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The macrolide rapamycin and its analogues (rapalogs) constitute the first generation of mammalian target of rapamycin (mTOR)
inhibitors. Since the introduction of rapamycin as an immunosuppressant, there has been extensive progress in understanding its
complex mechanisms of action. New insights into the function of mTOR in different immune cell types, vascular endothelial cells
and neoplastic cells have opened new opportunities and challenges regarding mTOR as a pharmacological target. Currently, the
two known mTOR complexes, mTOR complex (mTORC) 1 and mTORC2, are the subject of intense investigation, and the
introduction of second-generation dual mTORC kinase inhibitors (TORKinibs) and gene knockout mice is helping to uncover the
distinct roles of these complexes in different cell types. While the pharmacological profiling of rapalogs is advanced, much less is
known about the properties of TORKinibs. A potential benefit of mTOR inhibition in transplantation is improved protection
against transplant-associated viral infections compared with standard calcineurin inhibitor-based immunosuppression. Preclinical
and clinical data also underscore the potentially favourable antitumour effects of mTOR inhibitors in regard to transplant-
associated malignancies and as a novel treatment option for various other cancers. Many aspects of the mechanisms of action of
mTOR inhibitors and their clinical implications remain unknown. In this brief review we discuss new findings and perspectives of
mTOR inhibitors in transplantation.
Introduction
Rapamycin was isolated in 1975 as an antibiotic product of the
actinomycete Streptomyces hygroscopicus, obtained from a soil
probe collected on Easter Island (Rapa Nui), and was investi-
gated initially for its antifungal properties [1]. Since the first
description of its immunosuppressive activity in 1977 [2], much
has been learned about the complex mechanisms of action of
this macrolide and its site of action, the mammalian target of
rapamycin (mTOR) [3]. mTOR is an evolutionarily conserved
intracellular serine–threonine kinase that plays a central role
in the regulation of cell growth, metabolism and proliferation
DOI:10.1111/bcp.12893
[4–6]. The catalytic activity of mTOR occurs via at least two
distinct complexes � mTOR complex (mTORC) 1 and
mTORC2 [7]. Compared with mTORC1, comparatively little
is known about the function of mTORC2. To exert its func-
tion, rapamycin forms a complex with the intracellular
immunophilin FK506 binding protein 1 A 12 kDa (FKBP12)
[8]. This complex inhibits the kinase activity of mTOR by di-
rectly blocking substrate recruitment and restricting active
site access [9]. While rapamycin and its analogues, or
‘rapalogs’, almost completely inhibit mTORC1, mTORC2 is
affected only after long exposure [10]. Specific deletion of
genes encoding mTORC1 or mTORC2, and the use of new-
© 2016 The British Pharmacological Society



mTOR complex inhibition in transplantation
generation dual mTOR kinase inhibitors, known as
‘TORKinibs’ [11, 12], have opened up new possibilities to in-
vestigate the discrete functions of each mTOR subunit in im-
mune cells, with implications for their roles in
transplantation. Comprehensive review of the role of mTOR
in the regulation of immune responses [13, 14], pharmacoki-
netic and dynamic aspects of rapamycin in transplantation
[15], and the advantages and disadvantages of mTOR inhibi-
tors in renal transplantation [16] have been published. In
the present brief review, we highlight recent insights that
have been gained into the immunobiology and pharmacol-
ogy of mTOR and its role in transplantation.
Molecular biology of mTORCs
The molecular components of mTORC1 and mTORC2, and
the factors and pathways that influence their function, are
depicted in Figure 1.

