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Diabetic retinopathy is caused by the retinal micro vasculature which may be formed as a result of diabetes mellitus. Blindness may
appear as a result of unchecked and severe cases of diabetic retinopathy.Manual inspection of fundus images to checkmorphological
changes in microaneurysms, exudates, blood vessels, hemorrhages, and macula is a very time-consuming and tedious work. It can
be made easily with the help of computer-aided system and intervariability for the observer. In this paper, several techniques for
detectingmicroaneurysms, hemorrhages, and exudates are discussed for ultimate detection of nonproliferative diabetic retinopathy.
Blood vessels detection techniques are also discussed for the diagnosis of proliferative diabetic retinopathy. Furthermore, the paper
elaborates a discussion on the experiments accessed by authors for the detection of diabetic retinopathy. This work will be helpful
for the researchers and technical persons who want to utilize the ongoing research in this area.

1. Introduction

Diabetes is a very common disease worldwide. It serves as
a most common cause of blindness for people having age
less than 50 years. It is a systemic disease which is affecting
up to 80 percent of people for more than 10 years. Many
researchers acknowledged that 90 percent of diabetic patients
could be saved from this disease through an early diagnose.
A person having diabetes is more prone to the risk of diabetic
retinopathy (DR) [1]. The blood supply towards all layers
of retina is done through micro blood vessels which are
susceptible to unrestrained blood sugar level. When a large
amount of glucose or fructose gathers in blood, the vessels
start crumbling because of insufficient distribution of oxygen
to cells. Any blockage in these vessels leads to a severe eye
injury. As a result, metabolic rate slows down and leads
to structural abnormality in vessels which intern DR [2].
Microaneurysms are an earlier sign ofDR.This disease brings
changes in the size of blood vessels (swelling).The indications
of DR include microaneurysms (MAs), exudates (EXs), and
hemorrhages (HMs) as well as the abnormal growth of blood
vessels. DR normally has two different stages named as
proliferative DR (PDR) and nonproliferative DR (NPDR) [3].
Occurrence of NPDR is when blood vessels in retina are

damaged and start leaking fluid onto it. As a result, retina
becomes wet and swollen. Different signs of retinopathy exist
at this stage, for example, HMs, MAs, EXs, and also interreti-
nal micro vascular abnormalities (IRMA). PDR arises when
new abnormal blood vessels appear in various areas of retina.
It is a complex case of DR that may cause impaired vision
[4]. DR is a progressive disease and its detection at an early
stage is very crucial for saving a patient’s vision; this requires
regular screening. An automated screening system forDR can
help in reducing the chances of complete blindness due to DR
along with lowering the workload on ophthalmologists. For
DR screening, a computer-aided diagnostic (CAD) system
is developed for differentiating a retina with possible DR
from a normal retina [5–7]. Figure 1 shows the symptoms
for different stages of DR. The paper is organized as follows.
Section 2 describes different publicly available databases that
are used for the detection of DR. Section 3 mentions various
performance measures that are taken into account for system
evaluation. Section 4 gives an overview of different methods
being used for the detection of DR. Section 5 highlights
different techniques that are applied for the screening of
DR. Section 6 details retinal imaging techniques. Section 7
focuses on methods for DR detection using CAD for the
detection of DR different stages.
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Figure 1: Stages of diabetic retinopathy. (a) Signs of NPDR. (b) Signs of PDR.

2. Publicly Available Databases

Images of retina are taken by a device called fundus camera.
Retinal fundus images (RFI) is the name given to these
images. This camera takes images of the internal surface of
retina, posterior pole, macula, optic disc, and blood vessels.
Image acquisition is a leading step for medical diagnosis.
For research on medical fundus images, widely accessible
resources are available as shown in Table 1. Some benchmark
databases are openly available for the assessment of algo-
rithms introduced for the computerized screening and anal-
ysis of DR. The purpose of databases is to check the strength
of automatic screening of DR and then compare the results
with current techniques. Seven datasets are available openly
including DRIVE, STARE, DIARETDB, e-ophtha, HEI-
MED, Retinopathy Online Challenge (ROC), and Messidor.

