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The mammalian target of rapamycin (mTOR) pathway is aberrantly activated in many cancer types. As the intricate network of regulatory mechanisms
controlling mTOR activity is uncovered, more refined drugs are designed and tested in clinical trials. While first generation mTOR inhibitors have failed
to show clinical efficacy due partly to the feedback relief of oncogenetic circuits, newly developed inhibitors show greater promise as anti-cancer
agents. An effective drug must defeat the cancer stem cells (CSCs) while sparing the normal stem cells. Due to its opposing role on normal and
malignant stem cells, mTOR lends itself very well as a therapeutic target. Indeed, a preferential inhibitory effect on CSCs has already been shown for
some mTOR inhibitors. These results provide a compelling rationale for the clinical development of mTOR-targeted therapies.
Introduction
Cancer remains the second most common cause of death
in the US. Despite notable improvements in survival over
the past three decades for most cancer types, an estimated
589 430 cancer deaths will still occur in the United States
this year [1]. The high cancer death rate is often due to
diagnosis during late stages of disease and a lack of
specific treatments for advanced stages of cancer. Never-
theless, although traditional, non-specific cytostatic che-
motherapy remains the treatment of choice for many
malignancies, as the genetics of cancer are unraveed [2],
more effective molecularly targeted drugs are under devel-
opment. First tested in animal models of cancer, and then
in humans, these drugs are creating enthusiasm and hope
that cancer will be defeated in the near future.

Among the molecular targets for cancer therapy is the
mammalian target of rapamycin (mTOR) pathway. mTOR
is aberrantly activated in many cancer types, including
glioblastoma [3] and cancers of the breast [4], pancreas
[5], colon [6], prostate [7] and ovary [8]. Although preclini-
cal studies suggested that mTOR inhibition could provide
synergistic benefits when added to other targeted signal
transduction inhibitors [9], subsequent studies have failed
to demonstrate clinical efficacy [10].

In this review, we will first discuss different models to
explain cancer origin, maintenance and evolution. We will
then discuss the development of mTOR inhibitors as a
novel class of anticancer agents, their activity against
cancer cells bearing stem cell-like features and some of
the major challenges of personalized-medicine.
Targeted therapies, tumour evolution
and drug resistance: implications for
therapy

In the last decade, impressive steps towards understand-
ing the biology of cancer have been accomplished, thanks
to the advances of next generation sequencing technolo-
gies for rapid, high throughput analysis of the genome,
transcriptome and epigenome [11]. These technologies
provide the opportunity to identify prognostic markers
and candidate therapeutic targets, advancing efforts to de-
velop targeted therapies.

The two main types of targeted drugs are monoclonal
antibodies and small molecule inhibitors. Many of these
compounds have already been approved by the US Food
and Drug Administration (FDA) to treat several types of
cancers, including leukaemia, lymphoma, and cancers of
the brain, thyroid, lung, breast, stomach, intestine,
pancreas, liver, kidney, ovary, prostate, bone and skin
[12, 13]. The most common targets include growth factor
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mTOR-targeted therapy
receptors, signalling molecules, cell-cycle proteins, mod-
ulators of apoptosis and molecules involved in invasion
and angiogenesis [14]. Unfortunately, although im-
provements in progression-free survival and life quality
of treated patients have been observed in numerous
clinical studies using these drugs, overall survival has
not been prolonged because of later-acquired drug
resistance [15]. One particularly challenging concept is
that cancer is not a static entity and that many tumours
potentially undergo continual genetic evolution, allowing
adaptation to new selective pressures such as anticancer
treatment [16, 17]. Tumour evolution and therapeutic fail-
ure are fostered by intratumoural heterogeneity, which
can arise in multiple ways [18]. The most well-established
mechanism involves intrinsic differences among cancer
cells caused by stochastic genetic [19] or epigenetic [20]
changes. Differences can also arise among cancer cells
through extrinsic mechanisms in which different microen-
vironments within a tumour cause changes in cancer cell
properties [21, 22]. Since the concept of cancer stem cells
(CSCs) was introduced in late 1990s [23, 24], it has become
clear that these long-lived and self-renewing cells may
also be responsible for tumour heterogeneity and escape
treatment (Figure 1A). A CSC could hypothetically origi-
nate from a stem, a progenitor or a differentiated cell.
Cancer can then progress as a stem cell disease creating
a hierarchical organization, in which a minority of
tumourigenic cells give rise to phenotypically diverse
non-tumourigenic cells. Alternatively, cancer can prog-
ress by clonal evolution of the tumour CSCs [25].
Moreover, the recently proposed CSC plasticity model
suggests that these cell populations are dynamic and
both CSCs and non-CSCs are capable of interconversion
in response to environmental cues [26–28].