(i) mTORC1

mTORC1 is formed by mTOR, mammalian lethal with
SEC13 protein 8 (mLST8), proline-rich Akt substrate of 40 kDa
Figure 1
The mammalian target of rapamycin (mTOR) complexes. mTOR complex (m
(mLST8), proline-rich Akt substrate of 40 kDa (PRAS40), Dep domain-contain
protein of mTOR (Raptor). Cytokines, growth factors, various nutritional cues a
TSC2, which control the activity of the GTPase RAS homologue enriched in the
of mTOR and leads tomRNA translation by stimulating s6 kinase 1 (S6K1) and p
(4E-BP1), dissociating the inhibitory effect of 4E-BP1 on eIF4E, a cap-dependent
a negative feedback loop over the phosphatidylinositol 3-kinase (PI3K)–Akt ax
components protein observed with Rictor (Protor) 1/2 and stress-activated prot
partially inhibited by rapamycin. Activation of mTORC2 regulates cytoskeletal
(PKCα). Activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1
phosphorylates Akt and can influence the activity of TSC1/2. MAPK, mitogen-a
(PRAS40), Dep domain-containing mTOR-interacting pro-
tein (Deptor) and the regulatory associated protein of mTOR
(Raptor). The activity of mTORC1 is controlled by tuberous
sclerosis complex (TSC) 1 and TSC2, which act as its main
upstream inhibitors. TSC1/2 control the activity of the
guanosine triphosphate GTP)-ase Ras homologue enriched
in the brain (RHEB), a protein that interacts directly with
mTORC1. Cytokines, growth factors, nutrients [17],
costimulatory molecules, as well as cellular energy level and
stress influence the activity of TSC1/2. There is evidence that
amino acids can directly regulate mTORC1 via Ragulator–Rag
GTPases by binding to Raptor and leading it to the surface of
lysosomes [18]. Recent studies have identified a member of
the solute carrier family 38 (SLC38A9) as a key transmem-
brane protein in this process [19]. In dendritic cells (DCs),
the late endosomal lysosomal adaptor andmitogen-activated
protein kinase and mTOR 2 (LAMTOR2) complex has been
identified as an essential regulator of Langerhans cell homeo-
stasis in vivo [20], suggesting that mTORC1 is important in
the immunological regulation of these important antigen
(Ag)-presenting cells (APCs). New studies investigating the
role of Rac1 have shown that, by binding directly to mTOR,
this member of the Rho family of GTPases is able to activate
both mTORC1 and mTORC2, facilitating localization to
cellular membranes [21].
TORC) 1 is formed by mTOR, mammalian lethal with SEC13 protein 8
ing mTOR-interacting protein (Deptor) and the regulatory associated
nd Akt influence the activity of tuberous sclerosis complex (TSC) 1 and
brain (RHEB). The interaction with RHEB is followed by phosphorylation
hosphorylating eukaryotic translation initiation factor-binding protein 1
mRNA translation, inmTORC1 signalling. The activation of S6k1 leads to
is via insulin receptor substrate. mTORC2 is formed by the additional
ein kinase-interacting protein 1 (Sin 1). It is activated by PI3K and is only
changes via small GTPase Ras homologue (Rho) and protein kinase Cα
) by mTORC2 regulates the epithelial Na+ channel in kidneys. mTORC2
ctivated protein kinase

Br J Clin Pharmacol (2016) 82 1158–1170 1159



M. Waldner et al.
(ii) mTORC2

In mTORC2, mTOR forms a complex with rapamycin-
insensitive companion of mTOR (Rictor), mLST8, stress-activated
protein kinase-interacting protein 1 (SIN1) and protein observed
with Rictor (Protor) 1 and 2 [22]. Whereas mTORC1 phosphory-
lates S6 kinase, mTORC2 phosphorylates Akt, protein kinase Cα
(PKCα) and serum- and glucocorticoid-induced protein kinase 1
(SGK-1), leading to Raptor-independent rearrangement of the
actin cytoskeleton [7] and to the regulation of cell metabolism
and survival. While rapamycin is a potent inhibitor of mTORC1,
mTORC2 is only partially affected after long-term exposure [10].
A recent study has shown that relative expression of FKBP12
and FKBP51 determines the sensitivity of a cell or tissue to
mTORC2 inhibition by rapamycin [23].
Influence of mTOR inhibition on different
immune cell populations
Table 1 summarizes the known effects of mTORC1 and
mTORC2 inhibition in different immune cell populations.
Table 1
Effects of mammalian target of rapamycin complex (mTORC) 1 and mTORC

Cell type mTORC 1 inhibition [References]

Dendritic cells (DCs)

- Conventional DCs Suppresses maturation, antigen uptake a
micropinocytosis, and induces apopto
[24–26]; paradoxical augmentation of
proinflammatory cytokine production

- Plasmacytoid DCs Inhibits activation, modifies cytokine
production, enhances Tmem
and Treg proliferation [38]

T cells Controls Th1 and Th 17
differentiation [38]

- Effector T cells

– CD8+ memory cells Augments CD8+ Tmem
responses in infection [126]

– Tregs Promotes Treg expansion,
differentiation and function [50, 78]

NKT cells Decreases terminal differentiation, reduc
peripheral invariant NKT cells,
impairs cytokine production [54]

B cells Reduces marginal zone formation,
decreases antibody (Ab) class switchin
alters Ab repertoire [128]

MDSCs Induces T cell suppression by MDSCs,
higher expression of iNOS,
upregulation of Tregs [42]

Endothelial cells Lessens proliferation and cytokine secret
by allogeneic CD4+, upregulates
Tregs and reduces infiltration of
allogeneic effector T cells into
the arterial intima [62]

iNOS, inducible nitric oxide synthase; MDSC, myeloid-derived suppressor cel
TNF, tumour necrosis factor; Tregs, antigen-specific regulatory T cells; VCAM
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(i) (DCs)