3. Performance Measures

For the diagnosis of DR in its early stage, the retinal image
captured using some fundus camera needs to undergo prepr-
ocessing before applying further algorithms of image proces-
sing. Many preprocessing techniques such as contrast adjust-
ment, average filtering, adaptive histogram equalization,
homomorphic, and median filtering are applied on retinal
images in the gold standard database. After an algorithm is
applied to a retinal image, mean square error (MSE) and
peak signal to noise ratio (PSNR) are further calculated to
analyze the performance of an algorithm. PSNR is mostly
denoted regarding logarithmic decibel value. A higher value
of PSNR means that the processed image is of higher and
better quality than the actual image. In medical treatment,
the medical contribution data is frequently divided into two
types: data where the disease is present and data where the
disease is not diagnosed.The level of correctness of treatment
is reviewed by the sensitivity and specificity measures. In
medical research, fundus images which are common in DR
are calculated via sensitivity and specificity of each image.
The higher sensitivity and specificity values enhance the
treatment. True positive (TP) denotes the total number of
lesion pixels and true negative (TN) denotes the nonlesion
pixels. False positive (FP) denotes the number of nonlesion
pixels that are detected wrongly by the algorithm. Likewise,
false negative (FN) indicates the number of lesion pixels

that are not identified by the algorithm. Table 2 shows
performance metrics.

4. Methods for Detection of Diabetic
Retinopathy

DR is a main reason of blindness. DR development is at dif-
ferent rates in different persons because of the two important
vision pressuring difficulties: diabetic macular edema (DME)
and proliferative retinopathy. That is why there is a huge
demand for the latest technologies andmethodologies to ana-
lyze DR efficiently and correctly in its early stage. Nowadays
the research community has givenmany techniques shown in
Figure 2 for early detection of DR that is conferred here.

5. Screening of Diabetic Retinopathy

Eye illnesses, for example, DR and DME, are the most widely
recognized reasons for irreversible vision loss in people with
diabetes. Just in the United States alone, health care and
related costs identified with eye maladies are assessed at
nearly $500M. Besides, the prevalent cases of DR are relied
upon to become exponentially influencing more than 300M
individuals around the world by 2025. Early discovery and
treatment of DR and DME play a major role in prevent-
ing adverse effects such as blindness. Optical Coherence
Tomography (OCT) imaging is ideal for uncovering DME on
account of its extended axial resolution and extended retinal
scan coverage, spatial domain optical coherence tomography
(SD-OCT), revealed DME-related changes of the photore-
ceptors, external restricting film, Bruch’s layer, and retinal
pigment epithelium layer. Moreover, SD-OCT perceived
related epiretinal layers, changes in the retinal decay, and
vitreoretinal interface. The issues of automatic classification
of SD-OCT information for automatically recognizable proof
of patients with DME versus ordinary subjects are tended
as well. The proposed technique depends on Local Binary
Pattern (LBP) features to portray the texture of OCT pictures
and contrast diverse LBP features extraction approaches with
the process of single signature for the entire OCT volume.
Test results with two datasets of separately 32 and 30 OCT
volumes demonstrate that, regardless to utilizing low or high
state representations, features obtained from LBP texture
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Table 2: Performance metrics.

Measures Description

Peak signal to noise ratio (PSNR) 20 log
10
(MAX

𝐼
) − 10 log

10
(MSE) Measures quality of image.

Sensitivity or true positive rate
(TPR)

TPR = TP
P
=

TP
TP + FN Measures the ratio between TP and FN.

False positive rate (FPR) FPR = FP
N
=

FP
FP + TN

= (1 − SPC) Measures the ratio between FP and TN.

False negative rate (FNR) FNR = FN
TP + FN

= (1 − TPR) Measures the ratio between FN and TP.

Specificity (SPC) or true negative
rate (TNR)

SPC = TN
N
=

TN
TN + FP Measures the ratio between TN and FP.

Accuracy (ACC) ACC = (TP + TN)
TP + FP + FN + TN

The degree to which the result of a
measurement, calculation, or specification
confirms the correct value or a standard.

Area under curve (AUC) 𝐴 = ∫

−∞

∞

TPR (𝑇) FPR (𝑇) d𝑇 How much system is sensitive to detect the
desired output?

Diabetic retinopathy

Screening of diabetic 
retinopathy

Retinal imaging

Diabetic retinopathy by
CAD

Nonproliferative

Proliferative

Microaneurysm 

Macular edema

Exudates

Hemorrhages

Blood vessels 
abnormalities

Figure 2: Methods for detection of diabetic retinopathy.

have profoundly discriminative power [14, 15]. A novel
strategy is recommended that uses noncalibrated numerous
perspective fundus pictures to dissect the swelling of macula.
This development empowers the discovery and quantitative
estimation of swollen zones by remote ophthalmologists.This
ability is not accessible with a single image and inclined
to error with a stereo fundus camera. Likewise, exhibit
automatic algorithm to quantify features from the recreated
image which are helpful in POC robotized conclusion of
early macular edema, for example, before the presence of
exudation. The proposed method is divided into three steps:
initial, a preprocessing system at the same time enhances
the dim microstructures and the procedure of macula and
balances the image; second, all accessible perspectives are
enlisted utilizing nonmorphological sparse features; at long
last, a thick pyramidal optical flow is computed for each one
of the images and statistically consolidated to build a näıve
height map of macula. Results are demonstrated on three
arrangements of synthetic images and two arrangements of
real world images. These preparatory tests demonstrate the
capacity to deduce a minimum swelling of 300 𝜇m and to
correlate the recreation with the swollen area [16].

