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Neurological complications associated with the human immunodeficiency virus (HIV) are a matter of great concern. While
antiretroviral (ARV) drugs are the cornerstone of HIV treatment and typically produce neurological benefit, some ARV drugs have
limited CNS penetration while others have been associated with neurotoxicity. CNS penetration is a function of several factors
including sieving role of blood-brain and blood-CSF barriers and activity of innate drug transporters. Other factors are related to
pharmacokinetics and pharmacogenetics of the specific ARV agent or mediated by drug interactions, local inflammation, and blood
flow. In this review, we provide an overview of the various factors influencing CNS penetration of ARV drugs with an emphasis
on those commonly used in sub-Saharan Africa. We also summarize some key associations between ARV drug penetration, CNS

efficacy, and neurotoxicity.

1. Introduction

Human immunodeficiency virus (HIV) remains a leading
cause of morbidity and mortality, especially in sub-Saharan
Africa where 70% of the people living with HIV globally live.
HIV penetrates the central nervous system (CNS) within a
few days of infection [1-4], establishing residence in macro-
phages and microglia cells and producing CNS inflamma-
tion that may lead to neuronal injury and neurological
complications. Combination antiretroviral therapy (ART') for
HIV effectively suppresses plasma HIV viremia [5-7] and as
a result considerably increases life expectancy [8]. ART also

confers neurological benefit in most individuals by suppress-
ing CNS viral replication and inflammation. However, up
to 40% of individuals exhibit neurocognitive impairment
despite successful suppression of plasma viremia [9]. Poten-
tial explanations for this include poor penetration of ARV
drugs into the CNS, which may allow continued HIV replica-
tion and inflammation in that compartment [10]. In addition,
some antiretroviral drugs may be neurotoxic. In this review
article, we provide an overview of the various factors influ-
encing the CNS penetration of antiretroviral drugs. These
include general factors such as drug transporters, the blood-
brain barrier, and blood-cerebrospinal fluid barrier and host
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specific factors that are driven by pharmacokinetics and
pharmacogenetics. Other factors include physicochemical
properties of the antiretroviral drug, local cerebral blood flow,
and chronic inflammation. We also summarize associations
between antiretroviral drug penetrations, CNS efficacy, and
neurotoxicity.

2. Data Collection Methods

We conducted a comprehensive query of PubMed and
Google Scholar. Search terms used included pharmacoge-
netics, Africa, antiretrovirals, zidovudine, efavirenz, teno-
fovir, saquinavir, raltegravir, enfuvirtide, bevirimat, nevi-
rapine, ritonavir, maraviroc, zalcitabine, delavirdine, ampre-
navir, indinavir, didanosine, nelfinavir, lopinavir, stavudine,
atazanavir, fosamprenavir, abacavir, tipranavir, emtricitabine,
darunavir, lamivudine, Central Nervous System, blood flow,
penetrat”, HIV, blood brain barrier, CSF, CSF concentration,
transporters, P-gp, ABCBI, protein binding, plasma con-
centration, and drug interaction. Additional references were
obtained from the reference lists in the articles identified
using this search method. Only articles published in English
language were reviewed.