DCs are important ‘professional’ APCs that play critical
roles in the induction and regulation of immunity. They
comprise both conventional myeloid DCs (cDCs) and ‘non-
conventional’ plasmacytoid DCs (pDCs), the latter being im-
portant sources of type-1 interferons (IFNs). Multiple studies
have explored the influence of rapamycin on DC differentia-
tion and function, and analysed the impact of mTOR inhibi-
tion on DC function during transplantation. The stage of DC
differentiation, their state of activation, and the duration and
timing of their exposure to rapamycin determines the nature
of the response. Use of new ATP-competitive dual mTORC1
and mTORC2 inhibitors is currently enabling new insights
into mTOR signalling in DCs and allowing investigators to
pose further questions about the roles of these complexes in
DCs. In conventional DCs, rapamycin-inducedmTOR inhibi-
tion suppresses cell maturation [24], Ag uptake [25], and
macro- and endocytosis [26] and induces their apoptosis
[27]. These effects lead to reduced activation and prolifera-
tion of alloreactive T cells by DCs [28] via impaired
2 inhibition on different immune cell types

mTORC 2 inhibition [References]

nd
sis

[124]

Augments ability to polarize Th1 and Th17;
mTORC2 restrains proinflammatory
function of activated DCs [33]

Unknown

Controls Th2 differentiation [125]

Regulates development of CD8+ cells, altering
the quantity and quality of receptors
important for cell differentiation [45]

Maintains Treg cell stability and coordinates
Treg-mediated control of effector responses [127]

es Reduces NKT-17 cell differentiation, reduces
thymic and peripheral NKT cells [55]

g,
Affects development, survival and function of

mature B lineage cells, impairs Ab production [58]

Unknown

ion Antagonizes TNF induction
of VCAM-1 [63]

ls; NKT, natural killer T cells; Th, T helper cell; Tmem, T memory cell;
-1, vascular cell adhesion molecule-1.
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cytokine-driven activation and differentiation of T helper
(Th) 1, Th2 and Th17 cells [29]. In contrast to these effects,
the stimulation of rapamycin-preconditioned murine bone
marrow (BM)-derived DCs with the Toll-like receptor 4 ligand
lipopolysaccharide (LPS) results in increased secretion of the
proinflammatory cytokine interleukin (IL) 12/p70, although
the stimulatory effects of these rapamycin-conditioned DCs
on CD4+T cell activation remain low [30]. In a recent study
[31] that investigated the extended lifespan of mouse BM-
derived DCs after mTOR inhibition, it was found that mTOR
inhibition suppressed the induction of LPS-mediated induc-
ible nitric oxide synthase (iNOS) in DCs. The reduced tran-
scription of iNOS allowed the cells to continue to use their
mitochondria to generate ATP and to use fatty acids or glucose
as nutrients to promote metabolism. The same group [32]
demonstrated improved outcome after autologous DC vacci-
nation in a murine model using mTOR inhibition, owing to
the extended lifespan and prolonged period during which
the DCs exhibited an activated phenotype.

In a recent report investigating the role of mTORC2 in DC
function, Rictor�/� murine BM-derived DCs were stimulated
with different activating agents. Compared with wild-type
DCs, Rictor�/� DCs displayed an augmented ability to polarize
alloreactive Th1 and Th17 cells, both in vitro and in vivo [33],
with the implication that mTORC2 activity restrains the proin-
flammatory function of activated DCs. The Fms-like tyrosine
kinase 3 (Flt3) receptor and its ligand (Flt3L) play an important
role in DC development and differentiation [34]. Administra-
tion of Flt3L, induces marked expansion of all DC subsets,
including pDCs and both CD8+ and CD8– cDCs in mouse
spleen and bonemarrow [35, 36]. Flt3L signalling in DCs is only
partially understood but is believed to function via the phos-
phatidylinositol 3-kinase (PI3K)–Akt–mTOR pathway [37].
CD8+ cDCs were particularly responsive to Flt3 signalling, a
mechanism that is explained by higher levels of mTOR activity
in this DC subset. Recent work has demonstrated a synergistic
effect of mTOR inhibition with rapamycin and Flt3L adminis-
tration on the induction of Ag-specific regulatory T cells (Tregs)
in mice [38]. This effect appears to be mediated via the selective
expansion of ‘tolerogenic’ pDCs [38]. Moreover, a combination
of rapamycin and Flt3L promotes organ allograft survival in
mice by inducing regulatory DC and allograft autophagy [39].

(ii) Myeloid-derived suppressor cells (MDSCs)

MDSCs differentiate frommonocyte and granulocyte precur-
sors under the influence ofmultiple environmental cues. There is
emerging evidence that they play a key role in the regulation of
alloimmunity and the induction of experimental organ trans-
plant tolerance [40, 41]. Exposure to rapamycin induces T cell
suppression byMDSCs and higher expression of iNOS.Moreover,
the transcoronary transfer of rapamycin-conditionedMDSCs can
prolong heart allograft survival and upregulate Tregs inmice [42].