6. Retinal Imaging

Optical systems are enhanced by utilizing the method of
adaptive optics (AO). It is accomplished by reducing the
distortion in front wave effect. Diseased eye and normal
eye can be evaluated for spacing, mosaic, and photography
cell thickness through AO retinal imaging. With the help
of retinal imaging, the inflammatory diseases are monitored
for the posterior segment of fundus photography. Fundus
fluorescein angiography (FA) and OCT are the most com-
monly used techniques for retinal imaging. These imaging
modalities are helpful in the therapy of patients with inflam-
matory conditions for the correct diagnosis of posterior pole
[17]. FA is an invasive technique which utilizes fluorescein
color and OCT is a costly imaging strategy contrasted with
fundus photos. Besides, utilizing fundus pictures DME can
be automatically diagnosed. DME grading method is utilized
for telescreening. Henceforth, DME grading method applied
on fundus image modalities is reliable and inexpensive
technique contrasted with biomicroscopy, OCT, and FA
modalities [18]. En face regular or improved multicolor
scanning laser ophthalmoscopy (SLO) images gained with
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HRA2 permit a superior perception of epiretinal films for
preoperative assessment contrasted with SD-OCT based en
face thickness guide or pseudoshading images obtained with
Optomap while infrared or FA images are slightly suitable
to portray epiretinal layers [19]. Three-dimensional regional
statistics are used to detect disease macular area using OCT
images. The proposed method is tested on five patients
with retinal malady in OCT images which indicates 80.7%
accuracy for the anomalous range [20].

7. Diabetic Retinopathy Detection by
Computer-Aided Diagnostic System (CAD)

Theobjective of computer-aided diagnosis is to recognize DR
and normal images in utilizing features like area of EXs,MAs,
veins, texture, HMs, node points, and so forth [34, 35].

In order of two classes (DR andnormal), forDR screening
device was produced by (Usher et al. [23], Sinthanayothin et
al. [36], Aptel et al. [21], Reza and Eswaran et al. [25], Gardner
et al. [24], Kahai et al. [22], Osareh et al. [37], and Quellec et
al. [38]) utilizing clinical components in particular EXs, veins,
MA, CottonWool Spots (CWS), and HMs. Dark lesions were
segmented out using moat operator and EXs were extricated
using recursive region growing (RRGT) and adaptive inten-
sity thresholding (AIT) [23]. Quellec et al. [38] have applied
optimal filters to extricate MAs.The artificial neural network
(ANN) [23, 24, 36] and Bayesian outline work [21] were
used for classification. Their methods obtained specificity of
46.3% and sensitivity of 95.1% [23]. Support vector machine
(SVM) kernel classifiers are employed in CAD framework
to discover the absence or presence of DR. The anticipated
CAD framework has managed the classification issues in DR
[26]. Computer-aided diagnosis has assumed a fundamental
part in medical industries [39]. To recognize DME, DR,
and essential injury, an algorithm in view of examination of
mechanized fundus photo was proposed.While screening for
DR, this algorithm is an enhanced substitution for the fundus
photo manual examination which expends a considerable
measure of time. If this framework is operated by the doctors,
it will allow significant time saving hence enhancing the
time spent on a mass screening program [27]. In medicinal
imaging, contextual information performs an important
role. Bright lesions detection and discrimination has been
performed through contextual information in fundus image
modalities. Diagnosis of coronary calcifications and hard EXs
in CT scan is performed through this contextual information.
In the spatial relation, high-level contextual features are used
to explain the context. Contextual CAD framework is an
outflanked loomwhen contrastedwith local CAD framework
[40]. Several authors have suggested CAD methods for
the detection of different stages (NPDR and PDR) of DR
that are encountered and described in this section. Table 3
summarizes these CAD methods.

7.1. Segmentation and Localization of Optic Disc. The optic
disc (OD) is a round region in the back of eye where retinal
nerve fibers gather to frame the optic nerve. OD is sometimes
called optic nerve head (ONH) since it is the leader of optic
nerve as it enters eye from the brain. It is found marginally

Optic disc

Figure 3: Optic disc in fundus image.

to the nasal side of globe. OD is known as the blind side
since it contains no photoreceptors. In this way, any light
centered on OD can neither be changed over into sensory
impulses nor sent to the brain for elucidation. Figure 3 shows
OD in a fundus image. For the detection of DR, first step
is segmentation and localization of OD because its color,
intensity, and contrast are the same as other features of retinal
images. Many authors have suggested CAD methods for the
segmentation and localization of OD that are described in
Table 4.