3. Commonly Used Antiretroviral Drugs in
Sub-Saharan Africa

The World Health Organization (WHO) recommends that
the first-line ART should consist of a nonnucleoside reverse
transcriptase inhibitor (NNRTI) and two nucleos(t)ide
reverse transcriptase inhibitors (NRTIs), one of which should
be zidovudine (ZDV) or tenofovir disoproxil fumarate
(TDF). Efavirenz (EFV) is the preferred NNRTI in ART
regimens in sub-Saharan Africa [11, 12], although some
patients are treated with nevirapine- (NVP-) based ART [13-
15]. Other NRTIs commonly used as first-line treatment are
lamivudine (3TC) and emtricitabine (FTC). Both didanosine
(ddI) and stavudine (d4T) are rarely used these days because
of their toxicities [16, 17]. The WHO recommendation for
second-line ART consists of a ritonavir-boosted protease
inhibitor (PI) plus two or three NRTTs, one of which should
be ZDV or TDE depending on what was used in first-line
therapy. Atazanavir with ritonavir (ATV/r) and lopinavir/
ritonavir (LPV/r) are the preferred PIs. Saquinavir (SQV)
has fallen out of favor partly because it has a high pill-
burden, while indinavir (IDV) has a high risk of toxicity, and
fosamprenavir (FPV) is relatively expensive. Although the
integrase strand transfer inhibitor, raltegravir, is an option
for second-line therapy when combined with a boosted P1I,
integrase inhibitors are typically reserved for third-line regi-
mens. Other components of third-line therapy include drugs
likely to have anti-HIV activity such as the second-generation
NNRTI etravirine and the boosted PI darunavir/ritonavir
(DRV/r), both of which are rarely available due to relatively
high costs [18]. Dolutegravir (DTG), a newer integrase strand
transfer inhibitor, is not yet available in sub-Saharan Africa
but has the potential to gain attention in this region in the next
few years due to its attractive safety, efficacy, and resistance
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profile. DTG was demonstrated to be superior in first-line
ART to EFV [19, 20] and DRV/r [21] in large randomized
trials.

4. CNS Penetration of Different
Antiretroviral Drugs

Penetration of antiretrovirals into the CNS is critical to
optimize suppression of the CSF HIV viral load and overall
replication in the CNS. It has been suggested that the use
of antiretroviral compounds with poor penetration into the
CNS may be associated with an increased risk of cognitive
decline. This is however controversial as shown by the pro-
posed CNS Penetration-Effectiveness (CPE) ranking system,
which categorizes antiretrovirals into three groups (low,
intermediate, and high CNS penetration) [10] or four groups
[22] based on their chemical properties, concentration in the
CSE and effectiveness in reducing the CSF viral load. Studies
evaluating associations between CPE score and neurocog-
nitive outcomes have produced inconsistent results [23-25],
although lower CPE ranking correlated with higher HIV viral
loads in CSF [10]. Studies on CNS penetration of commonly
used antiretrovirals and their CPE rankings are shown in
Table 1. Of note, the same antiretroviral drug displays vari-
ations in CSF concentration (varying penetrating abilities)
in different patients within the same study and in different
studies. This likely reflects the multifactorial determinants of
CNS drug penetration.

