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Interoception is the ability to perceive one’s internal body state including visc-

eral sensations. Heart-focused interoception has received particular attention,

in part due to a readily available task for behavioural assessment, but also

due to accumulating evidence for a significant role in emotional experience,

decision-making and clinical disorders such as anxiety and depression.

Improved understanding of the underlying neural correlates is important to

promote development of anatomical-functional models and suitable interven-

tion strategies. In the present meta-analysis, nine studies reporting neural

activity associated with interoceptive attentiveness (i.e. focused attention to a par-

ticular interoceptive signal for a given time interval) to one’s heartbeat were

submitted to a multilevel kernel density analysis. The findings corroborated

an extended network associated with heart-focused interoceptive attentiveness
including the posterior right and left insula, right claustrum, precentral

gyrus and medial frontal gyrus. Right-hemispheric dominance emphasizes

non-verbal information processing with the posterior insula presumably

serving as the major gateway for cardioception. Prefrontal neural activity may

reflect both top-down attention deployment and processing of feed-forward

cardioceptive information, possibly orchestrated via the claustrum.

This article is part of the themed issue ‘Interoception beyond homeostasis:

affect, cognition and mental health’.
1. Introduction
Interoception is the ability to perceive the state of one’s internal body including

the viscera as opposed to exteroception, which is perceiving stimuli of the exter-

nal environment, and proprioception, which is perceiving posture and position

of one’s own body parts [1]. This article follows this definition, although it

should be noted that others have defined interoception as including both

proprio- and visceroception (i.e. sensing one’s inner organs) [2].

The idea that central nervous system representations of psychophysiology

comprise a basis for emotional feelings and may guide behaviour dates back

to the James–Lange theory [3]. While Lange focused on cardiac reactivity

James considered any autonomic function as a possible source of emotion.

Current neurobiological research has revived this perspective, arguing that

emotion may be a kind of interoceptive inference. From that point of view,

emotions emerge from active analysis of physiological reactivity [4].

Recently, interoception has been conceptually refined by differentiating

dimensions of interoception [5,6]. Firstly, interoceptive sensibility may be assessed

via self-report of subjective sensitivity to interoceptive signals, specifically target-

ing self-reported belief in interoceptive aptitude. Examples are the awareness

sub-scale of the body perception questionnaire (BPQ) [7] or the multidimensional

assessment of interoceptive awareness questionnaire (MAIA) [8], but also average

confidence ratings regarding one’s interoceptive sensitivity may be used.

Secondly, interoceptive sensitivity may be operationalized with behavioural tests
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of interoceptive accuracy, for example with the commonly used

heartbeat detection task [9]. Maybe the easy implementation

but also the possibility to judge individual performance

against an absolute and objective reference score obtained

from the electrocardiogram has fostered the wide application

of this task in empirical research on interoception. Thirdly,

metacognitive awareness, which may be assessed with ratings

of confidence regarding one’s objective interoceptive accuracy,

is considered to provide insight into one’s interoceptive

aptitude. First evidence suggests that these dimensions are

rather independent [6]. Therefore, it appears necessary to con-

sider which of these aspects are relevant in a particular

interoceptive task (IT) in order to identify brain correlates

specifically associated with these dimensions.

High heart-focused interoceptive accuracy/sensitivity has been

associated with increased emotional intensity [10], has been

shown to support memory [11,12] and adaptive decision-

making [13–15], and has predicted increased emotional

intensity and reactivity to emotional pictures [16].1 Furthermore,

it has been suggested that mood and anxiety disorders may

root in issues related to interoception [17]. This view is sup-

ported by accumulating evidence in the domain of anxiety

disorders [18] and depression [19,20]. For patients with

panic disorder, interoceptive cues may be threatening

or confusing. This could explain why high heart-focused

interoceptive accuracy/sensitivity was associated with impaired

intuitive decision-making in these patients [21].

