
British Journal of Clinical
Pharmacology

DOI:10.1111/bcp.12845
128
New perspectives on the
involvement of mTOR in
depression as well as in the
action of antidepressant
drugs
Zuleide M. Ignácio,1,5 Gislaine Z. Réus,1 Camila O. Arent,1

Helena M. Abelaira,1 Meagan R. Pitcher3 & João Quevedo1,2,3,4

1Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit,

University of Southern Santa Catarina, Criciuma, Santa Catarina, Brazil, 2Center for Translational

Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of

Texas Health Science Center at Houston, Houston, Texas, 3Center of Excellence on Mood Disorders,

Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health

Science Center at Houston, Houston, Texas, 4Neuroscience Graduate Program, Graduate School of

Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA

and 5Laboratory of Physiology, Pharmacology, Pathology and Psychopathology, Campus Chapeco,

Federal University of South Frontier, Chapeco, Santa Catarina, Brazil
© 20 / 1280–1290 / 82:5 / Br J Clin Pharmacol
Correspondence
Gislaine Z. Réus, PhD, Laboratório de
Neurociências, Universidade do
ExtremoSulCatarinense, Criciúma, Santa
Catarina 88806-000, Brazil.
Tel.: +55 48 3431 2618
Fax: +55 48 3431 2736
E-mail: gislainezilli@hotmail.com
----------------------------------------------------

Keywords
antidepressants, ketamine, major
depressive disorder, mTOR
----------------------------------------------------

Received
30 September 2015

Accepted
20 November 2015

Accepted Article
Published Online
27 November 2015
Despite the revolution in recent decades regarding monoamine involvement in the management of major depressive disorder (MDD), the biological
mechanisms underlying this psychiatric disorder are still poorly understood. Currently available treatments require long time courses to establish
antidepressant response and a significant percentage of people are refractory to single drug or combination drug treatment. These issues, and recent
findings demonstrating the involvement of synaptic plasticity in the pathophysiological mechanisms of MDD, are encouraging researchers to explore
the molecular mechanisms underlying psychiatric disease in more depth. The discovery of the rapid antidepressant effect exerted by glutamatergic and
cholinergic agents highlights the mammalian target of rapamycin (mTOR) pathway as a critical pathway that contributes to the efficacy of these
pharmacological agents in clinical and pre-clinical research. The mTOR pathway is a downstream intracellular signal that transmits information after the
direct activation of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) and neurotrophic factor receptors. Activation of these receptors is
hypothesized to be one of the major axes involved in the synthesis of synaptogenic proteins underlying synaptic plasticity and critical to both the rapid
and delayed effects exerted by classic antidepressants. This review focuses on the involvement of mTOR in the pathophysiology of depression and on
molecular mechanisms involved in the activity of emerging and classic antidepressant agents.
Introduction

In 2004 depression ranked third among non-fatal disease
global disability burden and is expected to attain first place
by 2030 [1]. Major depressive disorder (MDD) is a serious
and recurrent disorder, linked to diminished quality of life,
increased morbidity, increased mortality and economic
burden [2, 3]. The pathogenesis of depression and mecha-
nisms of action of current antidepressant drugs are not yet
clear [4]. Although the activity of common antidepressant
drugs involves acutely the monoaminergic system, the
therapeutic effect occurs only after chronic treatment
and appears to be under poorly understood changes in cel-
lular biochemical mechanisms. Evidence indicates that
neurotrophic and neurogenic factors mediate neural adap-
tations involved in the late therapeutic responses after
chronic treatment with classical antidepressants [5–7].

Recent research has provided emerging theories on the
pathophysiology of depression and possible mechanisms of
action of antidepressants that consider the neurobiological
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processes underlying neuronal and synaptic plasticity and
converging factors [8, 9]. Importantly, recent research urges
development of improved treatments, given that available
treatments are effective in fewer than 50% of people with
MDD and antidepressants require weeks to months for
therapeutic effect [10, 11]. To this end, recent research
has focused on the mTOR signalling as a pathway underly-
ing the effects of emerging agents that relieve depression
faster than classic antidepressants. This review will focus
on cellular mechanisms described in preclinical and clinical
studies and agents that promote antidepressant effects via
activity in the mTOR signalling pathway.
Mammalian target of rapamycin
(mTOR)