For automatically finding ONH, the strategy of Gabor
filters in fundus image is used as the ONH center which
is close to the focal point of retinal vessels and the phase
portrait analysis [60, 61]. New method is proposed for the
localization and detection of OD. The proposed technique
gives better results [62]. Histogrammatching method is used
for OD localization [63]. Morphological filtering strategies
and watershed transformation are used for OD detection and
localization. The proposed method has been tested on 30
color fundus images. Subsequently achieved mean predictive
values and sensitivity were 92.4% and 92.8%, respectively
[64]. The proposed method is used for localizing the OD
center that depends on corners and bifurcations attained
with Harris corner detector. The achievement rate is 87.65%
for STARE, 97.5% for DRIVE, and 97.8% for local dataset,
respectively [65]. Macula centers and OD are detected using
radial symmetry method [66, 67]. DR is diagnosed by using
the method of retinal extraction. In automatic screening, OD
is detected at very low cost. Locating the center of OD is
difficult because the color, brightness, and contrast are similar
to CWS and EXs [68]. Boundary tracing technique is used
for locating the OD boundary [69]. Multilevel 2D wavelet
decomposition method is used for the localization of OD.
HRF database is utilized for the assessment of results with
Receiver Operating Characteristic (ROC) curve and 95%
accuracy is achieved for the localization of OD [29]. For OD
detection and location, a new method is proposed in the
light of histogram approaches and clustering. The method
is evaluated with Messidor dataset which demonstrates that
it can localize the OD accurately even in blurred images
[30]. A line operator is proposed to capture round brilliance
structurewhich assesses the image shine variety along various
line segments of particular orientations that go through every
image pixel of retina. The orientation of line segment with
base/greatest variety has a particular example that can be
utilized to find the OD precisely. Suggested line operator
is tolerant to a normal OD identification, various sorts of
lesions in retinal imaging modalities with an achievement
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Figure 4: Fundus image with exudates.

of 97.4% accuracy [31]. A novel algorithm is proposed for
the segmentation of OD in images of retina while making
use of Atanassov Intuitionistic Fluffy Histon (AIFSH) based
segmentationmethod. Columnwise neighborhood operation
and pixel intensity of OD are utilized to find and separate
the OD [32]. A novel method is proposed depending on a
symmetry transform and in painting which is applied very
competitively in tests with a publicly available and local
dataset [33]. A summarization of different OD detection
methods is shown in Table 4.

7.2. Segmentation of Soft and Hard Exudates (NPDR). EXs
are one of the primary signs of DR which can be prevented
with an early screening process. Some existing work for the
detection of EXs is described below.

A novel approach is proposed to detect DR automatically
from digital fundus images. Digital images play a significant
role in the identification of DR by calculating various color
spaces in segmented region. DR is detected by fuzzy set using
fuzzy logic reasoning [86]. In developed countries, visual
impairment is a significant reason of DR. The disease can be
detected to have the assistance of fundus pictures identified
with DR lesions. For this reason, a method is proposed using
a neural network. The proposed methodology is completely
automatic after the configuration of classifiers [87]. EXs can
be detected using multispace clustering method [41, 50].
Figure 4 presents a fundus image with the symptoms of EXs.

The proposed method is reliable for the identification of
EXs in retinal images. Morphological operators and adaptive
thresholding method are utilized in the computation of
noise map distribution. Contrast changes and nonuniform
illumination method are used for the detection of correct
EXs [42]. The proposed method is used for accurate seg-
mentation of EXs [88]. For the diagnosis of bright lesions
𝐾-means clustering method is applied [89]. A novel method
is proposed utilized neural network to minimize DR with
high accuracy [43]. Both KNNFP and WKNNFP classifiers
are used to detect the EXs but WKNNFP shows better
results as compared to KNNFP [44]. Bright lesion can be
detected using Gabor filter [90]. Mathematical morphology
algorithms and 𝐾-means are utilized for the identification
of bright lesions [45]. EXs can be recognized with the help
of gray level variation and their contours are determined
using the morphological reconstruction methods [91]. Haar
wavelets transform is used for the hard EXs segmentation