The insula has been suggested as the primary neural cor-

relate of interoception [22]. Peripheral nervous system

afferents project contralateral information regarding somatic

homeostasis to posterior granular and mid-dysgranular

regions of the insula [23] via lamina I and the ventromedial

nucleus (sympathetic afferents) and via the nucleus of the

solitary tract and the ventromedial thalamic nucleus for

sympathetic afferents [22]. At this level, an embodied rep-

resentation of interoception is expected [24]. The anterior

insula is interconnected with prefrontal cortical (e.g. anterior

cingulate and orbitofronal cortex) and limbic structures

(e.g. amygdala), and has been linked to tasks requiring cog-

nitive control for identifying a signal against a noisy

background [25]. Neural activity in the anterior insula may

also reflect uncertainty and valence evaluation associated

with such tasks [26]. Hence, on an axis from caudal to rostral,

interoceptive information is thought to be represented

increasingly abstractly, with the anterior agranular insula as

a centre for interoceptive awareness [22,25], relating emotion-

al salience and valence to adjacent structures such as the

amygdala, anterior cingulate cortex, the orbitofrontal cortex

and the ventral striatum [27,28]. Others have differentiated

between dorsal and ventral anterior insula, being associated

with cognitive and emotional processing, respectively [24].

While much of this knowledge comes from animal

research, this view is also supported by research on humans.

Meta-analyses of neural activity assessed with magnetic reson-

ance imaging have parcellated the insula into various

functional domains, suggesting a particular role of the mid-

insula for interoception [29,30]. Concurrently, interoception

of respiratory distress, thirst, heartbeat, as well as distension

of the oesophagus, stomach, bladder or rectum have been

associated with increased insula activation [22,31]. Damage

to the insula by contrast hampers interoception [32].

From the view that interoception mediates between the

perception of somatic states and domains that are highly
relevant for successful coping with the challenges of

everyday life, such as intuition, emotion and (decision) behav-

iour, it follows that improved understanding of the underlying

functional anatomy may aid understanding and interventions

for a wide array of issues including maladaptive response to

somatic cues in panic disorder [21,33], somatoform disorder

[34,35], dissociative disorders [36–38] or eating disorders

[39,40]. Maladaptive stress reactivity in terms of cognitive

and emotional response to issues in processing interoceptive

information may contribute to poor somatic health [41].

Despite these interesting perspectives and detailed knowl-

edge about wiring and functional organization of the insula,

only a few studies have in fact examined brain activation associ-

ated with tasks involving interoception in humans, although

functional magnetic resonance imaging (fMRI) serves as a suit-

able tool with particular advantages regarding spatial

resolution and the possibility to locate sub-cortical brain corre-

lates. Therefore, it appears desirable to increase our knowledge

about the location of functional correlates of interoception and

the potential involvement of adjacent regions.

However, recent findings indicate that the functional

specificity of insular subdivisions clearly goes beyond the

commonly accepted tripartite division into dorsal anterior,

ventral anterior and posterior insula [42]. Another study

has examined brain correlates of modality-specific physio-

logical activation [43]. The findings further support the

notion that afferent information from different organs is

processed in specific subdivisions of the insula, respectively.

Considering the high functional heterogeneity of the insula

[42], current models could be improved by considering

modality-specific brain correlates of interoception. Perhaps,

vulnerability with regards to organ-specific information

processing could explain comorbidity between somatic

disease and psycho-social issues. For example, issues in

heart-focused interoception may reveal a neural basis for

the high comorbidity between chronic heart failure and

affective disorders such as anxiety and depression [44,45].

Altogether, it appears promising for advancing current

human functional-anatomical models of interoception to

identify brain areas (i) specifically associated with separate

modalities such as heart-focused interoception and (ii) to

examine closely which particular aspects or dimensions of

interoception are reflected in a particular experimental

operationalization (i.e. IT).

Therefore, I have performed the first meta-analysis

on studies reporting blood-oxygen-level dependent (BOLD)

fMRI activation in brain areas associated with the specific

modality of heart-focused interoception (i.e. cardioception).

In order to optimize conceptual clarity of this approach, I

have evaluated characteristics of the interoceptive and respect-

ive control tasks based on the model suggested by Garfinkel

and co-workers [5,6].

2. Material and methods
(a) Study selection
In order to identify fMRI studies concerned with brain activity

related to interoception, a literature search with the search-term

‘(interoception or cardioception) and (fMRI or fMRT or ‘brain

activation’)’ was conducted with no initial restrictions regarding

type of publication or time-frame in the following databases (no.

of matching entries in parentheses)2: WorldCat (520), Web of

Science (172), PubMed (135), PsycNet (63), pubPsych (32)
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Figure 1. Flow diagram according to PRISMA guidelines [46] depicting the flow of information through the different phases of the literature search for the current
meta-analysis. See the text for details regarding reasons for inclusions and exclusions. (Online version in colour.)
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and Psyndex (8). The combined list was reduced in line with

current guidelines (see figure 1 for a flow diagram according

to PRISMA guidelines [46]). After removal of duplicates,

studies were identified (i) that reported standard coordinates

for neural activity across the entire brain (i.e. excluding

studies that focused on limited regions of the brain),

(ii) that were associated with performing a heart-focused

interoception task (IT) as compared to a control task (CT),

(iii) that were assessed via BOLD fMRI contrast of IT . CT.