Target of rapamycin (TOR) is a highly conserved serine/
threonine kinase. Two distinct protein complexes,TOR
complex 1 (TORC1) and TORC2, regulate important func-
tions such as cell growth and metabolism [12]. Rapa-
mycin activity at the TOR complexes was identified
from mutations in the budding yeast Saccharomyces
cerevisiae, with certain mutations making the complexes
resistant to the inhibitory properties of rapamycin. In the
TORC1 complex, rapamycin binds to FKBP12 to form a
FKBP12-rapamycin complex and thereby inhibit TORC1
activity [13, 14]. Rapamycin allosterically inhibits TORC1
activity, possibly by blocking interactions with regulatory
proteins via steric hindrance or conformational changes
[15]. The upstream activators of mTOR signalling are pro-
tein kinase B (PKB/Akt) and extracellular signal-related ki-
nase (ERK), which inhibit tuberous sclerosis (TSC1 and TSC2)
complexes, which are inhibitors of mTOR [16]. The activation
of glycogen synthase kinase-3 (GSK-3) leads to increase on
TSC1/2 activity, thus inhibiting the mTOR pathway [16]. The
downstream targets ofmammalian TOR (mTOR) are the ribo-
somal protein S6 kinases (S6Ks) and the eukaryotic initiation
factor 4E (eIF4E)-binding proteins (4E-BP). These down-
stream proteins regulate protein biosynthesis [17]. S6K pre-
sents inhibitory function on the kinases of eukaryotic
elongation factor 2 (eEF2), whose phosphorylation inhibits
protein translation [1]. Stimuli inducing dephosphorylation
of eEF2 increases translation and the underlying dephos-
phorylation process is a target for blockade by rapamycin,
implying it to be an effect also mediated through mTOR
[18]. In addition to protein synthesis, mTOR is being studied
as an important signalling pathway in several other homeo-
stasis and cell survival processes inherent in the homeostatic
and extreme living conditions of cells [reviewed in 15].
mTOR and brain physiology

Activation of the mTOR signalling pathway is implicated
in many physiological processes of the nervous system,
including neurogenesis, axonal sprouting, dendritic
spine growth, ionic and receptor channel expression,
axonal regeneration and myelination. A large number of
physiological processes regulated by mTOR underlie higher
nervous system functions such as neuronal excitability and
survival, cognition, feeding behaviour and control of circa-
dian rhythm [17]. Studies have shown that mTOR signalling
is involved in various important aspects of the hippocampal
dendritic tree, such as an increase in the size andmaturation
of dendrites, as well as in dendritic growth stimulated by
activity [19]. In addition, the coordinated development of
dendrite size, shape and dendritic complexity also are under-
lying the mTOR pathway [20]. The downstream 4E-BP2 pro-
teins, mTOR targets and translation repressor, are important
regulators of long term potentiation phenomena and are
critical to the process of hippocampal synaptic plasticity
and memory [21].

Considering the important physiological mechanisms
in the brain, it is reasonable to hypothesize that changes
in mTOR signalling are involved in various pathologies of
the nervous system and psychiatric disorders, including
MDD [22–24].
Modulators, receptors and mTOR
signalling

In addition to stress and stimuli contributions from ener-
getic and homeostatic status, several modulators, such as
neurotransmitters, hormones, growth factors and recep-
tors, are involved in the activation or inhibition of
mTORC1 signalling [25]. Factors involved in synaptic
plasticity and neurogenesis, such as brain-derived neuro-
trophic factor (BDNF), vascular endothelial growth factor
(VEGF), insulin and insulin-like growth factor 1(IGF1),
bind to tyrosine kinase receptors and are activators of
the mTORC1 pathway [17, 25, 26]. Research has shown
that BDNF, through tropomyosin-related kinase B (TrkB)
receptor, increases the rate of protein synthesis by in-
creasing the unphosphorylated eukaryotic elongation
factor 2 (eEF2) protein in primary cortical neurons [27]
and hippocampal neurons [28]. Other studies have also
shown that BDNF activates the mTOR cascade via 4E-
BPs and S6Ks proteins thereby increasing protein synthe-
sis in neuronal dendrites [29]. Therefore, the role of BDNF
in protein synthesis and neuronal plasticity seems to in-
volve an initiation and elongation translation process of
the downstream mechanisms in the mTOR pathway.