5. Factors Affecting CNS Penetration of
Antiretroviral Drugs

5.1. General Factors

5.1.1. Blood-Brain Barrier and Blood-CSF Barrier. The blood-
brain barrier (BBB) and blood-CSF barrier (BCSFB) are
normal anatomical structures that evolved to protect the CNS
from toxic substances. In HIV-infected individuals, however,
these barriers also limit penetration and, potentially, efficacy
of some antiretrovirals in the brain. The BBB is formed
by brain capillary endothelial cells fused together by tight
junctions, hence characterized by lack of fenestration and the
paucity of pinocytosis [26, 27]. On the other hand, BCSFB,
which separates CSF and blood, consists of the choroid plexus
and the arachnoid membrane. The choroid plexus epithelium
is involved in numerous exchange processes that increase the
CSF concentrations of nutrients and hormones and decrease
the CSF concentrations of potentially deleterious compounds
and metabolites [28]. These characteristics restrict the pen-
etration of large or hydrophilic molecules through the BBB
and BCSFB, selectively permitting penetration of small and
lipophilic molecules. Thus, antiretrovirals such as NVP, ZDV,
EFV, and FTC, with physicochemical properties that support
penetration, have an advantage in penetrating the BBB by
simple diffusion. Any condition which compromises the BBB
and/or BCSFB will likely increase the rate of entrance of drugs
into the brain [29].
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TaBLE 1: Cerebrospinal fluid concentration of some antiretrovirals as a percentage of plasma concentration and their CPE ranking.
CSF concentration as a percentage of
Antiretroviral drug Sample size plasma concentration (%) References Revised CPE rank [22]
Median (range) Mean (SD)
50 60 (4-262) [133]
Zidovudine 18 2 (0-674) [134] 4
5 96 (8) [135]
Abacavir >4 36 [136] 3
3 35 (31-44) (137]
Lamivudine 55 23 (0-490) [134]
Stavudine 31 20 (0-20.4) [134]
Didanosine 4 27 (14) [135) 2
Undetected [134]
Tenofovir 38 5.7 (3-10)° (84] 1
69 0.5 (0.26-0.76)° (138]
1 Undetected [134]
Efavi < 3
avirenz 2% 0.71(0.37) in [139]
600 mg
11 1.3 (0.8-1.6)" (140]
Nevirapine 16 63 (41-77) [134] 4
19 1.7 (88.6)° (141]
. . 16 (0.4-228) or 6
Indinavir 2 using (142] 3
AUC ratio
Lopinavit/r 26 0.23% (0.12-0.75) (88] 3
12 0.85 (0.47) (143]
6 Not détg:lc:ted in [144]
Nelfinavir Not detected i 1
9 ot detected in 134
CSF [134]
Ritonavir 8 0.00 (0.00-52) (134] 1
d
Darunavir/r 14 05 [143] 3
14 0.9 (0.3-1.8) (87]
112 (0.5-13.9) [146]
Atazanavir 8 1.4 (0.6-3.4)° [140] 2
13 3¢ [145]
41 17 (1.8-33.8)° [140]
Raltegravir 24 3 (1-61) [147] 3
35 20.6 (0.5-133) [148]
Dolutegravir 12 0.546 (0.480) [149] N/A
7 3.0 (1-10) (150]
Maraviroc 12 2.2 (0.4-17) [151] 3
b 101(0.29), 4.20 [143]
(1.22)

Subjects with multiple plasma and CSF samples, ®median (IQR), “mean (coefficient of variation), dgeometric mean, ‘% Maraviroc CSF/unbound plasma
ratio, and N/A = not available. The ranks assigned to the antiretrovirals in Table 1 are based on revised ranking system proposed by Letendre et al. and not
CSF/plasma ratio from the authors findings in the table. Higher CPE score means higher CNS penetration.

5.1.2. Drug Transporters. Transporters are membrane pro-
teins that facilitate the movement of molecules into or out of
cells. They can be categorized in different ways including
efflux and influx transporters or the adenosine triphosphate

binding cassette (ABC) and solute carrier (SLC) transporters.
The CNS penetration of antiretroviral drugs that are sub-
strates of drug transporters is partly dependent on the level of
expression of the transporters. Due to the substrate specificity



of these transporters, drugs that possess significant similari-
ties to them are transported into or out of cells. Efflux and
influx transporters can play a critical role in determining
drug concentrations in the systemic circulation and in cells.
However, the overall rate constant for efflux of drug from the
brain is approximately 75-fold higher and from CSF is 8-fold
higher than the respective rate constants for influx [30]. This
implies that efflux of drugs out of cells occurs more frequently
when compared to drug influx into the cells, due to ubiqui-
tous expression of efflux transporters. The emphasis is on the
ABC transporters, for example, permeability-glycoprotein
(P-gp) and multidrug resistance-associated proteins (MRPs),
because of their effect on the CNS penetration of some
antiretrovirals.

The brain penetration of antiretrovirals that are substrates
of transport proteins is partly affected by these transporters.
The efflux pumps (P-gp, MRPs, and breast cancer resistance
protein (BCRP)) are present at the BBB and have been shown
to extrude substrate drugs from this site. Thus, they limit
PIs from penetrating the CNS [31-36] due to their affinity
for these transporters. The most important efflux transporter
influencing the brain penetration of antiretrovirals is P-
gp, because of its multiple binding sites for substrates and
inhibitors [37, 38]. Apart from PIs, P-gp limits brain pene-
tration of the NRTTs, abacavir, and ZDV [32, 39] and can also
efflux some structurally unrelated hydrophobic molecules.