(iii) Th cells

mTOR inhibitors exert multiple influences on T cell develop-
ment, homeostasis, activation, differentiation, function and mi-
gration. Detailed information about the role of mTOR in T cells
can be found in recent reviews [13, 14, 43]. The role of mTOR
in T cells is evident during the early stages of their maturation
in the thymus in response to various environmental cues. The
impact of mTOR inhibition is reflected in thymic atrophy in
rodents after rapamycin administration [44]. mTORC2 appears
to be involved in the co/post-translational processing of
membrane-expressed αβ T cell receptors (TCRs) during thymo-
cyte development. Thus, mTORC2 inhibition affects T cell
development via regulation of the quantity and quality of recep-
tors that are important for their functional differentiation [45].
In knockout (KO) mice, specific deletion of mTORC1 leads to
failure of Th1 and IL-17-producing Th (Th17) effector cell differ-
entiation, while mTORC2-deleted T cells fail to differentiate into
Th2 cells [46]. Another recent report [47] has revealed a critical
role for Akt isoforms and both mTOR complexes in the control
of Th17 subset development.

New studies on the role of mTORC1 in Th1 and follicular B
helper T (Tfh) cells have demonstrated an important role of
the IL-2-mTORC1 axis in the signalling, differentiation andme-
tabolism of these cells. Tfh cells display reducedmetabolic activ-
ity,mitochondrial function andmTORkinase activity compared
with Th1 cells. IL-2 activation of Akt and mTOR signalling is
critical in orchestrating the reciprocal differentiation of Th1
and Tfh cells, and thus IL-2 conducts two signalling arms that
are important for T cell differentiation via signal transducer
and activator of transcription 5 (STAT5) and PI3K [48].

(iv) Effector memory T cells

Recent studies in mice have defined specific roles for
mTORC1 and mTORC2 that link metabolism and CD8+ T
effector and memory cell generation, suggesting that these
functions could be targeted to promote vaccine efficiency
and antitumour immunity [49].

(v) Tregs

Naturally occurring Tregs are CD4+ cells that develop in
the thymus. Under normal activating conditions, T cells that
lack mTOR differentiate into forkhead box protein (Fox) p3+

Tregs [50], regulate immune responses in vitro and in vivo,
and are now the subject of clinical trials for the treatment of
graft-versus-host disease (GVHD) after BM transplantation
and organ allograft rejection. Although multiple studies have
reported augmentation of Tregs in response to mTOR inhibi-
tion, seemingly paradoxical effects were observed after dele-
tion of Raptor in murine Tregs, resulting in a profound loss
of their suppressive activity in vivo and the development of
a fatal, early-onset inflammatory disorder [51]. In a nonhu-
man primate (NHP) model, repeated infusion of Tregs after
their ex vivo expansion resulted in longer survival of alloge-
neic renal transplants when combined with low-dose
rapamycin and antithymocyte globulin [52]. Pulsing Tregs
from NHPs with rapamycin can enhance their ability to
inhibit the proliferation of multiple T cell subpopulations,
including CD4+ and CD8+ T cells, as well as Ag-experienced
CD28+CD95+ memory and CD28-CD95+ effector cell subpop-
ulations [53].

(vi) Natural killer T (NKT) cells

NKT cells play a central role in viral and bacterial immune
responses, depending on secreted cytokines to induce
Br J Clin Pharmacol (2016) 82 1158–1170 1161
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inflammation or promote immune tolerance. The differentiation
and effector function of invariant NKT cells (iNKT), a group of T
cells with unique α and β TCR chains, has been shown to be
dependent on mTORC1 signalling [54]. New studies in murine
KOmodels have identified a crucial role for mTORC2 in NKT cell
development, indicating that deficiency in Rictor (and thus the
mTORC2 pathway) decreases thymic and peripheral NKT cells
and abolishes NKT17 (a NKT effector lineage producing IL-17)
[55]. However, deletion of phosphatase and tensin homologue
(Pten), which upregulates mTORC2 activity, enhanced NKT17
generation. By contrast, mTORC1 was dispensable for NKT17
generation. Another recent study [56] has investigated the
influence of IL-10 and transforming growth factor β on different
rapamycin-treated iNKT lines and found that the suppressive
function of iNKT depended on the nuclear localization of Foxp3.
While the expression of Foxp3 was mainly dependent on IL-10
stimulation, rapamycin was required to promote the nuclear
localization of Foxp3.