followed by 𝐾-nearest neighbor classification method. The
proposed method is tested on four databases of fundus
images; among them, obtained sensitivity is 37.14%, 21.87%,
12.50%, and 25.47% for MISP (Medical Image and Signal
Processing Research Center), DIRETDB0, DIREDB1, and
STARE database, respectively. Likewise the specificity is 0%
for MISP and 1% for remaining databases [46]. The sug-
gested technique utilizes several image processing methods
including image thresholding and, median filtering with
an aim to discover hard EXs. The suggested technique
showed specificity of 96.85% and sensitivity of 97.25% [2].
A novel technique is proposed for the discovery of bright
lesions in color retinal images. Intellectual decision support
system is utilized for DR detection. The texture and color
features are applied for distinguishing between non-EXs
and EXs pixels. Initially, edge discovery and morphological
process are used for the segmentation of OD. Secondly, for
attaining texture features from the area of retina, color and
laws texture energy measures are performed. Afterwards,
an intelligent classifier Fuzzy SVM has been utilized to
discover pathological regions in color fundus images [47].
The EXs discovery technique comprises two stages: fine
and rough EXs segmentation. Rough segmentation has been
applied using columnwise neighborhoods and morphology
operation whereas morphological reconstruction method is
practical for fine segmentation.The suggested technique used
retinal image database fromMalaysia, Sungai BulohHospital.
Organized with other appropriate retinal features, extraction
and classification technique, this segmentation technique can
form the basis of an easy and fast diagnostic support tool for
DR which will provide a great benefit regarding better access
to mass screening people for risk or existence of diabetes
[48]. The new technique is proposed for automatic discovery
of human fundus image by the submission of digital image
processing. Circular bit plane slicing and Hough transform
are applied for OD localization in the proposed technique
whereas, for the extraction of EXs, morphological operations
are used. The suggested technique is a novel method. It has
a sensitivity of 93.62% and an accuracy of 88% [49]. Bag
of Words algorithm is used to make a system which plays
the role of both the case based reasoning (CBR) system
and decision support system (DSS) to solve the problem
of bright lesion segmentation [51]. For the segmentation
of EXs, dynamic region growing method is proposed. The
method is tested on several images of retina and the results
demonstrate that the method does better than the earlier
suggested techniques [52]. Novel measurable atlas based
technique is proposed for the segmentation of EXs. Any test
fundus picture is initially distorted on Atlas coordinate and
after that a distance map is obtained with the mean atlas
picture. An analysis of openly accessible HEI-MED dataset
shows great presentation of the technique. On the FROC
curve, 35% nonlesion localization fraction and 82.5% local-
ization fraction are obtained. The technique is additionally
contrasted with couple of latest reference strategies [92].
Hard EXs can be characterized by the DME. Novel features
set based on color and wavelet decomposition are used for
DME detection. Classifier is trained using these features
to automatically analyze DME through the occurrence of
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Figure 5: Macula exudates and optic disc in fundus image.

exudation. Another freely accessible HEI-MED database is
there with ground-truth information containing 169 patients.
Our calculation acquired an AUC somewhere around 0.88
and 0.94 relying upon the dataset/features utilized [93].

A brief summary of methods for the detection of EXs is
given in Table 5.

7.3. Macular Edema Detection (NPDR). Macula is the center
point of vision where light is focused. In a fundus image,
macula appears at the center of retina with a blackish color
due to an excess of melanin in its composition. It interprets
the images and sends them to brain. Its size is 3mm. If
lipids and proteins start accumulating near or on the macula,
it can become as dark lesions; these are called macular
edema. Figure 5 shows EXs, macula, and OD in a fundus
image. Many researchers have proposed CAD systems for the
detection of DME that are described in Figure 5.

DME is a fundamental reason of visual harm. The
pathogenesis of macular edema seems to be multifactorial.
Laser photocoagulation is the standard of care for macular
edema [94, 95]. Surgical therapy and pharmacologic method
are used to handle DME in diabetic patients [96]. The
qualitative OCT and clinical examinations are required to
be performed on monthly basis to check the anti-VEGF
(vascular endothelial growth factor) for the maximization
ratio of visual acuity gain along with the requirement of some
injections [97, 98]. The treatment by injections is safe over
two years and effective for DME. DME treatments include
VEGF drugs. There is no damage to retina by the Micropulse
Diode Laser (MPL) treatment. Retinal pigment epithelium
(RPE) is used for different MPL stimulation. ETDRS photo-
coagulation group is compared with laser group and found
that retinal sensitivity has been increased [99, 100]. Gaussian
mixture model (GMM) based classifier and detailed feature
set are utilized for perfect and accurate detection of macula;
this nominated/submitted system consists of a novel method.
Both SVM and ensemble of GMM classifiers are used for an
accurate detection of EXs which ultimately leads to perfect
classification of retinal image in different stages of macular
edema. The same system has got mean value of 95.9%,
97.3%, and 96.8% for specificity, sensitivity, and accuracy,
respectively [101]. Raja and Ravichandran [102] explain a way
to autolocalize the fovea center in retinal fundus images.This