Other major neurotransmitters and receptors involved
in the regulation of neuronal plasticity and behavioural
functions activate the mTOR pathway. The μ-opioid
receptor, which underlies the analgesic and addictive prop-
erties of morphine, acts through mTOR translational path-
ways [30]. Metabotropic glutamate receptors of group I
(group I mGluRs), involved in synaptic plasticity and impor-
tant neural functions, also activatemTOR signalling [31, 32].
Br J Clin Pharmacol / 82:5 / 1281
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In addition to themetabotropic receptors, many recent stud-
ies are focusing on mTOR signalling through ionotropic, α-
amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)
receptors, indicating that AMPA glutamatergic activation
triggers the synaptogenic process by activating the mTOR
pathway [33–35].

The sustained activation of the N-methyl-D-aspartate
receptor (NMDA) receptor provides inhibitory action on
the mTORC1 signalling activity, resulting in reduced pro-
tein synthesis [36]. NMDA activation is associated with
dephosphorylation of extracellular signal-related kinase
(ERK) protein kinase B (PKB/Akt) [37] and activation of
glycogen synthase kinase-3 (GSK-3) [38]. PKB/Akt pro-
teins and ERK inhibit tuberous sclerosis (TSC1 and TSC2)
complexes, which are inhibitors of mTOR [37, 39]. There-
fore, PKB/Akt and ERK activate the mTOR signalling path-
way, while GSK3 activity leads to increased TSC1/2
activity, thus inhibiting the mTOR pathway [35].
Hypofunction of the NMDA receptor caused by antago-
nists leads to synaptogenic effects [40] and increased
AMPA activation in the prefrontal cortex (PFC) [41].

In neurons of Aplysia, serotonin decreases phosphor-
ylation of the eEF2, increases synaptic 4EBPs phosphory-
lation and increases protein translation and synaptic
strength [42, 43]. Serotonin also seems to activate synap-
tic plasticity through protein mechanisms of initiation
and elongation in protein translation processes by the
mTOR pathway. On the other hand, chronic treatment
with the selective serotonergic re-uptake inhibitor (SSRI)
fluoxetine increased phosphorylation of the eEF2 in the
hippocampus, PFC and the dentate gyrus, while phos-
phorylation of eIF4E increased only in dentate gyrus
[44]. Thus, increased chronic serotonergic activity in re-
gions involved with MDD seems to involve temporally
and spatially different mechanisms, which initially ap-
pears paradoxical considering that eEF2 phosphorylation
is related to reduction of protein translation [45]. How-
ever, eEF2 phosphorylation is also related to an increased
translation of critical proteins involved in subcellular re-
gional organization of the translational machinery [46].

Scopolamine is a muscarinic cholinergic receptor
(mAChR) antagonist with rapid-onset antidepressant
effects in clinical trials [47–49]. Rats treated with scopol-
amine have synaptogenesis in the prefrontal cortex (PFC)
associated with rapid activation of mTORC1 signalling [50].
mTOR signalling and depression