(vii) B cells

mTOR inhibition affects the development and function of B
cells. Deletion of TSC-1 results in a significant reduction in the
number of marginal zone (MZ) B cells, an effect that is corrected
by administration of rapamycin [57]. New studies on the func-
tion of mTOR inhibitors in B cells have revealed an important
role of mTORC2 in B cell homeostasis. In a KO mouse model,
Rictor deletion early in B lymphoid ontogeny had, at most, a
modest effect on pro- and pre-B cell progression in the BM. By
contrast, striking effects were observed in the development, sur-
vival and function of mature B lineage cells, with antibody (Ab)
production severely impaired whenmature B cells lacked Rictor
expression after complete development [58]. The blocking of
mTORC1 and mTORC2, using the TORKinib AZ8055, resulted
in a higher fraction of class-switching B cells in a dose-
dependent manner [59]. Interestingly, vaccine studies have
shown that the treatment of mice infected with influenza virus
subtype H3N2 (a relatively avirulent subtype of the influenza A
virus) with rapamycin results in enhanced protection against
lethal infection with the H5N1 virus. This effect was promoted
by reduced germinal centre formation and decreased Ab class
switching, leading to more cross-reactive responses owing to
an altered Ab repertoire [60].
Influence of mTOR inhibition on endothelial
cells (ECs)
Vascular ECs expressmajor histocompatibility complex (MHC) I
and IImolecules and producemultiple immunostimulatory and
inhibitory signals that activate memory CD4+ cells, inducing
graft rejection [61]. Recent studies of the influence of rapamycin
on ECs have shown that, in vitro, rapamycin-pretreated ECs
stimulate less proliferation and cytokine secretion by allogeneic
CD4+ cells, owing to the upregulation of programmed death li-
gand (PD-L) 1 and PD-L2. Rapamycin preconditioning of ECs
also results in their preferential activation of allogeneic CD4+

CD25hi CD127lo Foxp3+ (Treg) cells and reduced infiltration of
allogeneic effector T cells into the arterial intima in vivo [62].
Rapamycin-pretreated ECs also show a reduced ability to cap-
ture T cells during venular flow by inhibiting tumour necrosis
factor-induced expression of vascular cell adhesion molecule-1
1162 Br J Clin Pharmacol (2016) 82 1158–1170
(VCAM-1) on ECs. This effect was shown to be dependent on
the inhibition of Rictor, suggesting mTORC2 inhibition as a
new therapeutic option to reduce vascular rejection [63]. Inhibi-
tionofmTORC2 leads to the upregulation of extracellular signal-
regulated kinase 1/2, reducingVCAM-1 expression by repressing
the induction of the transcription factor interferon regulatory
factor 1 (IRF-1), an effect that could be shown in vitro and
in vivo after exposure to rapamycin in mice. In an analysis of re-
nal transplant recipients with antiphospholipid syndrome, an
autoimmune disease leading to vascular thrombosis and obstet-
ric complications, biopsies frompatients treatedwith rapamycin
were compared with those from patients undergoing other im-
munosuppressive therapy [64]. In this study, the formation of in-
timal hyperplasia by immunoglobulin G Abs was associated
with the activation of mTORC1 and mTORC2 in ECs. Patients
with antiphospholipid syndrome nephropathy who required
transplantation and were treated with rapamycin (sirolimus)
had no recurrence of vascular lesions and showed decreased vas-
cular proliferation on biopsy, compared with patients with
antiphospholipid Abs who were not receiving rapamycin [64].
Pharmacological aspects of mTOR inhibition
The most commonly used mTOR inhibitors are sirolimus and
everolimus. Everolimus is a sister drug of sirolimus that, in-
stead of a hydrogen atom at position 40, has a 2-hydroxethyl
chain substitution, which improves its solubility and bio-
availability [65]. The main difference between the two agents
lies in their pharmacokinetic characteristics and interindivid-
ual differences in pharmacokinetics.

(i) Sirolimus

After oral administration of 2.5 mg sirolimus, the drug is
absorbed rapidly, reaching a maximal whole blood concentra-
tion (Cmax) of 40.5 ± 22.2 μg l�1 (standard deviation) after an av-
erage period of 2.7 ± 2.1 h (Tmax), dependent on dose. The exact
bioavailability of sirolimus is unknown but has been estimated
to be 15 ± 9%,with inter- and intraindividual variations depend-
ing on intestinal cytochrome P450 (CYP) 3A content [66]. The
metabolism of sirolimus occurs mainly via CYP3A4, CYP3A5
and CYP2C8 [67], with associated interindividual variability
due to different expression of these enzymes. An important
difference in clearance is found between the Afro-Caribbean
and non-Afro-Caribbean populations, with significantly higher
metabolism in the former group [68].

(ii) Everolimus

Oral administration of 2.5 mg everolimus reaches whole
blood Cmax levels of 45 (SD ±21) μg l�1 after an average time of
1.3 (±0.4 h) [69]. The total bioavailability is estimated to be about
16%, with interindividual and intraindividual variation [70].
Everolimus is metabolized by the same enzymes as sirolimus
[71]. In contrast to sirolimus, recent findings describe slower
metabolism of everolimus in Afro-Caribbean patients [72].