Microaneurysms

Microaneurysms

Figure 6: Microaneurysms in retinal image.

method is specifically based on mathematical morphology
beside the information of other anatomic structures such as
blood vessels and OD. Firstly, the vascular structure and OD
center are extracted and then morphological operations are
employed on the gray scale image of green channel for fovea
candidates’ selection. The candidates satisfying area, density,
and distance criteria are considered for the final stage. And
there, the candidate having lesser vessel pixels is selected
as fovea region. The method was evaluated on two publicly
available STARE and DRIVE databases. It was able to obtain
100% of fovea localization accuracy on DRIVE database with
2.88 seconds average computation time.

7.4. Microaneurysms Detection (NPDR). An early symptom
of DR is MAs; MAs diagnosis is significant in early detection
ofDR.MAs are themajor symptomofNPDRand are initiated
by the principal dilatations of thin blood vessels. Figure 6
shows MAs in retinal image. Several proposed CAD systems
for the detection of MAs are discussed in Figure 6.

MAs are of small dimensions, nearly red in color, and
round [103]. Dynamic thresholding and multiscale correla-
tion filtering (MSCF) method are used for MAs detection.
The proposed method contains two levels, coarse level (MAs
candidate detection) and fine level (true MAs classification).
The method was tested on two publicly available datasets
namely ROC and DIARETDB1 databases [104]. 𝐾-nearest
neighbor classifier (𝐾NN) is used for the detection of MAs
[105].Morphological operators are applied forMAs detection
in fundus images. The method obtained 99.98% accuracy,
81.61% sensitivity, 63.76% precision, and 99.99% specificity
[53]. An ensemble-based framework is nominated to improve
MAs detection [54]. The proposed method comprises two
stages. In the first stage, preprocessing is performed using
fractal analysis of retinal vascular structure. The principle
stage contains picture preprocessing and fractal analysis of
retinal vascular structure. If fractal examination distinguishes
an abnormal image from a normal one, this enhances the
effectiveness of a computerized screening program. Iden-
tification of MAs distinctive shape as an abnormal retinal
picture through morphological reconstruction methods and
canny edge detection is an objective of second stage. The
proposed calculation has been performed on an arrangement
of 89 fundus pictures from the accessible database. The
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Hemorrhages

Hemorrhages

Figure 7: Hemorrhages in fundus image.

applied method achieves operating sensitivity and highest
specificity as 89.5% and 82.1%, respectively [55]. Contrast
enhancement approach with Singular Value Decomposition
(SVD) method is applied to fundus images. After it, Hessian-
based candidate selection method is used for the detection
of MAs. For every candidate region, intensity normalized
radon transform and robust low-level blob descriptors are
known as SURF and take out to characterize MAs candidate
regions. Then, classification is performed along with SVM
classifier which has been trainedwith tenmanually annotated
training images. Presentation of complete system is estimated
on ROCdatabase [56]. Contrast LimitedAdaptiveHistogram
Equalization (CLAHE) method is used to enhance contrast
of images for the detection of lesions [57]. The localization
and detection of MAs are based on three steps: candidates’
selection, segmentation of MAs, and a final performance
evaluation. New radon cliff operator is proposed which is an
actual contribution to the field [58]. The dynamic multipa-
rameter template (DMPT) matching scheme is applied for
the detection of MAs that is more accurate as compared to
conventional schemes [59].

A summary of MAs detection methods is presented in
Table 6.

7.5. Hemorrhages (NPDR). HMs occurs when blood outflows
from retinal vessels. Figure 7 shows HMs in a fundus image.
Many authors suggested CAD systems for detection of HMs
which are listed and discussed in Figure 7.

The proposed technique used HSV color space by non-
linear curve for changing the brightness of fundus images.
Brown regions are highlighted using gamma correction in
each blue, green, and red bit image. Then, histogram of each
blue, green, and red bit image was extended. Brown regions
represented HMs and blood vessels.Then, density estimation
is applied to find brown regions. False positives were elim-
inated via 45-feature examination. The proposed method is
tested on 125 fundus images along with 90 normal images
and 35 images with HMs [70]. In fundus image, a novel splat
feature division method is proposed for retinal HMs detec-
tion. A new method is proposed for the preprocessing and
false positive elimination. A classifier is prepared with splat-
based skilled observations and expanded on openly accessible
Messidor dataset [71]. Automated Decision Support System
(DSS) is developed for the detection of HMs and MAs in
fundus images. The severity level of DR is determined by