Although often considered as mutually exclusive
models to describe tumour heterogeneity, the stochastic
and CSC models of cancer can be harmonized by
considering the role of genetic diversity and non-genetic
influences in contributing to tumour heterogeneity
[29, 30]. A tumour does not have one single tumour ge-
nome, but instead comprises multiple subclones bearing
distinct genetic makeups, each with differing abilities to
survive drug treatment. These subclones may evolve in
parallel over the lifetime of a cancer and contribute to
intratumoural heterogeneity. However, even within
unique genetic subclones, not all cells function equally.
Some cells retain capacity for self-renewal and long term
clonal maintenance, some lay dormant and some fuel
tumour growth, while most tumour cells are post-mitotic
and destined for clearance [30]. This intratumour hetero-
geneity can lead to underestimation of the tumour
genomics landscape portrayed from single tumour
biopsy samples and may present major challenges to
personalized medicine and biomarker development.
Indeed, drug target mutations which are detected in
some but not all biopsies for a single patient will result
in obvious implications regarding the efficacy of any
customized treatment plan [31]. By analyzing multiple
samples from four patients with metastatic renal cell
carcinoma that were taken before and after cytoreductive
surgery, Gerlinger et al. found that about two thirds of
the mutations found in single biopsies were not uniformly
detectable throughout all the sampled regions of the same
patient’s tumour [32]. Intratumour genetic differences
occurred in genes encoding proteins that are targets for
some of the available anticancer drugs such as mTOR
which will be described in the next paragraph.
mTOR signalling and cancer biology

The serine/threonine kinase mTOR integrates a wide va-
riety of cellular signals, including mitogen and nutrient
signals, to control cell proliferation and cell size [33].
mTOR can exist in at least two complexes differing in
their subunit composition and sensitivity to rapamycin.
mTOR complex 1 (mTORC1), is composed of mTOR,
regulatory associated protein of mTOR (Raptor),
mLST8/G-protein β-subunit like protein (GβL), RAS40
and Deptor. mTOR complex 2 (mTORC2), is composed
of mTOR, rapamycin-insensitive companion of mTOR
(Rictor), mLST8/GβL, stress-activated-protein-kinase-
interacting protein 1 (Sin1), proline-rich repeat protein-
5 (PRR-5)/protein observed with Rictor-1 (Protor-1), and
Deptor. mTORC1 is highly sensitive to rapamycin,
whereas mTORC2 is relatively insensitive.

mTOR complexes are differentially regulated by
distinct upstream signals. Upstream of mTOR is the phos-
phatidylinositol 3-kinase (PI3K) pathway, a family of lipid
kinases. In response to receptor-mediated survival
signals, PI3K generates phospholipids, which in turn
activate the serine/threonine kinase AKT and other
downstream effector pathways [34]. Phosphatase and
tensin homologue (PTEN) functions as the main negative
regulator of PI3K signalling by dephosphorylating newly
synthesized PI3K lipids and thus hampering AKT activa-
tion [35]. Once activated, AKT phosphorylates and in-
hibits tuberous sclerosis complex 2 (TSC2, also known
as tuberin), disrupting its interaction with tuberous scle-
rosis complex 1 (TSC1, also known as hamartin) [36].
TSC1/TSC2 heterodimer functions as a GTPase activating
protein for Ras homologue enriched in brain (Rheb),
causing hydrolysis of Rheb-bound GTP to GDP [37]. The
active GTP-bound form of Rheb directly interacts with
mTORC1 to stimulate its activity [38]. Thus, AKT phos-
phorylation of TSC2 relieves the inhibitory effects of the
TSC1/TSC2 complex on Rheb and mTORC1. Apart from
AKT, AMP-activated protein kinase (AMPK) is a major reg-
ulator of mTORC1 [39]. AMPK is a key energy sensor and
regulates cellular metabolism to maintain energy
homeostasis [40]. Activation of AMPK by increased
Br J Clin Pharmacol / 82:5 / 1181



Figure 1
Schematic view of cancer stem cell (CSC) evolution during the course of the disease. A) Intra-tumour heterogeneity can arise from intrinsic
differences between CSCs and their progeny or from clonal evolution. In the CSC model, only the CSCs have the ability to generate a tumour. In the
clonal evolution model, every cell within a tumour has similar tumourigenic potential. The CSC hierarchical model suggests that CSCs are the only
relevant target for therapy. In contrast, the clonal evolution model suggests that all tumour cells must be targeted, as all are equally able of causing
relapse after therapy. B) While traditional therapy may initially control disease by effectively debulking tumours, the tumours invariably recur due to
the ability of CSCs to survive and repopulate the tumour mass. However, the CSC model and the clonal evolution model are not mutually exclusive,
and clonal evolution can happen in CSCs, leading to the acquisition of new tumour cell properties. CSC-targeted therapy renders tumours unable to
maintain themselves or grow. However, resistant clones can emerge under the selective pressures of targeted therapy, leading to the emergence of
a tumour with new characteristics
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energy demands promotes decreased mTORC1 activity
[41] in a TSC2- [42] or Raptor- [43] dependent pathway.