In total, 561 of the 628 screened studies were excluded from

the list, when it was evident from the title that they (i) did

not report fMRI data, (ii) did not examine human partici-

pants, (iii) did not follow an experimental protocol

involving an IT or (iv) reported group comparisons only.

For the remaining set of 67 studies, full-text articles were con-

sidered in detail. In 49 of these articles, the focus was not on

brain activation associated with an IT as compared to either

baseline or a CT. Only one reported the relevant IT . CT con-

trast for a single modality other than cardioception, namely

respiration monitoring [25], and was therefore omitted from

the meta-analysis. In seven studies, the IT was—at least

partly—concerned with cardioception and would have

allowed computation of an IT . CT contrast, but brain corre-

lates of cardioceptive attentiveness were not reported and the

respective data could not be obtained from the authors upon
request. Finally, one study opted for execution of a heart-

focused IT in the scanner environment [47]. This study was

also not included in the current meta-analysis because the

IT and CT involved demands that differed strongly from all

the other studies.
For the remaining set of nine studies, characteristics of the

interoceptive and control tasks were evaluated considering

the model introduced by Garfinkel and co-workers [5,6] as

described above in order to aid the discussion and interpretation

of the results of the meta-analysis as compared to individual

studies’ findings (see table 1).

Deactivation in response to IT was not scrutinized in the

current meta-analysis, because negative BOLD responses were

only reported in three studies [50,52,54].

(b) Classification of studies by interoceptive task
All studies included in this meta-analysis have compared neural

activity associated with an IT requiring focused attention to

sensations from the heart to neural activity associated with a

CT requiring attention to exteroceptive stimuli. However, the

primary focus of most studies was not this basic comparison.

For the current analysis, I ignored further contrasts reported in

these articles. With regards to the implementation of both IT

and CT, there was considerable variation across studies.

According to the model introduced by Garfinkel and co-

workers [5,6], four studies [20,48,51,52] have assessed interoceptive
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accuracy/sensitivity using minor variants of the heartbeat detection
task originally coined by Schandry [9]. In these studies’ tasks, the

participants had to count their heartbeats in given time intervals

of variable lengths. Two studies simply required the participants

to focus their attention on sensations from the heart [19,24], a

task-variant that is not well-determined by the model suggested

by Garfinkel and co-workers [5]. I propose the term attentiveness
as a suitable descriptor for focused attention to a particular inter-

oceptive signal for a given time interval that is to the best of

my knowledge unambiguous with regards to the existing litera-

ture on interoception. Similar to interoceptive accuracy/sensitivity,

performance in this task will depend on both top-down resource

allocation for conscious registration of relevant events and

clarity of bottom-up interoceptive signals against interoceptive

background noise, probably mediated by recruitment of strategies

like filtering, template matching, and sequence monitoring.

Avery and co-workers [19] asked participants to rate the

intensity of sensations after 50 and 100% of trials. Similarly, Sim-

mons and co-workers [24] asked the participants after 50 and

100% of trials to rate from 1 to 7 how fast their heart had been

beating. Kuehn and co-workers [51] asked how well participants

were able to solve the task on a scale ranging from 0 to 4. This

adds a cognitive component to the tasks and the ratings may

be influenced by one’s interoceptive sensibility, as defined above.

Three studies have used IT that may be considered as

in-between interoceptive attentiveness and interoceptive accuracy/
sensitivity. In one study [50], participants were asked to attend

to visual or auditory signals which were tied to their individual

heartbeats, but either minimally delayed (less than 150 ms, i.e.

almost in sync), or more or less out of sync (� 500 ms delay).

After 10 signals, the participants had to judge whether the

signal was in sync or not. From this basic set-up, eight highly

similar task variants were derived and applied with the aim of

computing a more pure effect of interoception. In another

study [54], participants were alerted by a visual cue to attend

to their heartbeat for 20 s, followed by a 10 s period where

they pressed a button for each detected heartbeat. In a third

study [55], participants were asked to tap a button each time

they perceived their heartbeat. Despite these variations, all

three tasks required tracking of individual heartbeats just as in

the four studies assessing interoceptive accuracy/sensitivity with

the heartbeat detection task [20,48,51,52].