Figure 8: Abnormal blood vessels.

the location and number of HMs and MAs. The method is
tested on 98 fundus images. Correspondingly, experimental
outcomes show that 87.53% and 84.31% sensitivity and 95.08%
and 93.63% specificity values were obtained by the proposed
system for HMs and MAs discovery [72, 73]. Sudha and
Thirupurasundari [74] suggested an automated system to
discoverDR from retinal images. In thismethod after prepro-
cessing, texture features are taken out from retinal images to
discover abnormal images. Afterwards, the abnormal images
are treated to localize and classify the problem of HMs and
EXs. Dynamic thresholding method is used for the detection
of HMs in retinal images. Experimental results show that
the HMs are discovered with good accurateness in retinal
images [75]. A novel hybrid classifier is proposed for the
discovery of retinal lesions.The suggested method comprises
preprocessing, taking out of feature set formulation, and
classification of candidate lesions. The system is measured
using standard fundus image databases with the support
of performance parameters known as specificity, accuracy,
sensitivity, and ROC curves for statistical implementation
[76]. For HMs detection concentration is on the examination
of texture micro-patterns of regions of interest (ROIs) which
are concerned areas in an image of retina. Texture micro-
structures of ROIs are examined via LBP for their expla-
nation. Lastly, SVM is applied to indicate whether an ROI
consists of HMs or not [77]. A brief overview of commonly
used methods for HMs detection is given in Table 7.

7.6. Blood Vessel Detection (PDR). PDR occurs when there is
formation of some new abnormal blood vessels in different
regions of retina. It is an advanced stage ofDR andmay lead to
complete blindness. Hence, for PDR diagnosis, blood vessels
detection is an important task. Figure 8 shows abnormal
blood vessels. Some CADmethods for the detection of blood
vessels are described in Figure 8.

DR is described against the classification and detection
of changes, in time series, as presented in fully automated
approach [28, 106]. This method consists of the following
steps: (1) illumination from instrument and patient visit,
(2) dust particle imaging, (3) training data, and (4) align-
ment and segmentation error of retinal vasculature, fovea,
and OD. Pathologies are extracted automatically and their
robustness is achieved by an algorithm. The technique is
presented for the bifurcation and geometric model without
the intervention of user [107]. For blood vessels segmen-
tation, the proposed method applied subpixel root MSE
with the adoption of preprocessing, MultilevelThresholding,
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H-maxima transformation, and Binarization. From this tech-
nique accuracy rate of 96.5% is obtained [108]. A novel
method is proposed utilizing Gumbel probability distribu-
tion function as its kernel and matched filter. The method
gives accurate results for blood vessels segmentation [109].
Similarly, the methods of branches filtering and Max-Tree
representation are utilized for the segmentation of vessels
with 93.95% success rate [110]. Fuzzy 𝐾-median and length
filter (FKMED) and matched filter methods are applied for
blood vessels segmentation in fundus images. The method
achieved sensitivity and specificity as 79.31% and 96.43% [111].
Another derived methodology is Gaussian Intensity Distri-
bution (GID) model utilized for blood vessels segmentation
[112]. Morphology method and canny algorithm are also
used for blood vessels segmentation. The proposed method
is tested on DRIVE dataset [113]. The authors made use
of matched filter and threshold probing for blood vessels
segmentation. Grid division, nonuniform enhancement, and
optimal multithreshold method are used for blood vessels
segmentation [114]. Analysis of DR on edge detectionmethod
is based on content-based image retrieval (CBIR) framework.
Preprocessing methods are subjected to normal and abnor-
mal images of retina to enhance the edge information. Kirsch
template and canny edge are two different methods that are
practical for blood vessels segmentation in the diagnosis of
retinal abnormalities. The kirsch edges are useful in CBIR
system [115, 116]. Fraz et al. [78] introduced an ensemble
system of boosted decision trees where bagged is used as
feature vectors based on orientation analysis of gradient vec-
tor field, Gabor filter responses, line strength measures, and
morphological transformation. To handle the pathological
retinal image, the feature vector encodes information. For
the segmentation of blood vessels, an automatic method is
suggested. The submitted method is based on the fact that,
by varying the length of a basic line detector, line detectors
at continuously changing scales are achieved. In order to
perform final segmentation for every image of retina, line
responses are linearly combined at varying scales so that the
strength and drawbacks elimination of each line detector
are maintained. Both quantitative performance and quali-
tative performance of this method were evaluated on three
publicly available DRIVE, REVIEW, and STARE datasets
[79]. For pixel classification based method to segment blood
vessels of retina, linear discriminant analysis is described
in detail. In this method, vesselness measure of a pixel is
defined by Gabor filter responses and the feature vector
is comprised of a modified multiscale line operator [80].
A concise methodology is introduced for segmenting the
retinal vasculature in color fundus images [81]. Lattice Neural
Networks with Dendritic Processing (LNNDP) method is
used to solve this problem [82]. Pixel classification is done
by a neural network (NN) scheme [83]. Multidirectional
morphological top-hat transform with rotating structuring
elements and enhanced multiscale line detector are utilized
for blood vessels detection [84]. Morphological operators are
used for detecting blood vessel tree. In retinal fundus images,
identification of abnormal spots is done more accurately
after vessel detection. Experimental results are taken from
Nikookari database which is consisting of 40 fundus images.