(iii) TORKinibs

Early pharmacokinetic studies have been performed on
these dual mTORC1 and mTORC2 inhibitors in cancer
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patients [73, 74] and in rodents [75, 76]. Pharmacokinetic
data for the TORKinib AZD2014 show rapid absorption after
oral intake, with a median time to peak of 0.5 h and 1 h fol-
lowing a single dose between 50 mg and 100 mg (Cmax:
1664 ng ml�1). Although the elimination half-life was ap-
proximately 3 h, large interpatient variability was seen [77].

Drug combination/conversion strategies in
clinical organ transplantation
New immunosuppressive protocols in organ transplantation
involve a switch from calcineurin inhibitors (CNIs) to mTOR
inhibitors. Recent studies examining changes in T cell subsets
in kidney transplant recipients after conversion to rapamycin
have shown upregulation of Tregs, accompanied by a reduc-
tion in Th17 cells. An increased proportion of CD8+CCR7+ T
cells (CD8+ Tregs) that could suppress CD4+ T cell activation
in vitro has been found [78]. Newer immunosuppressive pro-
tocols in renal transplantation have investigated the combi-
nation of mTOR inhibition and costimulation (B7-CD28)
blockade (with belatacept) [79]. Induction therapy with rab-
bit antithymocyte globulin in combination with these two
agents results in a favourable ratio of Foxp3+ Tregs over the
memory T cell compartment 1 year post-transplant. Despite
the presence of alloreactive CD4+ cells in pretransplant
donor-specific memory/effector T cell immune monitoring,
no patient showed signs of clinical rejection during the first
year. The combination of rapamycin (sirolimus) and
belatacept successfully suppressed both donor-specific and
naïve effector T cell responses.

New perspectives of mTOR inhibition in
experimental organ transplantation
A new-generation TORKinib, which blocks both mTORC1 and
mTORC2, has recently been shown to prolong allograft survival
in a murine organ transplant model [75]. In this latter study,
simultaneous blocking of both mTOR complexes led to similar
immunomodulatory effects as described for rapamycin (upregu-
lation of Foxp3+ Tregs and inhibition of IFNγ production), while
the production of cytokines by Th1 and Th17 cells was
increased. Recent findings in a rat model showed that chronic
rejection could be eliminated through the delivery of a MHC
class Imolecule into ACI strain recipients ofWistar–Furth hearts
at the time of transplantation, together with subtherapeutic
cyclosporine. Deregulation of two parallel (RhoA and Rac1)
actin pathways played a crucial role in the inhibition of chronic
rejection. This implies that bothmTORC1andmTORC2control
cell motility through changes in the organization of the cellular
cytoskeleton/RhoA/Rac1 pathway components [80].

New perspectives of mTOR inhibition in clinical
organ transplantation

(i) Kidney transplantation

In renal transplantation, special interest in the use of
mTOR inhibitors has arisen from their low nephrotoxicity
when compared with CNIs [81], and much has been learned
since their introduction [82] into clinical transplantation
[68]. Recent studies report that an early switch to sirolimus
in combination with a low-dose CNI [83] or mTOR mono-
therapy [84] significantly improves renal graft function and
gives rise to a similar risk of acute rejection compared with
standard CNI protocols. The use of mTOR inhibitors as
monotherapy is still a point of discussion; in a clinical trial
comparing CNI-based immunosuppression with ‘early con-
version’ to everolimus-based CNI-free therapy, the occur-
rence of donor-specific human leucocyte antigen Abs and
Ab-mediated rejection after low-risk kidney transplantation
was increased in the everolimus group [85]. A 5-year follow-
up clinical trial after conversion from a CNI to everolimus at
4.5 months showed significantly improved graft function,
along with similar risks of graft loss, mortality, serious adverse
events and neoplasms postrandomization [86].

(ii) Heart and lung transplantation

In lung transplantation, a large multicentre, randomized,
open-label controlled trial comparing sirolimus with azathio-
prine in a tacrolimus-based immunosuppressive regimen
including 181 patients showed no significant difference in
the overall rate of acute rejection after 1 year [87]. In a sub-
group analysis by the same investigators, the incidence of cy-
tomegalovirus (CMV) events in transplanted patients given
rapamycin (sirolimus) remained significantly lower than in
the azathioprine arm, even after adjustment for confounding
factors [88]. In heart transplantation, a new randomized trial
comparing patients undergoing complete CNI withdrawal
after 7–11 weeks with standard cyclosporine treatment
showed a significant reduction in cardiac allograft vasculopa-
thy after 1 year [89]. A long-term follow-up comparing the
combination of sirolimus and tacrolimus with tacrolimus
and mycophenolate mofetil did not show any differences in
cardiac allograft vasculopathy progression after 8 years,
indicating the need for large randomized clinical trials to
compare different drug combinations [90]. In addition, in
heart transplantation, as in lung and kidney transplantation,
treatment with everolimus was found to be associated with a
lower incidence of CMV infection compared with azathio-
prine and mycophenolate mofetil [91].