To summarize, all studies’ IT involved interoceptive attentive-
ness towards sensations from one’s heart, which includes

attention to individual heartbeats. Three studies involved a

mental focus on perceiving and detecting single heartbeats

[50,54,55]. Four studies [20,48,51,52] closely matched the heartbeat
detection task coined by Schandry [9], which is used for assessing

interoceptive accuracy/sensitivity. However, it is important to

note that strictly speaking, none of the contrasts of IT . CT

reported in these studies reflected interoceptive accuracy/sensitivity,

because (i) accuracy was not assessed together with fMRI acti-

vation (i.e. outside of the scanner) and (ii) only two studies

reported in which of the identified areas brain activity actually

correlated with accuracy scores [50,52]. Hence, brain activation

identified in this contrast reflects all aspects associated with

carrying out the IT as compared to the CT.
(c) The role of control tasks
In fMRI studies, neural activation associated with the effect of

interest is identified by subtracting activation that is related to

general or unspecific neural processes that might confound the

signal of interest, measured during the execution of a CT. Ideally,

control and experimental tasks differ in all but the specific effect

of interest. fMRI studies investigating neural activity during an

IT might primarily want to control for (i) general effects of count-

ing and (ii) neural effects of external cues compared to internal
stimuli. Subtracting those confounding effects in subsequent

fMRI analysis from neural activity during the IT (contrasting

IT . CT) will mirror neural activity that is closely related to the

effects of the IT relative to the CT. In the following section, the

CTs used in studies submitted to the current meta-analysis

have been critically considered in order to identify the potential

impact of particular CT characteristics on the outcome.

In the four studies using variants of the heartbeat detection task
[20,48,51,52], participants had to count (all) tones presented in a

given time interval. This interval was of variable length in three

of the studies [20,48,52], and had a fixed length of 35 s in one

study [51]. In two of these four studies [20,48], the presentation

frequency of the tones was adapted to correspond to each partici-

pant’s heart rate, but onset times of the tones were jittered to

avoid synchrony with the actual heartbeat. Avery and co-

workers [19] used a visual CT, where participants had to count

how often the word ‘TARGET’ on a screen switched to lowercase

in a given time interval. Participants in the study by Simmons

and co-workers [24] had to count how often an ‘O’ appeared ran-

domly in a given time interval. Apart from using a different

modality, these tasks were rather similar to the tone counting

tasks of the four previously mentioned studies [20,48,51,52].

Interoceptive accuracy/sensitivity as assessed by heartbeat
detection tasks involves focused attention to a body signal.

Hence, performance is confounded with cognitive capacity and

ability [21,56]. Both Caseras and co-workers [54] and Zaki and

co-workers [55] aimed to minimize effects of this confound by

the particular design of their CT, where participants had to

press a button for each detected target in a series of external

sound events for a given time interval. Zaki and co-workers

[55] added a third condition where participants had to count

heartbeats during concurrent presentation of sounds, allowing

for removal of the additional brain activation related to discrimi-

nating exteroceptive signals from noise rather than to

interoception per se from the contrast of interest. Critchley and

co-workers [50] used a similar CT where participants had to

evaluate, via button press, whether a series of externally pre-

sented tones contained a number of identical tones or whether

one of these tones was presented with a different pitch.

Note that in three studies [19,24,51], IT and CT trials closed

with rating (see above). As noted above, this adds a cognitive

component. However, for the most part associated activation

will be cancelled out in the contrast IT . CT because similar

brain activation will be induced in both trial types.

Although, task details varied greatly, two main types of CT

can be distinguished. While both types of tasks required atten-

tion to a series of exteroceptive signals, one set of CT required

vigilant attention towards all signals within a given time interval,

while another set of CT required identification of rare or singular

events within a series of similar other events.
(d) Study samples
The set of studies submitted to the current meta-analysis further

varied considerably with regards to the participants. Most of the

studies used healthy adult participants with an upper boundary

of 43 years; hence, findings may not be valid for older populations.

Apart from one study that only included male participants [52], all

samples included both sexes (see table 1 for details). One study

compared individuals with phobia regarding blood-injection-

injury or spiders to healthy controls [54]. In this study, blocks

regarding interoception/exteroception were counter-balanced

across participants with a 7 min event related phobia symptom

provocation task in which phobia-related images where shown.

This task may have produced carry-over effects, as increased

state anxiety is associated with increased interoceptive accuracy/
sensitivity [18,57]. However, this task also preceded the CT.