The expression and functionality of P-gp can be mod-
ulated by inhibition and induction, which can affect the
pharmacokinetics, efficacy, safety, or tissue levels of P-gp sub-
strates [40]. For example, PIs (substrates of P-gp) generally
have poor brain penetration, but their penetrability may be
enhanced by coadministration with specific P-gp inhibitor
such as ritonavir [36]. Consistent with this, a study in
nonhuman primates reported that P-gp inhibition at the BBB
significantly enhanced the distribution of nelfinavir into the
brain [41]. A previous study showed that patients with
HIV encephalitis have higher brain P-gp levels compared
to patients without HIV encephalitis [42], suggesting that
patients with HIV encephalitis may be predisposed to lower
CNS penetration of substrate drugs. In addition, MRP has
been reported to contribute to the poor brain penetrations
of PIs [43].

5.2. Host Specific Factors

5.2.1. Pharmacogenetics. Pharmacogenetics is the discipline
that analyses the genetic basis for the interindividual varia-
tion in the body disposition of drugs [44]. Pharmacogenetics
has found application in the treatment of numerous diseases
including HIV infection. Since pharmacogenetics can predict
drug exposure, hence response to therapy or risk of toxicity,
it is of particular importance for the drugs that have a narrow
therapeutic index and/or metabolic pathways affected by
polymorphisms in the drug metabolizing enzymes.
Cytochrome P450 2B6 has received much attention in
HIV therapy due to its ubiquitous role in the metabolism of
antiretroviral drugs. CYP2B6 is highly polymorphic [45, 46]
and is characterized by wide interindividual variability in
expression and activity [47]. Both EFV and NVP are mainly
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TABLE 2: Some reported frequencies of CYP2B6 polymorphism in
different African populations.

Number of

Population Frequency (%) subjects Reference
African American 20 50 [48]
African American 36 85 [49]
African American 34 93 [152]
Tanzanians 36 95 [153]
Malawians 731 (15) 26 [60]
Ghanaians 46 42 [152]
Ghanaians 25 800 (78]
Ethiopians 7455 (8.7) 262 [45]
Ivory coast 38 41 [152]
Sierra Leone 36 52 [152]
Senegal 60 10 [152]
Guinea 48 21 [152]
West Africa 42 166 [152]
West Africa 50 153 (49]
Yoruba (Ibadan, Nigeria) 35 78 [49]
South Africa 41 (23) 80 [154]
Xhosa (South Africa) M17 109 [155]
CMA (South Africa) M9 67 [155]
Botswana 36.6 101 [156]
Zimbabwe 49 71 [76]
Uganda 35.6 121 [63]
Uganda 29 7 males (13]
Mozambique 7 78 [14]

AGT (TT) and "loss of function CYP2B6*18.

metabolized by CYP2B6 with African populations having
higher poor metabolizer frequency [48, 49], hence poten-
tially prone to development of adverse reactions with these
agents. Indeed, previous studies have reported significant
associations of some CYP2B6 variants with elevated plasma
EFV [50-55], which is relevant to CNS EFV levels/effects
since higher plasma concentration may result in higher CNS
penetration. In line with this, Winston and Puls in their study,
though with a small sample size, reported an association of
CSF EFV concentration with CYP2B6 genotype [56]. Further,
CYP2B6 polymorphism also affects NVP plasma levels [57-
59]. NVP concentrations increased by 92% with the presence
of CYP2B6 516T allele and decreased by 31% with the presence
of CYP3A5"3 in Malawians [60]. However, another study
reported that CYP2B6 516/983 genotypes had no effect on
NVP concentrations [61]. Table 2 shows the wide variability
in poor metabolizer frequencies in different African pop-
ulations as reported in different studies. This observation
suggests that results from one African population should not
be extrapolated to other African populations, since Africans
are very heterogenic with respect to drug disposition and
pharmacogenetics. This is in line with recommended multi-
national clinical trial across sub-Saharan Africa in order to
validate the EFV dose recommendation [53].
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TABLE 3: Some drugs that are affected by host pharmacogenetics and the resultant effect.