Amongst mTORC1 targets are ribosomal S6 protein
kinase 1 (S6K1) and eIF4E-binding protein 1 (4E-BP1),
mediators of protein translation and cell growth [44].
mTOR’s response to a wide range of intracellular (energy
and stress) and extracellular (nutrients, growth factors,
hormones) signals is mediated through these effectors.
In response to nutrient and growth factor availability,
mTORC1 suppresses autophagy, a self-degradative
process by which metabolically stressed cells recycle
cytoplasmic components to recover energy necessary
for their survival [45]. mTORC1 also orchestrates anabolic
cell growth by stimulating nucleotide synthesis through
the pyrimidine synthesis pathway [46].
1182 / 82:5 / Br J Clin Pharmacol
In contrast to mTORC1, the upstream regulation of
mTORC2 is less well defined, although ribosome associa-
tion has been classically considered a major, if not the
sole, mechanism of mTORC2 activation [47]. However,
very recently, PtdIns(3,4,5)P3, which is generated upon
insulin or growth factor stimulation and PI3K activation,
has been identified as a direct upstream activator of
mTORC2. Specifically, the pleckstrin homology (PH) do-
main of Sin1 interacts with the mTOR kinase domain
(KD) to suppress mTOR activity. PtdIns(3,4,5)P3 interacts
with Sin1-PH to release its inhibition on mTOR-KD,
thereby triggering mTORC2 activation [48].

mTORC2 plays an important role in cell survival,
metabolism, proliferation and cytoskeleton organization
through phosphorylation of protein kinase Cα (PKCα),
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serum/glucocorticoid-regulated kinase 1 (SGK1), as well
as AKT, thereby allowing for complete activation of AKT
[49–52]. AKT is therefore both an upstream activator of
mTORC1 and downstream effector of mTORC2.

Until recently, very few mutations had been found in
the MTOR gene. It was generally believed that dysregula-
tion of upstream pathways was mostly responsible for
constitutive activation of the mTOR pathway. Indeed,
many components of the PI3K signalling pathway are
mutated in human cancers [53]. However, a diverse set
of cancer-associated MTOR mutations conferring path-
way hyperactivation was recently reported. Specifically,
using publicly available tumour genome sequencing
data, Grabiner et al. generated a comprehensive cata-
logue of mTOR pathway mutations in cancer, identifying
33 MTOR mutations [54]. The mutations clustered in six
distinct regions in the C-terminal half of mTOR and
occurred in multiple cancer types, with one cluster par-
ticularly prominent in kidney cancer [54]. Thus, screening
for alterations in the mTOR pathway may help to identify
subsets of patients who may benefit from targeted
therapies directed against mTOR.
ThemTOR paradox: opposing effects
on normal and malignant stem cells

While mTOR activation contributes to cancer progression,
and possibly also initiation, the prolonged stimulation of
mTOR in normal cells can lead to stem cell depletion,
reduced health and lifespan. This effect has been referred
to as the‘mTOR paradox’ [55]. The most abundant infor-
mation comes from studies of haematopoietic stem cells
(HSCs) isolated from the bone marrow or blood. Constitu-
tively active AKT depletes HSCs and induces leukemia in
mice [56]. Similarly, PTEN deletion from HSCs not only
leads to rapid HSC proliferation and depletion, but also
changes HSC differentiation characteristics, allowing leu-
kemia to develop [57]. These effects are mostly mediated
by mTOR, as they can be inhibited by the first generation
mTOR inhibitor rapamycin [58]. Rapamycin not only
depletes leukemia-initiating cells but also restores normal
HSC function [58]. Further proof of mTOR involvement in
the maintenance of HSCs comes from a study showing
rapid HSC cycling and depletion following TSC1 deletion
[59]. Consistently, in old mice, rapamycin delays mouse
HSC ageing by preserving adult HSC self-renewal and
haematopoietic capacity [60].

mTORC1 also regulates stem cell self-renewal in other
systems. For example, excessive mTOR signalling leads to
adult epidermal stem cell exhaustion and progressive
hair loss in mice, a phenomenon that rapamycin can de-
lay [61]. Additionally, caloric restriction increases intesti-
nal stem cell numbers through mTORC1 inhibition [62].
Interestingly, not only does rapamycin treatment pre-
vent stem cell exhaustion, but also extends longevity in
old mice [63], indicating a crucial role of mTOR signalling
in the regulation of lifespan.