Hence, differences between CT and IT should still reflect neural
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activity relevant for interoceptive attentiveness and accuracy/sensi-
tivity, and for the most part, such carry-over effects will be

cancelled out in the contrast of interest (IT . CT).

Several studies compared patients with a clinical diagnosis of

major depression (MDD) to healthy participants. It has been

shown that interoceptive accuracy/sensitivity is increased in

patients with moderate depression, but decreased in patients

with severe depression when compared with healthy controls

[58,59]. For the study by Avery and co-workers [19], the contrast

of IT . CT did not show any effects for the MDD subgroup;

hence, the available data are rather representative for the sub-

group of 20 healthy participants. Note that the respective

sample size has been adjusted accordingly in the current analysis

(for details see the electronic supplementary material). In the

study by Wiebking and co-workers [20], the depressed partici-

pants had increased scores (total and all but the awareness

subscale) on the BPQ [7] used to assess interoceptive sensibility,

and they had reduced activation of the insula when performing

the IT [20]. I decided to include the data in the current meta-

analysis although only findings for the combined sample were

reported, because brain areas associated with interoception in

healthy participants matched brain areas in depressed individuals,

suggesting a quantitative rather than a qualitative difference. For

the study by Wiebking & Northoff [48], data from the subgroup

of control participants without MDD could be obtained from the

authors, hence no data from the MDD subgroup was entered in

into the current meta-analysis, and sample size was adjusted

accordingly. In one study [51], participants with high cardio-

ceptive accuracy, so-called high-perceivers (HP, see table 1) with

an accuracy score of 0.87 and low-perceivers (LP, see table 1)

with an accuracy score of 0.54 were identified with the heartbeat
detection task [9]. Significant findings were only obtained and

reported for the HP subgroup. Hence, in the current meta-analysis,

only data from the HP sample was included (also see electronic

supplementary material).
(e) Details regarding meta-analysis
In order to identify brain regions consistently activated in a given

set of fMRI contrasts as extracted from the studies described above,

I have employed multilevel kernel density analysis (MKDA)

[60,61]. MKDA is similar to other voxel-based methods [62,63]

and the activation likelihood estimate method (ALE) [64,65] with

one notable exception: the ALE method computes the probability

for at least one peak of activation to fall within a particular voxel,

based on joint probability across individual peaks. Accordingly,

the null hypothesis is that in none of the studies was a particular

voxel activated. By contrast, MKDA identifies voxels with density

of reported peaks exceeding chance level by computing spatial

consistency among reported peaks. Hence, MKDA tests the null

hypothesis that spatial distribution of peaks is random.

To conduct MKDA, peak coordinates for the basic contrast

identifying neural activity associated with interoception as com-

pared to the CT (i.e. the contrast IT . CT) were extracted from

the individuals studies. Next, all peak coordinates (absolute

and relative maxima for each cluster) were converted into a

common stereotactic system that is Montreal Neurological Insti-

tute (MNI) space and these peaks were plotted onto a

canonical brain (avg152T1.img; SPM, Wellcome Department of

Imaging Neuroscience). Note that MKDA uses a spatial resol-

ution of 2 � 2 � 2 mm per voxel. Each peak was convolved

with a 10 mm three-dimensional Gaussian kernel. This reduces

potential bias introduced by studies with many close-by peaks,

because the peaks will contribute to one overlapping sphere

with maximum activity of 1, regardless of the number of contri-

buting peaks, instead of being counted as if they were from

independent observations (i.e. studies). Therefore, MKDA is

more conservative than common alternative approaches such
as ALE. Furthermore, MKDA respects the multilevel aspect of

the data by treating peaks as random rather than fixed.

Next, a summary density map representing the observed

activation for a specific fMRI contrast by taking a weighted aver-

age of the spheres from each study was computed. The respective

weighting factors were computed by multiplying the square-root

of N (sample size) with 0.75 for fixed-effects versus 1.00 for

random-effects analysis [61,66]. Note that all studies used in

the current meta-analysis applied random-effects models for

second-level analysis. At this stage, a density map was created

where each voxel included a weighed proportion of contrasts

that activated within 10 mm of that voxel. To generate a compari-

son model with random spatial organization of voxel-associated

density across white and grey matter of the standard brain, a

Monte Carlo simulation with 15 000 iterations per analysis was

carried out [67]. Significant activation was then identified by

comparing density per voxel as derived from the study set to

the Monte Carlo simulation (i.e. null hypothesis) to identify

voxels with an above-chance number of activation coordinates.