Antiretroviral drug Enzyme involved Effect

Efavirenz CYP2B6
Nevirapine CYP2B6
Atazanavir UGTI1Al
Tenofovir ABCC2, ABCC4
Abacavir HLA-B*5701

Increase in efavirenz concentrations and increased risk of discontinuation [50-56]

Increase in nevirapine plasma concentrations and increase hypersensitivity adverse
effect associated with nevirapine [57-60]

Hyperbilirubinemia (indirect plasma bilirubin increase) and jaundice [157-160]
Renal function decline [161-163]

Hypersensitivity associated with abacavir [164-167]

In addition, polymorphisms in drug transporter genes
can influence penetration of substrate drugs into the CNS.
Ilustratively, polymorphism in ABCBI was shown to influ-
ence plasma concentrations of NFV [62] and of EFV [63, 64].
It was also reported that ABCBI ¢.3435C>T contributed to
NVP-induced hepatotoxicity risk [14]. On the contrary, CSF
RAL concentrations did not differ by ABCBI 3435C>T geno-
type in healthy volunteers [65]. Significant variability in
ABCBI genes has been reported in black South Africans
[66]. Hence, antiretroviral CNS penetration may vary in such
population.

The evidences to date suggest that genetic profile could
be put into consideration prior to initiation of a given
antiretroviral agent, especially those for which their primary
metabolism is by enzyme(s) with genetic polymorphism. The
most relevant drug in this respect in sub-Saharan Africa is
EFV. However, much work still needs to be done to translate
the potential of EFV pharmacogenetics into clinical practice.
Other common antiretroviral drugs used in sub-Saharan
Africa which are also affected by pharmacogenetics have been
highlighted in Table 3.

Pharmacogenetics and Efavirenz. Despite the efficacy of EFV
in viral suppression, neuropsychiatric side effects are com-
mon [57, 67-72], and some patients on EFV-based therapy
discontinue treatment as a result of neurotoxicity and other
adverse effects [67, 73, 74]. Some of these cases are possibly
associated with CYP2B6 polymorphisms that predispose to
higher drug concentrations [75]. Accordingly, it has been
suggested that a lower dose of EFV should be given to patients
with poor metabolizer genotype compared to fast metab-
olizers with functional CYP2B6 alleles [53, 76]. Of note,
patients carrying CYP2B6"6/*18 showed extremely high
plasma EFV concentrations compared to those carrying
either CYP2B6*1/*1 or CYP2B6*6/*6, and CYP2B6*6/*6
patients also had higher plasma EFV concentrations than
patients with CYP2B6"1/*1 genotype [77]. In another study
CYP2B6"6/"16 was again associated with increased plasma
EFV concentration [52]. These results showed that efavirenz
plasma concentration may partly depend on CYP2B6 geno-
type.

CYP2A6 polymorphism (CYP2A6 248T>G) has also been
reported to be associated with high EFV plasma level in
a Ghanaian cohort study [78]. Cytochrome P450 2A6 has
minor contribution to the metabolism of EFV [79]. However,
this pathway may become increasingly important for individ-
uals with poor metabolizer CYP2B6 genes. Dual CYP2B6 and

CYP2A6 slow metabolism may lead to extremely high EFV
exposure [79].

While it has been proposed that pharmacogenetic testing
to identify patients carrying poor metabolizer genotypes may
help optimize EFV dosing and minimize potential neurotox-
icity from high EFV concentration, routine pharmacogenetic
testing is not currently recommended. However, the finding
that EFV 400 mg once daily dose is virologically noninferior
and better tolerated than current 600 mg dosing [80] should
motivate consideration of the lower dose for routine use.