(iii) Infection

Next to improvement in graft function, clinical trials have
described a reduced incidence of CMV infection in renal
transplant patients under mTOR inhibition [92]. In a recent
trial conducted in low/moderate immunological risk kidney
transplant recipients receiving no CMV prophylaxis, the
incidence of CMV infection/disease was significantly lower
in those receiving everolimus and reduced-dose tacrolimus
compared with mycophenolate mofetil and standard-dose
tacrolimus [93]. One possible explanation for these findings
is the selective effect of mTOR inhibitors on T cell differentia-
tion, especially CD8+ T cells [94]. In addition, Poglitsch et al.
[95] investigated the effect of mTOR inhibition in CMV-
infected macrophages and demonstrated that mTOR is
essential for virus replication during the late phases of the
viral cycle in myeloid cells. This complex interaction has
recently been clarified by in vitro studies in which it could
be shown that CMV immediate early proteins can activate
PI3K–Akt, resulting in activation of mTORC1 and mTORC2
Br J Clin Pharmacol (2016) 82 1158–1170 1163
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[96]. In this study, it was reported that the inhibitory effects of
rapamycin on viral growth are due primarily to the presence
of Rictor, not Raptor, and that Rictor- and Raptor-containing
complexes are modified such that their substrate specificities
and rapamycin sensitivities are altered. In another study,
where mTOR activity was completely blocked using the dual
mTORC1 andmTORC2 inhibitor Torin 1, replication of repre-
sentative members of the α-, β- and γ-herpesvirus families was
inhibited [97]. Recent findings in a murine γ-herpesvirus in-
fection model, in which treatment with belatacept resulted
in increased viral burden, showed that the addition of
rapamycin could maintain the number and function of
virus-specific CD8+ T cells [98]. The molecular mechanisms
underlying these findings remain unclear. Possible explana-
tions are that suppression of Akt and mTOR and augmenta-
tion of PD-1 expression via increased FoxO1 are both a
normal and necessary part of the progression of cytotoxic T
cell exhaustion that serves not only to prevent excessive im-
munopathology, but also to sustain virus-specific cytotoxic
T cells during persistent Ag stimulation.

mTOR inhibition and malignant disease

(i) Non-transplant-associated malignancies

The mTOR pathway is currently the subject of intense inves-
tigation in cancer research, owing to its central role in cell metab-
olism and proliferation [99]. Owing to the complexity of this
topic, only a brief overview is presented here. mTOR inhibitors
have shown clinical efficacy against a number of malignancies,
especially renal cell carcinoma [100], breast cancer [101] and he-
patocellular carcinoma (HCC) [102]. In a large phase III clinical
trial of patients with advanced clear cell renal cell carcinoma
(ccRCC), treatment with everolimus prolonged progression-free
survival, with mild or moderate adverse events [103]. The largest
prospective randomized clinical trial to determine if sirolimus
can improve HCC recurrence-free patient survival (RFS) in liver
transplant recipients [Sirolimus in Liver Transplant Recipients
with HCC study (SiLVER); 525 patients] has revealed that
sirolimus does not improve long-term RFS beyond 5 years [104].
However, a RFS andoverall survival benefit was evident in thefirst
3–5 years, especially in low-risk patients. Preclinical data support
the use of dual mTOR inhibitors for ccRCC, with evidence of in-
creased cell apoptosis in vivo and in vitro [105]. A possible explana-
tion for this finding is that negative feedback loops, which
regulate PI3K–Akt signalling, are inhibited by rapalogs and may
counteract their anticancer efficacy [105]. Additionally, the toxic-
ity profiles of new-generation ATP-competitive TORKinibs are
more attractive compared with those of rapalogs. New phase II
trials investigating theuse of TORKinibs for advanced vascular en-
dothelium growth factor-refractory ccRCChave, however, shown
AZD2014 to be inferior compared with everolimus regarding
progression-free survival and overall survival [106]. The discrep-
ancy between preclinical data and clinical findings is still unclear
and raises new questions regarding the role of mTORC1 and
mTORC2 in tumour biology.