The mTOR signalling pathway is impaired in the PFC of
individuals diagnosed with MDD. The protein levels of
the translation initiation step of the mTOR pathway,
namely p70S6K and eIF4B, were reduced in post mortem
brains of depressed people. A reduction of phosphory-
lated eIF4B was also observed in the brains of these
subjects, indicating a reduction in mTOR/p70S6K/eIF4B
1282 / 82:5 / Br J Clin Pharmacol
pathway function [51]. In a post mortem study of indi-
viduals previously diagnosed with MDD, researchers
observed a reduction in kinase activity of Akt and in-
creased GSK3β enzyme in the ventral prefrontal cortex
[52]. Another mTOR upstream regulator, the RDD1 (regu-
lated in development and DNA damage responses-1)
protein, which stabilizes the TSC1 and TSC2, increased
in the post mortem PFC of MDD patients. The same
authors also observed that RDD1 is involved on
depressive-like behaviour and synaptic plasticity impair-
ment that occurs in the PFC of rats subjected to chronic
stress. In addition to RDD1, phosphorylation of S6K and
4EBP in the PFC were also reduced in chronically stressed
rats [53]. Preclinical studies utilizing animal models of de-
pression reported decreased mTOR brain activation. A
similar reduction in the phosphatidylinositol 3-kinase
(PI3K)/Akt/mTOR signalling pathway has been described
in PFC and amygdala of stressed rats [54]. In studies with
rodents exposed to chronic unpredictable stress,
researchers observed depression-like behaviour and a
reduction in phosphorylation levels of mTOR and
phospho-p70S6K in the PFC, hippocampus and amyg-
dala [54–56]. It was shown that depressive-like behaviour
induced by chronic stress in rats was reversed quickly by
ketamine and Yueju, a medicinal herb [57]. Also, there
was an increase in the levels of phosphorylated upstream
and downstream targets of the mTOR pathway, such as
ERK, Akt, S6K and 4E-BP [57]. Thus, these and other
results indicate that translational losses underlying to
MDD are not necessarily due to complex deficiency, but
to upstream and downstream targets of the mTOR
signalling pathway. Immobilization stress also decreases
BDNF expression in parallel to reduced phosphorylation
of mTOR and p70S6K in the hippocampus of rats [58].
In vitro methods replicate these findings, since cultured
primary cortical neurons from mice presenting depression-
like behaviour after chronic corticosterone treatment have
a reduction in mTOR activity [59].

Several researchers have shown that mTOR signalling is
an important mechanism underlying the activation and
function of AMPA receptors in synaptogenesis [33, 34].
Adult rats exposed to a chronic mild stress protocol
had increased anhedonia and reduced AMPA receptor
expression in the PFC and nucleus accumbens and
decreased neurogenesis and BDNF levels in the
hippocampus [60]. Other studies have shown that the
antidepressant-like effect of ketamine occurred along
with an increase in the AMPA receptor activity, as well
as levels of phosphorylated mTOR and expression of
BDNF in the hippocampus and PFC of rats. The same
authors also found that blocking AMPA receptors
prevented the expression of BDNF, phosphorylated
mTOR and antidepressant-like response, suggesting that
the AMPA receptor plays an important role in con-
vergence of mTOR signalling, BDNF expression and
antidepressant response [61].
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Involvement of mTOR in depression
treatment
Activation of the mTOR pathway seems to underlie the
antidepressant effects of NMDA receptor antagonists and
other classic antidepressants [62]. Classic antidepressants,
such as escitalopram, paroxetine, and tranylcypromine,
increase levels of phosphorylated mTOR and phosphory-
lated forms of the upstream regulators Akt and ERK in rat
hippocampal cultures. In addition, these antidepressants
also increase synaptic protein levels and growth of hippo-
campal dendrites [63]. Several studies have shown that
the glutamatergic non-selective NMDA receptor antagonist
ketamine exerts a rapid and prolonged antidepressant ef-
fect after acute administration in humans [64–66] and in
animal models of depression [35, 40, 67]. Ketamine has
synaptogenic effects that are seen to bemediated via disin-
hibition of glutamatergic transmission on the AMPA recep-
tors. The spontaneous activity of GABAergic interneurons is
decreased by ketamine in the PFC of rats and, conse-
quently, the firing rate of glutamatergic pyramidal neurons
are increased [41]. Some authors suggested that NMDA re-
ceptor antagonists block spontaneous GABAergic activity,
resulting thereby in disinhibition of glutamate transmission
on the AMPA receptors [34]. On the other hand, a direct ef-
fect on cortical neurons is hypothesized from evidence that
the function of ketamine seems to be happening in mech-
anisms underlying to tonic activity of NMDAR receptors in
pyramidal neurons (see Miller et al. [68], for a detailed re-
view about the theories of inhibition and disinhibition by
ketamine). In addition, ketamine has been shown effective
in people resistant to treatment with classic antidepres-
sants [40, 66, 69, 70]. Ketamine, at doses that induce
antidepressant-like effects in animals, rapidly increased
mTOR signalling, BDNF levels, and structural and functional
plasticity in the PFC and hippocampus [35, 61, 71–73]. The
action of ketamine occurred on ERK, PKB/Akt and signalling
pathways of growth factors linked to the activation of
mTOR. The antidepressant effect exerted by ketamine re-
quires the inhibition of GSK-3 [71, 72], which inhibits mTOR
signalling [37, 39]. Importantly, inhibition of GSK-3 by lith-
ium or agents that preferentially inhibit the GSK-3β poten-
tiated and increased the duration of antidepressants and
synaptogenic effects of the ketamine, through activation
of the mTORC1 [72]. It is also important to note that activa-
tion of these mTORC signalling pathways was blocked by
an inhibitor of AMPA activity, emphasizing the intermedia-
tion of the AMPA glutamate receptor in the action of keta-
mine [33, 40]. Treatment with ketamine and Ro 25–6981, a
glutamate NMDA receptor 2B (GluN2B) antagonist in a ro-
dent chronic stress model led to a sustained reversal of
depressive-like behaviours, reduction of synaptic proteins
and density and decreased excitatory postsynaptic currents
in PFC via mTOR [74]. Moreover, other authors observed
that Ro 25–6981 induces an antidepressant effect with
fewer side effects than ketamine and other non-specific
NMDA antagonists [75]. Another NMDAGluN2B antagonist,
CP-101 606, had a rapid antidepressant effect in humans
with treatment-refractory MDD [76]. Miller and colleagues
[77] demonstrated that antagonism or suppression of
subunit GluN2B of the NMDA receptor promoted mTOR-
dependent antidepressant-like effects and increased
translation and synaptic plasticity in cortical neurons. The
authors argue that GluN2B has a more effective function in
inhibiting mTOR function and limiting protein synthesis
and may therefore be a target of rapid antidepressant ac-
tions of ketamine. Based on other studies, these researchers
also argue that AMPA activation may be a mechanism in-
volved in responses affected by blocking the function
GluN2B. It is important to note that greater glutamate affinity
occurs with GluN2 subunits of NMDA during activation while
the co-agonist glycine has a higher affinity for GluN1 sub-
units [78]. On the other hand, an inverse engagement of
the GluN2B subunit in brain regions of animals subjected
to the chronic stress protocol was observed [79]. Another
study showed that the expression of the GluN2B subunit
did not change, while the GluN1 subunit was increased in
the PFC of mice subjected to chronic stress [57]. Thus, these
apparent paradoxical findings need to be elucidated,
observing specific aspects, such as stress protocols, regional
differences with respect to subunit expression and composi-
tion, among other aspects inherent in MDD.