5.3. Pharmacokinetics and Drug Specific Factors

5.3.1. Drug Characteristics

(a) Molecular Weight and Lipophilicity. The physicochemical
properties of antiretroviral drugs influence their entry into
the CNS. Many drugs cross cellular membranes by simple
diffusion, in which drug molecules diffuse freely across
membrane from the area where the concentration is high to
the area of lower concentration. The rate of penetration of a
drug into the brain by simple diffusion depends on its lipid
solubility and size [81]. Antiretrovirals with very high molec-
ular weight tend to have relatively poor CNS penetration.
For example, enfuvirtide, a fusion inhibitor with molecular
mass above 4,000 Da, penetrates poorly into the CNS [82].
On the other hand, abacavir and ZDV with molecular weights
of 286.332 g/mol and 267.242 g/mol, respectively, are better
positioned to penetrate the CNS.

The lipophilic nature of the BBB preferentially allows
penetration of low molecular weight molecules with optimal
lipophilicity. Oil/water partition coeflicient is a useful tool
in predicting the lipid solubility of neutral molecules. The
higher the partition coeflicient, the greater the lipophilicity
and the better the brain penetration of the drug. That means
drugs with lower partition coefficient will not easily penetrate
the BBB by simple diffusion. However, the optimal partition
coefficient for good membrane penetration is about 100 [26].
Therefore, drugs with very high partition coeflicients (1000)
will also have lower diffusion capacity, because it is difficult
for highly lipophilic drugs (lipid soluble) to diffuse from the
lipid layer of the BBB into the brain extracellular fluid [26].
For acidic and basic drugs, the degree of ionization, which
is pH dependent, determines lipid solubility. For example,
weakly acidic drugs will exist in more unionized form at
lower pH and the more a given drug exists in unionized form,
the better the membrane permeability is. In contrast, weakly
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TABLE 4: Summary of the factors affecting antiretroviral drug CNS penetrations.

General factors

Pharmacokinetics/pharmacogenetics

Other factors

(i) Drug-drug interactions

(ii) Drug-herb interactions

(iii) Enzyme inhibition/induction

(iv) Polymorphism in drug metabolizing enzyme
(v) Drug-protein binding

(i) Blood-Brain barrier (BBB)
(ii) Blood-CSF barrier (BCSFB)
(iii) Drug transporter

(i) Local cerebral blood flow
(ii) Presence of chronic inflammation

(vi) Molecular weight of the antiretroviral drug

basic drugs will exist in more ionized form at lower pH.
To illustrate the impact of this using Henderson-Hasselbalch
equation, NVP which is a weakly basic drug with pKa of 2.8
[83] will exist largely in unionized form in plasma (pH of
about 7.4) and this may be a contributing factor to good CNS
penetration of NVP.

(b) Protein Binding. Drugs, especially lipophilic ones, bind to
circulating proteins, which are usually albumin, acid glyco-
proteins, globulins, and lipoproteins. Different antiretroviral
drugs vary in the extent to which they bind to protein.
Only the unbound antiretroviral drugs are available to cross
membrane. Nucleoside analogues like ZDV, 3TC, ddI, d4T,
and abacavir have molecular weights less than 500 Da and low
protein binding, allowing better CNS penetration. However,
having a low molecular weight and low protein binding is
not enough to ensure high CNS penetration. For example,
tenofovir has low molecular weight (287.213 g/mol) and low
protein binding and was reported to have low CNS pen-
etration [84]. Contrary to most nucleoside analogues, Pls
have high molecular weights (>500 Da) and protein binding
(greater than 90%) with the exception of IDV [26, 85, 86]
and are also substrates of efflux transporters. Molecular
weight > 500 Da and protein binding > 90% generally impede
membrane penetration of drugs [26], the characteristics that
may contribute to the low brain penetration of Pls. Of note,
many antiretrovirals exert substantial antiviral activity in the
CNS even when the CSF concentration is low compared
to plasma levels, provided the CSF levels exceed efficacy
thresholds. This is the case with some boosted PIs such as
DRV/r [87] and LPV/r [88]. Similarly, EFV is over 99% bound
to protein [89] and has sufficient concentration in the CSF for
viral suppression and induction of adverse events in that com-
partment. Generally, several factors combine to determine
the CNS penetration and effects of different antiretroviral
drugs. These factors have been summarized in Table 4.