First, MKDA identifies proximate clusters (i.e. inside the

10 mm kernel region) of contiguous voxels according to a

‘height-based’ threshold. The proportions of contrasts in these

voxels exceed the maximum expected over the entire brain by

chance. In other words, the chance of making a Type I error at

any single voxel is less than or equal to 0.05. Note that this results

in family-wise error rate (FWER) correction. Second, MKDA

identifies incremental clusters outside the 10 mm of the clusters

for the height-based threshold with ‘extent-based’ thresholds

that are FWER-corrected for spatial extent at p , 0.05 and meet

primary alpha levels of p , 0.01 or p , 0.05. Basically, this test

answers the question how many contiguous voxels would be

required until this cluster meets the more stringent criterion of

a whole-brain corrected threshold? Next, a combined map of

voxels meeting both height- and extent-criterion was computed,

and the active voxels were clustered using SPM8 contiguity

assessment procedures (spm_clusters.m; Wellcome Department

of Imaging Neuroscience).

Finally, anatomical localization of the clusters was identified

by converting cluster coordinates into Talairach space and consult-

ing a standard brain atlas [68] via the Talairach Daemon [69,70] set

to identify the nearest grey matter. For ease of use, all coordinates

are reported in MNI space nonetheless.
3. Results
To reveal neural activity that emerged consistently across

studies employing task variants that involved cardioceptive
attentiveness as defined above, a meta-analysis was conducted

including nine studies reporting the BOLD fMRI contrast of

interest (IT . CT).

Contiguous clusters of voxels meeting the height-based

threshold with proportions of contrasts greater than or

equal to 40.11% (632 voxels) at p , 0.05 (FWER-corrected),

as well as local maxima within these clusters, are reported

in table 2.

According to ‘extent-based’ criteria, incremental clusters

(i.e. outside the 10 mm kernel region) of more than 1498 contig-

uous voxels with proportions of contrasts more than or equal

to 16.67% were considered significant at p , 0.01 (FWER-

corrected, one-tailed), and clusters of more than 402 contiguous

voxels with proportions of contrasts more than or equal to

24.74% were considered significant at p , 0.05 (FWER-

corrected, one-tailed; see tables 3 and 4, for details, respectively).

A functional-anatomical evaluation with the Talairach-

Daemon classification system on level 1 (hemisphere), level
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2 (lobes) and level 3 (sub-lobar structures) was based on the

peak coordinates of identified clusters and sub-clusters and

revealed that most significant peaks were located in the

right hemisphere in the overall region of the telencephalon

(see additional details in tables 2–4).

Figure 2 shows a summary of significant voxels in a

representative set of brain slices.
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4. Discussion
In this study, I have conducted a meta-analysis (MKDA)

in order to identify brain activity associated with an IT as

compared to a CT in a set of nine studies reporting BOLD

fMRI contrast (IT . CT).

(a) Brain areas associated with heart-focused
interoception

As expected, the findings of the current meta-analysis corro-

borate that neural activation in the insula (bilateral, cluster

peak in BA 13) is associated with processing heart-focused

interoceptive attentiveness probably strongly including aspects

of interoceptive accuracy/sensitivity. In line with this view,

BA 13 has been associated with perceiving visceral infor-

mation and has been called the interoceptive cortex [22],

which has been shown to be activated when participants

focus on interoceptive information from various modalities

such as temperature, touch, pain, forced respiration and iso-

metric exercise, itching after cutaneous histamine injection,

as well as distension of the oesophagus, stomach, bladder

or rectum [22,31].

Cytoarchitectonic examination of the insula allows differ-

entiation of anterior-ventral agranular, middle dysgranular

and posterior granular parts. While automated analysis [29]

has suggested further subparts of the granular insula (area

Ig1 and rostral to it, area Ig2), a more recent study performing

manual analysis did not confirm such subdivision [71]. In

humans, BA 13 is considered part of the posterior granular

insula, comprising a bridge between lateral and medial

layers of the brain [72]. This corroborates previous reports

associating interoception with posterior and mid-insular

regions [24,29].