AMPA availability and activation with subsequent
mTOR signalling are also required for the antidepressant
effect elicited by sarcosine, a substance that increases
the availability of glycine in the synaptic cleft and NMDA
receptor activity. Therefore, glutamatergic function goes
beyond the antagonistic effect of ketamine and other
compounds at the NMDA receptor. These data indicate
that mTOR signalling through the activation of AMPA is
the framework of the mechanisms involved in synaptic
plasticity and antidepressant activity of drugs involved
in ionotropic glutamatergic neurotransmission [80]. It is
worth noting that NMDA antagonism appears to reduce
the spontaneous activity of GABAergic interneurons in
the PFC and consequently disinhibits pyramidal gluta-
matergic activity. This activity is proposed to increase
the cortical excitability and glutamate levels and conse-
quently the activation of AMPA (Figure 1) [33, 41]. Anti-
convulsant drugs with antidepressant properties, such
as lamotrigine [81, 82] and riluzole [81], also increase
traffic and availability of the AMPA receptor in the mem-
brane of hippocampal neurons [81]. This phenomenon
can therefore increase mTOR signalling and potentially
underlies plasticity changes involved in anticonvulsant
and antidepressant effects. However, there is conflict in
the field about what specific mechanisms underlie drugs
that increase AMPA/mTOR activity but exhibit timing
differences in antidepressant effect [80].