The method achieved 85.82% average sensitivity and 99.98%
average specificity [85].

A summary of blood vessels detection methods is pre-
sented in Table 8.

8. Future Directions

Inmedical image processing, automatic diagnosis ofDR from
digital fundus images has been a dynamic research for a
long time. The research interest is justified by considerable
reductions in health care costs and tremendous potential for
new products in medical industry. There are certain areas in
this field that need improvement such as the determination
of OD boundary which is tough in two-dimensional retinal
images because of blur edges. A difficult task to perform is
blood vessels extraction. Every subject has different ONH
structure. Therefore, there is not a single technique that
can cover all these problems. There is still need to propose
more efficient algorithms for the identification of DR detec-
tion related structure and retinal changes. Because of the
expanding predominance of diabetes mellitus, demand for
diabetic retinopathy screening stages is steeply expanding.
Early location and treatment of DR are essential public health
intercessions that can incredibly diminish the probability
of vision loss. Current DR screening programs commonly
utilize retinal fundus photographywhich depends on talented
readers for manual DR evaluation. However, this is labor-
intensive and suffers from inconsistency across sites. Hence,
there has been the latest proliferation of computerized retinal
image investigation programming that might mitigate this
weight cost viably. Moreover, current screening programs
given 2-dimensional fundus photography do not properly
screen for DME. OCT is turning out to be progressively
perceived as a reference standard forDME evaluation and can
give an economical solution for enhancing DME discovery
in vast scale DR screening programs. Current screening
systems are additionally not able to picture the peripheral
retina and require pharmacological pupil dilation; ultra-wide
field imaging and confocal examining laser ophthalmoscopy
which addresses these disadvantages have excessive potential.

9. Conclusion

Diabetic retinopathy cannot be cured. To prevent vision loss,
laser analysis (photocoagulation) is usually very effective if it
is done before it adversely harms the retina. Provided that the
stern destruction of retina has not been done, vision can be
improved by the surgical elimination of vitreous gel (vitrec-
tomy). In proliferative diabetic retinopathy, at times, an anti-
inflammatory medicine or antivascular endothelial growth
factor medication injection can help in the new blood vessels
contraction process. Since symptoms cannot build up until
the disease turns into the stern, initial discovery via regular
screening is essential. Nonproliferative diabetic retinopathy
contains early indications of DR and it is extremely critical to
recognize and analyze DR at its initial stages. If a person with
diabetes gets legitimate eye mind consistently and treatment
when fundamental, DR will once in a while cause all out
blindness. In this study of DR, a large portion of work is done
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aŕ
ın

et
al
.[
83
]

N
eu
ra
lN

et
w
or
k

D
RI
V
E

ST
A
RE

G
re
en

ch
an
ne
l

—
—

0.
95

0.
97

H
ou

[8
4]

M
ul
tid

ire
ct
io
na
lm

or
ph

ol
og
ic
al
to
p-
ha
t

tr
an
sfo

rm
,r
ot
at
in
g
st
ru
ct
ur
in
g
ele

m
en
t

D
RI
V
E

ST
A
RE

G
re
en

ch
an
ne
l

0.
73

0.
73

0.
96

0.
96

0.
94

0.
93

Sh
am

ie
ta
l.
[8
5]

M
or
ph

ol
og
ic
al
op

er
at
io
ns

N
ik
oo

ka
ri

G
re
en

ch
an
ne
l

85
.8
2%

99
.9
8%

—



16 Scientifica

to discover hemorrhages, microaneurysms and exudates,
diabetic macular edema, and abnormal new blood vessels as
they are indications of the vicinity of retinopathy in fundus
images. This study helps in the detection of retinopathy at
an early stage; timely treatment of this disease will prevent
permanent vision loss.Thepaper discussed experiments done
by authors for the detection of diabetic retinopathy.Thiswork
will be useful for technical persons and researchers who need
to use the ongoing research in this area.
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