Predictive coding theory has suggested that pyramidal

neurons of the supra-granular layers of the granular insular

cortex compute differences between predicted and received

sensory signals, and may send the respective prediction-

error signal back to deep layers of agranular cortical regions

[73]. Other intermixed pyramidal neurons are considered for

tuning the gain on predictions and prediction errors dynami-

cally in order to modulate the precision weight associated

with a particular prediction error. This weight is supposed

to depend on the confidence in descending predictions or

the reliability of an incoming sensory signal such as heart-

beats. Accordingly, BA 13 may serve as a basic evaluator of

cardioceptive input comparing one’s internal state to pre-

dicted effects of action including attempts for regulating

physiological homeostasis. Cardioceptive accuracy/sensitivity
may therefore correlate with the reliable registration and

evaluation of an incoming cardiac afferent signal. Hence,

it may be relevant for setting precision weights affecting trans-

mission strength of the respective information and adjusting the

priors for subsequent predictions. Organ-specific vulnerability,



Table 4. MNI coordinates, no. of voxels per contiguous cluster, volume in cubic millimetres and Z-test statistic (max. proportion of activating studies) peaks for
sub-clusters for further incremental clusters (i.e. outside the 10 mm of the clusters reported in table 2, and not included in table 3) identified according to
MKDA ‘extent-based’ thresholds at a primary alpha level of p , 0.05, see text for details. No additional local maxima were found. Columns for level 1
(hemisphere), level 2 (lobes), and level 3 (sub-lobar structures) of the Talairach-Daemon classification system provide additional details. The respective
Brodmann area (BA) has been noted where applicable.

sub-
cluster x y z voxels

volume
(mm3) maxStat level 1 level 2 level 3 BA

range
(mm)

1 52 22 2 39 312 0.20 right

cerebrum

frontal lobe precentral gyrus 44 0

2 12 212 56 1789 14 312 0.39 right

cerebrum

frontal lobe medial frontal

gyrus

6 3

Table 3. MNI coordinates, no. of voxels per contiguous cluster, volume in cubic millimetres and Z-test statistic (max. proportion of activating studies) peaks for
sub-clusters for incremental clusters (i.e. outside the 10 mm of the clusters reported in table 2) identified according to MKDA ‘extent-based’ thresholds at a
primary alpha level of p , 0.01, see text for details. No additional local maxima were found. Columns for level 1 (hemisphere), level 2 (lobes), and level 3 (sub-
lobar structures) of the Talairach-Daemon classification system provide additional details. The respective Brodmann area (BA) has been noted where applicable.

sub-
cluster x y z voxels

volume
(mm3) maxStat level 1 level 2 level 3 BA

range
(mm)

1 50 2 2 522 4176 0.40 right

cerebrum

frontal lobe precentral gyrus 44 0

2 34 16 10 153 1224 0.37 right

cerebrum

sub-lobar claustrum — 2

L
I

II

III

I

P

L

L

R

S

A

R

R

Figure 2. Results of MKDA meta-analysis for neural activity associated with cardioceptive attentiveness (I, axial; II, coronal; III, sagittal view). Slices at 18 mm distance were
superimposed on the standard SPM8 high resolution anatomical image SPM8_colin27T1_seg.img and show all identified brain areas representatively. Yellow voxels
indicate activation meeting the ‘height-based’ threshold ( p , 0.05, whole-brain family-wise error (FWER) corrected). Incremental activation outside the 10 mm
kernel region (FWER-corrected for spatial extent at p , 0.05) is shown in magenta and turquoise with primary alpha levels at p , 0.01 and p , 0.05, respectively
(FWER-corrected, one-tailed). Coordinates mark cluster peaks in MNI space. I, inferior; S, superior; P, posterior, A, anterior; L, left; R, right.
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for example, in terms of high precision weights could be respon-

sible for the development of affective disorders in patients

experiencing cardiac arrhythmia. Interoceptive attentiveness may

more broadly support optimal resource allocation for the com-

parison of such information against predictions. This could

affect the quality of interoceptive information available for intui-

tion-based decision-making and might affect or even hamper

the development of somatic markers, which appears to be an

issue in patients with panic disorder [21].
Several of the studies included in the current meta-

analysis have found neural activation associated with

cardioceptive attentiveness in the anterior insula [20,50,54,55].