5.3.2. Drug Interaction. HIV infection is associated with
several opportunistic infections [90, 91] as well as other coin-
fections and comorbidities. As a result, many HIV patients
receiving ART also use concomitant medications for other
conditions, thus predisposing to drug-drug interactions.
Pharmacokinetic interactions occur when the precipitant
drug (the drug causing the interaction) alters the concentra-
tions of the object drug (affected drug). Many drug inter-
actions occur as a result of enzyme induction or inhibition,
which may lead to decrease or increase in the plasma concen-
tration (and presumably CNS levels) of the object drug. The

interactions are sometimes more complex with some drugs
simultaneously inhibiting and inducing multiple enzymatic
pathways or with two drugs exhibiting bidirectional interac-
tions. Some drugs can also increase the brain uptake of other
drugs from the blood through enzyme inhibition. For exam-
ple, ketoconazole increased CSF concentration of ritonavir by
178% [92].

Tuberculosis is the most common opportunistic infection
during HIV infection [93]. Several drug-drug interactions
between antiretrovirals and antituberculosis agents have
been reported, with the most dramatic ones occurring with
rifampin, a potent CYP 450 inducer. [llustratively, the plasma
concentration of NVP was reduced by 37.3% [94] and the
median AUC was reduced from 56.2 to 32.8 microg/mL per
hour (—41.6%) when coadministered with rifampin [95]. This
is mainly because rifampin induces the enzyme CYP2Be6,
which is responsible for the biotransformation of NVP. The
interactions between rifampin and EFV are also substantial
and may necessitate an increase in EFV dose when coad-
ministered, while interactions between rifampin and boosted
PIs are so consequential that coadministration is generally
contraindicated [96-103]. Interactions may occur with other
antituberculosis drugs; for example, isoniazid is a potent
inhibitor of both CYP2CI9 and CYP3A4 [104]. Therefore,
concomitant administration of drugs that are substrate to
both CYP2C19 and CYP3A4 like NFV, may lead to clinically
important drug-drug interaction.

Importantly, several drug interactions that may facilitate
CNS penetration of antiretrovirals occur via inhibition of
the efflux transporters that are involved in limiting brain
penetration of drugs. As such, CNS penetration of some anti-
retrovirals may be enhanced by coadministering suitable
efflux inhibitor such as ritonavir [87], an inhibitor of efflux
transporter and CYP 450 enzymes [105]. Nicotine signifi-
cantly increased SQV blood-to-brain transfer in rats through
inhibition of efflux transporters [106]. Most clinically impor-
tant drug-drug interactions can be explained in part by
modulation of important transporters’ activity.

Use of traditional medicine is a common practice, espe-
cially in Africa where patients often simultaneously seek
treatment from both conventional and traditional health
providers. The WHO estimated that up to 80% of the African
population uses traditional medicine [107]. Some medicinal
plants have been identified as having antiretroviral properties
[91, 108, 109]. While the antiretroviral efficacy of such herbal
products has not been demonstrated in well conducted ran-
domized clinical trials, patients may resort to their use due to
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limited access to recommended antiretroviral drugs, intoler-
ance to the conventional medicine, or cultural factors. Hence,
herbal use is common among people on ART [110, 111]. Unfor-
tunately, many HIV patients do not disclose this to their
antiretroviral prescribers.

Many traditional medicines have complex metabolic
pathways including CYP 450 enzymes [112] and may perpe-
trate clinically important drug interactions. For example, an
in vitro study identified the potential for clinically significant
drug interactions for both H. hemerocallidea and Suther-
landia (two African plants used for the treatment of HIV)
through inhibition of CYP3A4 and P-glycoprotein expression
[113]. When these plants are taken together with antiretro-
virals, this may lead to increased plasma concentration and
CNS penetration of the substrate antiretroviral drugs. This
may particularly enhance CNS penetration of PIs because
they are substrates of both CYP3A4 and P-gp. There is a
paucity of data on the metabolism of medicinal plants in
general. However, clinical studies and case reports involving
many antiretroviral-herb pharmacokinetic interactions have
been reviewed [114].