As observed by Autry and colleagues [83] the
antidepressant-like action of ketamine and other NMDA
antagonist, MK-801, requires the function of BDNF. The
Br J Clin Pharmacol / 82:5 / 1283



Figure 1
Fast action antidepressants activate mTOR. NMDA and muscarinic receptors antagonists, as well as compounds that act on AMPA receptors activate the mTOR
signalling pathway. The activated mTOR triggers a translational machinery, increasing protein synthesis involved with synaptogenesis. Among other
synaptogenic molecules, BDNF is released and activates TrkB receptor, whose signalling activates mTOR pathway. Thus, BDNF increases synthesis and traffic
of AMPA receptors, thereby increasing their availability and mTOR signalling. This positive feedback loop between AMPA and BDNF seems to be a mechanism
involved in the amplification of synaptic plasticity, as well as for the rapid, robust and durable therapeutic antidepressant response. BDNF, brain-derived
neurotrophic factor; mTOR, mammalian target of rapamycin; NMDA, N-methyl-daspartate; AMPA, α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate;
PI3K, phosphatidylinositol-3-kinase; MuscR, muscarinic receptor; ERK, extracellular signal-regulated kinase; MEK, mitogen-activated protein kinase; Akt, protein
kinase B (PKB); PIP2, phosphatidylinositol biphosphate; PIP3, phosphatidylinositol triphosphate; PDK1, phosphoinositide-dependent kinase-1; S6K, ribosomal
protein S6 kinase; eEF2K, eukaryotic elongation factor-2 kinase; 4E-BP, eukaryotic initiation factor 4E (eIF4E)-binding proteins
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same authors found that ketamine increased levels of
BDNF protein without changing mRNA expression, indi-
cating that the ketamine and other NMDA antagonists
trigger translational machinery. Going further, the re-
searchers showed that the antidepressant-like action of
ketamine and other NMDA antagonists requires AMPA
activation, dephosphorylation of eEF2 and increased syn-
thesis of BDNF by translational processes. Considering
that BDNF activates the mTOR cascade and increases
the unphosphorylated form of eEF2 it is important to
note that the mechanisms fired from the AMPA activa-
tion, at least with respect to BDNF, may form a positive
feedback loop [27, 28]. In addition to the mTOR pathway,
the action of BDNF involves other mechanisms that un-
derlie synaptic plasticity and antidepressant effects, such
as activation of mitogen-activated protein kinases
(MAPK) [84, 85], as well as expression of elevated of phos-
phorylated cAMP response element-binding protein
(pCREB) in the hippocampus of adult mice [86]. Thus,
the amplification mechanism by BDNF involves other sig-
nalling pathways, including the transcriptional machinery.
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Therefore, the translational machinery after AMPA activa-
tion can become broad and persistent and potentially un-
derlie the rapid, robust and long acting antidepressant
response from NMDA antagonists (Figure 1).

mTOR signalling as a consequence of AMPA receptor
activity is also shown as a convergence path from cholin-
ergic neurotransmission in MDD. Scopolamine, a musca-
rinic cholinergic receptor (mAChR) antagonist exerts
rapid-onset antidepressant effects in clinical trials [47–49]
and synaptogenesis in the PFC of rats, together with rapid
activation of mTORC1 signalling [50]. These effects were
antagonized by AMPA blockers, suggesting a shared
action of glutamatergic neurotransmitter similar to NMDA
antagonism by ketamine (Figure 1) [50].

The expression of VEGF and its receptor Flk-1 increases in
the hippocampus after treatment with classic antidepres-
sants such as SSRIs and norepinephrine selective re-uptake
inhibitors (NSRIs) and is involved in neurogenesis and
antidepressant-like effect induced by these drugs and elec-
troconvulsive seizure [87]. VEGF activates cell proliferation
through the mTORC1 signalling pathway [25, 26]. These
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results suggest that behavioural and neurogenic action of
classic antidepressants occurs, at least in part, via activation
of VEGF receptors and downstream mTOR signalling.

Ketamine in combination with other agents that cause
synergistic effects is a potential strategy to increase antide-
pressant effects and reduce possible adverse effects resulting
from chronic administration of ketamine. Thus, some com-
pounds in parallel with the expansion of the effects of keta-
mine also activate the mTOR pathway [35, 73, 83, 88].
Discussion and conclusion