(ii) Transplant- associated malignancies

Recent studies investigating the use of rapamycin in liver
transplantation in selected patients with HCC report lower
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tumour recurrence in comparison with conventional immu-
nosuppression [107, 108]. Retrospective analysis of the prog-
nosis of patients who developed de novo solid organ tumours
after liver transplantation for alcoholic liver disease has
shown a significant improvement under everolimus-based
immunosuppression compared with other immunosuppres-
sive protocols [109]. In HCC, mTORC1 and mTORC2 path-
ways, including phosphorylated ribosomal protein S6, p-
Akt, insulin-like growth factor-1R and Rictor, are upregulated
in 40–50% of the tumours [110]. While use of sirolimus did
not improve the survival of patients with advanced HCC after
the failure of the multikinase inhibitor sorafenib [111], stud-
ies using novel dual mTORC1 and mTORC2 inhibitors have
shown promising in vitro results. Systematic reviews and
meta-analyses have revealed a reduced risk of malignancies
in kidney transplant patients given sirolimus immunosup-
pression [112, 113]. Although overall mortality in one study
was increased compared with controls, there may be a subset
of patients that benefit from mTOR inhibition. Next to
nonskin cancer malignancies, there is also evidence that
secondary skin cancer can be prevented by sirolimus treat-
ment in kidney transplant patients [114].
Side effects of mTOR inhibition
Since the introduction of rapamycin and rapalogs for trans-
plantation and other indications such as TSC, various adverse
events have been described. Hypertriglyceridaemia is one of
the most common metabolic side effects of rapalogs, making
dietary and pharmacological treatment (e.g. statins) neces-
sary in many patients [115]. Haematological complications
described in association with mTOR inhibition include
thrombocytopenia, leukopenia, neutropenia, lymphopenia
and anaemia [116]. These findings were consistent in a sys-
tematic review, showing a significant increase in hypercho-
lesterolaemia and anaemia in renal transplant patients after
conversion to mTOR inhibitor-containing immunosuppres-
sive therapy [117]. Women treated with mTOR inhibitors for
polycystic kidney disease reported menstrual cycle distur-
bances 3–5 times more commonly than untreated controls;
some patients reported amenorrhoea, leading to drug with-
drawal in a renal transplant setting [118, 119]. Increased risks
for wound complications and postoperative lymphocoeles af-
ter renal and heart transplantation have been described in re-
cent reviews of the literature. These studies underline the
need for meticulous surgical techniques, especially in obese
patients with mTOR inhibitory treatment regimens [120,
121]. One of the most dreaded complications associated with
the use of mTOR inhibitors is noninfectious pneumonitis
(NIP), which can result in life-threatening respiratory dis-
tress. In a randomized trial comparing treatment with evero-
limus vs. placebo in patients with renal cell carcinoma, 16%
developed grade 2 (not interfering with daily living) and
3.6% grade 3 (interfering with daily living or oxygen indi-
cated) NIP in the everolimus group [122]. Therapy for NIP
consists of dose reduction, discontinuation or corticosteroid
treatment. Less is known about the side effects of TORKinibs
as these new agents have only been used for short periods of
time in oncology patients. In a phase I study of patients with
advanced solid tumours, those receiving the TORKinib
AZD2014 commonly developed nausea, mucositis, diarrhoea
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and anaemia [77]. In a randomized phase II study of everoli-
mus versus AZD2014 in vascular endothelium growth
factor-refractory metastatic ccRCC, grade 3–4 adverse events
(most commonly, anaemia, fatigue and nausea) occurred in
35% and 48% of AZD2014 and everolimus patients, respec-
tively [106]. It remains unclear whether the perioperative
use of TORKinibs would be well tolerated and safe. More de-
tailed elaboration on the safety considerations of mTOR in-
hibitors can be found in a recent review [123].
Conclusions
In recent years, our knowledge of the complex implications of
mTOR inhibition has grown through both basic research and
clinical experience. Selective gene KO models and ATP-
competitive mTOR inhibitors have provided new insights into
the distinct roles of mTORC1 and mTORC2 in cell growth,
metabolism and function. As exclusive mTORC2 inhibitors are
not currently available, our understanding of the influence of
selective mTORC2 inhibition remains limited to genetic dele-
tion models and RNA silencing. The precise roles of mTORC1
and mTORC2 inmany immune cells remain unclear, and inter-
actions between these complexes remain to be studied.

The ability of mTORC1 inhibition to modify the behaviour
of APCs, suppress alloreactive effector T cell responses and pro-
mote Tregs has bestowed ‘tolerogenic’ properties on rapamycin.
However, paradoxical immunostimulatory effects of mTOR in-
hibition on APCs and T cells, paired with limited immunosup-
pressive potency, makes further research and refinement of
mTOR inhibition strategies essential. Low nephrotoxicity, lower
incidences of viral infection and beneficial effects ofmTOR inhi-
bition on EC proliferation need to be balanced against known
side effects and optimal strategies devised tomaximize the ther-
apeutic potential of these important agents.
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