5.4. Other Factors

5.4.1. Chronic Inflammation. The presence of chronic inflam-
mation in HIV patients may compromise the BBB and affect
the pattern of antiretroviral penetration into the CNS. In
one study, 24.6% of patients treated with ART and 38.6% of
untreated patients were found to have BBB alteration [115].
The percentage difference between treated and untreated
individuals was not significant, suggesting that BBB impair-
ment persists in some HIV patients even during ART. Consis-
tent with this, other studies found persistent BBB impairment
in some patients despite CSF viral load reduction after anti-
retroviral therapy [116, 117].

Alteration in the cells (e.g., pericytes, astrocytes, and
endothelial cells) that provide support to the BBB can also
affect CNS penetration of antiretrovirals, and this is common
in HIV infection. Brain pericytes, for example, are positioned
within the neurovascular unit to support BBB maintenance
[118]. Brain pericyte coverage was found to be diminished in
HIV-infected patients and this was associated with pericyte
dysfunction in chronic neuroinflammation. These changes
were accompanied by shrinking of tight junction protein
and presence of phosphorylated occludin, indicative of BBB
compromise [119]. Using a set of adult viable pericyte defi-
cient mouse mutants, it was shown that pericyte deficiency
increases the permeability of the BBB to water and a range of
low molecular mass and high-molecular-mass tracers [120].
These data suggest enhanced CNS penetration of antiretrovi-
rals in HIV positive individuals with persistent CNS inflam-
mation compared to HIV negative individuals. On the con-
trary, in vitro experiments showed that chronic inflammation
can upregulate P-gp expression and activity and so tighten
the BBB to CNS-acting drugs that are P-gp substrates [121].
Therefore, the presence of chronic inflammation with sub-
sequent disruption of BBB and the supporting cells in the
brain may be an important determinant of CNS penetration
of antiretroviral drugs.

5.4.2. Local Cerebral Blood Flow. The brain receives 15-20%
of the cardiac output, making it one of the most perfused
organs in the body [122]. Factors that regulate the cerebral
blood flow (CBF) include the net pressure gradient across
the cerebral vascular beds (the most important of which is
the mean arterial blood pressure) and the cerebral vascular
resistance. These, together with the autoregulation process,
allow the brain to control the cerebral blood perfusion [123].
The antiretroviral drug distribution to the brain follows the
pattern of other drugs’ distribution to the brain [124] such
that the initial rapid phase in drug distribution reflects the
cardiac output and regional blood flow, and the brain, being
one of the highly perfused organs in the body, receives most
of the drug few minutes after absorption. Subsequent phases
of drug distribution are affected by several variables, such
as the local cerebral perfusion, lipid solubility of the drug,
integrity of tight junctions in the brain, arrangement of the
perivascular glial cells, drug binding to plasma protein, and
the diffusion gradient [124].

A reduction in resting cerebral blood flow has been
demonstrated in HIV patients and linked to development of
HAND [125]. Additionally, anaemia is a common haemato-
logical disorder among patients with HIV/AIDS [126-128],
and when severe, it may compromise cerebral perfusion. Pre-
mature atherosclerosis among patients with HIV/AIDS may
also adversely affect cerebral perfusion and CNS penetration
of antiretroviral drugs [129-132]. On the other hand, inflam-
mation of the brain and the meninges that may complicate
HIV infection increases the cerebral blood flow and, poten-
tially, drug access to the CNS.

6. Conclusion

Antiretroviral drug concentrations in the CNS reflect inter-
play of several factors that promote drug entry and others that
limit entry. The balance achieved varies between individuals
and for each drug. Since manifestations of HAND remain
apparent in many patients despite suppression of plasma
viremia, optimizing CNS permeability of antiretrovirals
should be an integral part of antiretroviral drug development.
The ideal agents would have optimal CNS efficacy while
being free of neurotoxicity. Research is needed to further
understand the effect of antiretroviral CNS penetration on
HAND and to discover appropriate interventions.
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