCT02208375)
or with various other drugs to determine the efficacy of high
throughput genome analysis as a therapeutic decision tool
(NCT0229999).

A phase I dose-escalation study has been performed with the
mTORC1/mTORC2 kinase inhibitor CC-223 in cancer patients
with either advanced solid tumours or multiple myeloma.
Suppression of downstream targets of mTORC1/mTORC2 was
observed in patient biopsies. This phase I study concluded that
treatment with CC-223 was tolerable, with manageable toxic-
ities and antitumour activity including regression [75].

Rapalogs and bone cancer pain

The PI3K/PTEN/Akt/mTORC1 pathway has also been shown to
be involved in bone cancer pain. Rapamycin was shown to
prevent protein kinase C epsilon (PKC-epsilon) and protein
kinase A (PKA) normally induced by morphine treatment.
Suppression of mTORC1 may be an approach to block bone
pain in certain breast cancer patients who exhibit activation of
PI3K/PTEN/Akt/mTORC, PKC-epsilon and PKA [76].

Combining PI3K and dual PI3K/MTORC1
inhibitors

The effects of combining the PI3K inhibitor pilaralisib or the
PI3K/mTOR dual inhibitor voxtalisib with letrozole has been
examined in phase I/II clinical trials in HR+, HER2— breast
cancers that were refractory to nonsteroidal Al therapy.
Interestingly, in these studies, no association between PI3K
pathway mutations and efficacy was observed. These studies
indicated that AI and PI3K or PI3K/mTOR inhibitors may be
combined to potentially treat endocrine therapy-resistant
HR+, HER- metastatic breast cancer patients [77].

The effects of the dual PI3K/mTOR inhibitor NVP-BEZ235
and either an autophagy inhibitor or autophagy gene knock-
down have been examined in MCF-7 cells. Combining NVP-
BEZ235 and autophagy inhibitors were shown to result in
increased growth inhibition [78].
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Summary

HR+ breast cancer patients are often treated with endocrine
therapies. However, a large proportion of the patients will
develop resistance to endocrine therapy and disease pro-
gression occurs. Increased PI3K/PTEN/Akt/mTORC1 path-
way activity is observed in patients who underwent either
endocrine or HER2—targeted therapies. This review has
focused on the recent studies on targeting the PI3K/PTEN/
Akt/mTORC1 pathway in HR+ breast cancer patients which
have become resistant to Als. Over the past decade, it has
become apparent that certain ER+ breast cancer patients
may become resistant to nonsteroidal Als. Part of their
resistance may be due to activation of the PI3K/PTEN/Akt/
mTORC1 pathway, which is a key pathway involved in
proliferation and the prevention of apoptosis. Rapalogs
which inhibit mTORC1 were determined to block the Al
resistance documenting the importance of this pathway in
Al resistance in HR+ breast cancers. Various rapalogs have
been examined in clinical trials and one of the most prom-
ising is everolimus. This review has also summarized the
effects of rapalogs on other breast cancer types including
HR-/HER2+ breast cancer. In addition, more novel inhibi-
tors which target the kinase activity of mTOR and suppress
both mTORC1 and mTORC2 may be more effective in
suppressing Al resistance in combination with Als. Other
drugs and natural products which when combined with
rapalogs may eventually be useful in breast cancer therapy
(e.g., metformin and resveratrol) have been discussed.

In summary, there are a large number of clinical trials
which will determine the effects of everolimus on breast
cancer therapy. There are numerous clinical trials listed on
ClinicalTrials.gov for the everolimus and breast cancer ther-
apy https://clinicaltrials.gov/ct2/results?term=%22everoli-
mus%22+AND+%22breast+cancer%22&Search=Search. In
Table 1, clinical trials with breast cancer patients which ex-
amine the effects of rapalogs combined with agents that
target HER2 and/or epidermal growth factor receptor
(EGFR) or insulin-like growth factor receptor (IGF-1R) and
hormonal-based therapy are presented. In Table 2, clinical
trials with breast cancer patients which examine the effects
of rapalogs combined with chemotherapeutic drugs,
PI3K/mTOR kinase inhibitors and metformin are presented.
The diverse array of drugs being combined with rapalogs
documents the intensity of developing effective approaches
to treat breast cancer. These numerous clinical trials and
basic research studies point to the significant roles that
specific targeted therapy has had on breast cancer treat-
ment which may be extended to other tumours, especially
hormonal-responsive cancer.
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