Research shows that classic antidepressants quickly in-
crease levels of monoamines in the synapses, but the an-
tidepressant effect is delayed. It is important that classic
antidepressants increase the expression and function of
neurotrophic factors and activate mTOR. However, drugs
that quickly activate mTOR, such as NMDA and musca-
rinic antagonists, Yueju, among other compounds, have
a quick and long lasting antidepressant effect, even if
the activation of mTOR is transient. Thus, it is important
Figure 2
Mechanisms involved in the delay of therapeutic response to classic antidepres
uptake of monoamines, increase the availability of serotonin, norepinephrine a
tors (example above) triggers the internal cellular signalling that leads to CREB
the transcription process activates TrkB receptors and downstreammTOR signa
mTOR triggers the translational machinery, increasing protein synthesis involv
porter and BDNF are involved in resistance to classical antidepressant treatment
mechanisms related to refractory to classical treatments. MDD, major depressiv
Val66met BDNF single-nucleotide polymorphism; SSRI, selective serotonin re-
TCA, tricyclic antidepressants; BDNF, brain-derived neurotrophic factor; TrkB,
rapamycin; PI3K, phosphatidylinositol-3-kinase; ERK, extracellular signal-regula
B (PKB); S6K, ribosomal protein S6 kinase; eEF2K, eukaryotic elongation factor-
cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; CREB, cAMP re
to determine what mechanisms mediate the delayed ef-
fect of classic drugs and compare those with the mecha-
nisms utilized by drugs, which quickly activate mTOR
signalling. It is important to note that chronically admin-
istered classic antidepressants increase the expression of
BDNF and VEGF (Figure 2) [87, 89–92], wherein the anti-
depressant effect seems to coincide with the increased
levels of these factors [92]. The quick, potent and long
lasting effects of drugs that activate mTOR is related
mainly to increased activation of the AMPA receptors
with subsequent and rapid mTOR activation. It is also im-
portant that mTOR activity induced by AMPA activation
leads to an increase in BDNF expression. In addition,
BDNF activates mTOR signalling and increases AMPA re-
ceptor expression and function [83], thereby may be
building a positive feedback loop and thus amplifing
mechanisms related to synaptic plasticity and antide-
pressant behavioural response. However, the con-
nections between BDNF, mTOR and AMPA, in both
directions require further studies. At the same time it is
also important to note that the striking effect of agents
that activate mTOR signalling and induce rapid
sants in MDD patients. The classic antidepressants, which inhibit the re-
nd dopamine in the synaptic cleft. The activation of serotonergic recep-
activity and BDNF transcription. The synthesis and release of BDNF from
lling pathway, which coincides with the therapeutic response. Activated
ed in synaptogenesis. Genetic polymorphisms of the serotonin trans-
in some people. These genetic traits may be at least one of the possible
e disorder; 5-HTTLPR, serotonin-transporter-linked polymorphic region;
uptake inhibitors; SNRI, serotonin-norepinephrine re-uptake inhibitors;
tropomyosin-related kinase B receptor; mTOR, mammalian target of
ted kinase; MEK, mitogen-activated protein kinase; Akt, protein kinase
2 kinase; 4E-BP, eukaryotic initiation factor 4E (eIF4E)-binding proteins;
sponse element-binding protein
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antidepressant activity in treatment-refractory people
may result from a culmination of mechanisms on which
classic antidepressants have no direct activity. If this is
the case, how might we find mechanisms that could infer
differences between treatments? Because classic antide-
pressants seem to require an increase in the expression
of synaptogenic factors after chronic treatment, and
hence culminate in mTOR activation, is interesting to
note that some routes suffer genetic variants that confer
resistance to treatment, as in the case of genetic poly-
morphisms for the serotonin transporter and BDNF
(Figure 2) [7, 93–95]. Thus, synaptic plasticity as well as
the antidepressant response may suffer delays and losses
when the treatment is by these routes.

These issues from the literature show that mTOR is a
key signalling pathway related to the effectiveness of
antidepressants and its activation culminates in neuro-
plasticity and behavioural responses critical to antide-
pressant treatments. Therefore, agents that interfere
more directly on the mTOR pathway are targets that
should be of particular interest for new treatments for
MDD. However, possible side effects from powerful and
persistent increase of mTOR activity, which can induce
cell proliferation and tumours [96], as well as effects on
other mechanisms induced by agents already known,
for example, psychotic symptoms from higher concen-
trations of ketamine [97] and others side effects are
features that require further research strategies. Thus,
research for more selective drugs targeting certain re-
ceptor subunits, as well as association of compounds
that cause synergistic antidepressant effects are strate-
gies that will contribute to the advancement in knowl-
edge of neurobiological mechanisms and the discovery
of more effective treatments [35, 73].
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