Overall, these findings demonstrate the feasibility of
perturbing the mTOR pathway to prevent tumour
growth without disrupting the function of normal tissues
and cells.
mTOR-targeted therapy: pitfalls and
successes

Several classes of mTOR-targeted drugs are currently un-
dergoing clinical trial evaluation for various cancers, yet
success rates in bringing these drugs to the bedside re-
main low. Rapamycin and its derivatives (rapalogues)
have proven ineffective in most clinical trials. The
rapalogues, substrate-selective mTORC1 inhibitors, often
fail due to an incomplete inhibition of mTORC1. More-
over, rapalogues do not inhibit mTORC2, although they
can interfere with the assembly of mTORC2 complex in
certain cell types [64]. As a consequence, rapalogues
are unable to prevent mTORC2-mediated AKT activation.
In addition, increased AKT S473 phosphorylation after
rapalogue treatment may occur as the result of the sup-
pression of S6K1-mediated negative feedback loops,
which attenuate signalling via insulin/insulin-like growth
factor-1 receptor (IGF-1R) and other tyrosine kinase re-
ceptors [65]. Suppression of these feedback loops un-
leashes over-activation of upstream pathways including
PI3K, AKT and extracellular signal-regulated kinase
(ERK), which counterbalance the antiproliferative effects
of mTOR inhibitors and lead to drug resistance [66].

The recognition that rapalogues have limited
substrate-specific efficacy and cause feedback activation
of several oncogenic pathways has fuelled the develop-
ment of dual PI3K/mTOR inhibitors to avoid PI3K path-
way reactivation [67] and ATP-competitive mTOR kinase
inhibitors (mTorKIs) [68]. mTorKIs cause more potent
and durable inhibition of mTORC1 than rapalogues, and
interfere with both mTORC1 and mTORC2 [69]. Of note,
newly developed inhibitors have been shown to possess
a stronger preferential inhibitory effect on CSCs than
bulk tumour cells, thus providing a compelling rationale
for the continued development of more specific and
selective inhibitors for the treatment of cancer [70]. The
following is a description of the most relevant studies
investigating the therapeutic efficacy of mTOR inhibitors
against CSCs.

Glioblastoma
Hyperactivation of the PI3K/AKT/mTOR pathway and in-
activation of wild-type p53 by MDM2 over-expression
are frequent molecular events in gliobastoma (GBM). Ac-
cordingly, a combined therapy utilizing the mTOR/AKT
inhibitor FC85 and the MDM2/p53 inhibitor ISA27
produced a synergistic effect on the inhibition of GBM
Br J Clin Pharmacol / 82:5 / 1183
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cell viability as well as on the reactivation of the p53
pathway [71]. Most importantly, similar synergistic
effects were shown in GBM-derived CSCs, where the
simultaneous use of the two compounds induced strong
differentiation as well as apoptosis [71].

Breast cancer
Activation of the mTOR pathway in breast cancer stem-
like cells is required for colony formation ability in vitro
and tumourigenicity in vivo [72]. In patient-derived mam-
mary CSCs, tamoxifen, an antagonist of the oestrogen
receptor, activated mRNA translation and ribosome
synthesis via mTOR, thus accounting for therapeutic
resistance and possibly tumour relapse [73]. This process
could be successfully antagonized by mTOR inhibitors
[73].

Pancreatic cancer
The first generation mTOR inhibitors have failed to show
clinical efficiency in treating pancreatic cancers due in
part to the feedback relief of the IGF-1R/AKT signalling
pathway [74]. The second generation mTOR inhibitors,
such as AZD8055, could inhibit AKT activation upon
mTORC2 inhibition [75]. However, AZD8055 induced a
temporal inhibition of AKT kinase activities and AKT
was then rephosphorylated [75]. Additionally, AZD8055-
induced transient AKT inhibition increased the expres-
sion and activation of epidermal growth factor receptor
(EGFR) by releasing its transcriptional factors Fork-head
box O 1/3a (FoxO1/3a) [75]. The combination of
AZD8055 and the EGFR tyrosine kinase inhibitor erlotinib
synergistically inhibited the mTORC1/C2 signalling
pathway, EGFR/AKT feedback activation and cell growth,
as well as suppressed the progression of pancreatic
cancer in a xenograft model [75]. The mTOR pathway
was additionally shown to maintain the stem cell-like
properties of pancreatic cancer cells. Sphere formation
under stem cell culture conditions and anchorage-
independent colony formation were both dependent
on this pathway. Consistently, inhibition of the pathway
by rapamycin effectively reduced the viability of cancer
stem-like cells [5].

Colon cancer
In our study, colon CSCs (CoCSC) exhibited strong
mTORC2 expression, and rare expression of mTORC1
[76]. This latter correlated with tumour differentiation,
being expressed in CoCSC-derived xenografts. We com-
pared the effects of various mTorKIs (Ku-0063794, WYE-
354, pp242, and Torin-1) with first-generation mTOR
inhibitors (rapamycin and temsirolimus) on three
CoCSC lines. mTOR inhibitors affected CoCSCs in a
variety of ways, resulting in proliferation, induction of
autophagy or apoptosis. The apoptosis-inducing mTOR
inhibitor Torin-1 hindered growth, motility, invasion
and survival of CD326+/CD24+/CD49f+/CD29+ and
1184 / 82:5 / Br J Clin Pharmacol
CD326+/CD44+/CD166+ colon cancer cell subpopula-
tions in vitro, and suppressed tumour growth in vivo
with a concomitant reduction in vessel formation.
Torin-1 also affected the expression of markers for cell
proliferation, angiolymphogenesis and stemness in vivo.
Our study also indicated that although Torin-1 resistant
clones can emerge, they are poorly tumourigenic, thus
encouraging its potential use for colon cancer therapy.
Finally, through an innovative system based on the use
of the mouse lymph node as an in vivo bioreactor [77],
we showed that Torin-1 does not affect the survival of
normal colon stem cells in vivo, supporting other obser-
vations of mTorKI selectivity towards CSCs.

Prostate cancer
Putative prostate CSCs exhibited high PI3K/mTOR path-
way activity and treatment with the dual PI3K/mTOR
inhibitor BEZ235 suppressed their proliferation [78].
Similarly, prostate cancer radioresistance was associated
with epithelial–mesenchymal transition (EMT) and en-
hanced CSC phenotypes via activation of the PI3K/Akt/
mTOR signalling pathway [79]. The combination of
BEZ235 with radiotherapy was shown as a promising
modality to overcome radioresistance in the treatment
of prostate cancer [79].

Ovarian cancer
By targeting the mitochondria, the isoflavone derivative
NV-128 promoted caspase independent cell death of
rapamycin-resistant ovarian CSCs through the mTOR
pathway [80]. Specifically, NV-128 activated two inde-
pendent cell death pathways. Degradation of cyto-
chrome C oxidase (COX) subunit IV led to ATP loss and
increase of mitochondrial reactive oxygen species
(ROS). ATP loss was in turn able to create a depleted en-
ergy status, which activated the energy sensing AMPK
leading to inhibition of mTOR. This inhibitory effect was
sufficiently potent to induce autophagic cell death in
the ovarian CSCs. ROS activated the ERK/Bax axis leading
to loss of mitochondrial membrane potential and
endonuclease G-dependent DNA fragmentation.

Overall, these studies demonstrate that the mTOR
axis can be a promising target in treatment protocols
for different types of cancer.
Conclusions

Current first line chemotherapy generally consists of
cytotoxic agents. While these agents may initially control
disease by effectively debulking tumours, the tumours
invariably recur due to the ability of CSCs to survive and
repopulate the tumour mass (Figure 1B) [81]. Intensive
effort is currently devoted to targeting the mTOR path-
way due to its emerging role in the maintenance of CSCs.
Unfortunately, although there are a high number of
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mTOR inhibitors available, the selection of a successful
regimen that maximally suppresses tumour progression
continues to be challenging. Because most tumours are
heterogeneous, a single drug regimen for patients with
the same histologic tumour type is not always appropri-
ate. Considering this, it is imperative to identify which
cancer patients may benefit from mTOR inhibitor
therapy. MTOR mutations may be used to classify better
patients. Nevertheless, the presence of MTOR mutations
in a tumour does not necessarily imply that the tumour
was actually driven by the mutated mTORs or that this
tumour will be clinically responsive to mTOR-targeted
therapies. Acquired resistance to targeted therapies is
another challenge to consider (Figure 1B). Unravelling
the interactions of drugs and genetics will, in the long
run, facilitate the rise of personalized medical practices.
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