Only two studies have reported correlations between scores

reflecting interoceptive accuracy/sensitivity obtained with var-

iants of the above-mentioned heartbeat detection task [9],

control-task performance as covariate and regions where

activity was enhanced by interoceptive attentiveness relative

to the CT (contrast IT . CT) [50,52]. Strongest relationships
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with accuracy were reported for the right anterior insula/oper-

cular cortex (R ¼ 0.62, MNI coordinates: 34, 20, 4) and right

anterior insula (R ¼ 0.56, p , 0.01, MNI coordinates: 33, 14,

14) in the two studies, respectively. Further significant corre-

lations with cardioceptive accuracy/sensitivity were found in

inferior parietal lobule and the medial frontal gyrus extending

into the cingulate gyrus in one study with male participants

only [52]. If task demands associated with accuracy are not

needed during cardioceptive attentiveness, this could explain

why activation in the anterior insula did not reach significance

in the current meta-analysis, as accuracy was only featured in a

subset of studies. However, it is notable that coordinate trans-

formation into Talairach space and search via the Talairach

Daemon allocates the above-mentioned coordinates to the

claustrum (for further discussion in the context of this area,

see below). In addition, it should be considered that both

studies also reported correlations of accuracy scores with nega-

tive emotion/anxiety, and negative emotion/anxiety also

correlated with neural activation in the anterior insula. This is

in line with further studies associating activation in the anterior

insula with anxiety, worrying about self-aversive events, risk

and the anticipation of punishment, disgust, guilt, sadness

or fear [29,74–81]. One of the studies in the current meta-

analysis included MDD patients [20]. Another one included

participants with phobia and exposed them to phobia-related

stimuli [54]. Negative emotion may therefore explain anterior

insula activation in these studies. Of note, anxiety also has

been shown to inflate accuracy scores in the heartbeat detection
task leading to artificially high sensitivity not necessarily rooted

in better detection performance [33]. Further studies support

the view that the anterior insula is involved in focusing one’s

attention on detecting salient or deviant external stimuli

[82–85]. The IT in two of these studies [54,55] required

pressing a button for each detected heartbeat. Another

study’s IT required judging whether tones corresponded to

heartbeats or whether they were delayed. Compared with IT

in other studies, these tasks involve monitoring external

events. In addition, they may exert particularly high attentional

demand. Both could account for higher anterior insula involve-

ment. More studies are required for a comparative analysis that

would allow examining whether such task characteristics

explain variation in anterior insula recruitment as well as the

lack of significant activation in the current meta-analysis.

Nevertheless, the findings of our current meta-analysis high-

light the robustness of posterior insular activation during

cardioceptive attentiveness across such variations.

Further neural activation was confirmed in the right claus-

trum, a small thin and jagged structure located posterior to the

insula, projecting back and forth to nearly all cortical regions

[86]. Already Brodmann considered the claustrum as a likely

extension of cortical layer VI [87] and more recent perspectives

suggest the claustrum may comprise a seventh layer of the

insular cortex [88]. Cardioception involves focused attention

for detecting discrete specific events in an ongoing stream of

concurrent noise (i.e. other visceral and body signals). This

would also closely match demand characteristics associated

with cardioceptive accuracy, and matches the suggested role

of the claustrum for multimodal coordination of widespread

ipsilateral and contralateral cortical regions supporting the

experience conscious perception, cognition and action [86]

with a particular role in orchestrating regions controlling atten-

tion [89]. Although other sources claim that the claustrum may

comprise separate unimodal processing regions [90], the
widespread connectivity of the area suggests that interoceptive

information may be fed forward to many adjacent areas and

may thus exert concerted moderating influence on processes

performed in higher order cortical regions. It is still under

debate whether the claustrum also guides sub-cortical regions

such as the basal ganglia, caudate nucleus, putamen and

globus pallidus [91]. It is notable that none of the studies in

the current meta-analysis had explicit hypotheses regarding

the claustrum. One reason may be that it is hard to assess

such a thin structure via fMRI specifically (e.g. as a region of

interest) but it is to be hoped that increasing magnetic field

strength, improved control of movement artefact and, last but

not least, fibre tractography will allow detailed examination

of the role of this interesting structure for interoception in

the near future. This will also improve differentiating the

particular roles of the anterior insula versus the claustrum.

Further activation was found in the right medial frontal

gyrus (BA 6). This area includes the agranular medial part of

the gyrus frontalis superior, lacking the internal granular layer

IV. BA 6 has been associated with high-level executive function-

ing and processes relevant for decision-making [92,93].

Right hemisphere BA 6 is said to be relevant for sequential

movements, related error monitoring and control, specifically

aiding decisions about equality versus difference. While these

functions appear useful for the performance in both IT and

CT, task demands of the IT are usually considered to be

higher. Therefore, the IT may require stronger activation in BA

6, which would explain activation in the contrast IT . CT. To

corroborate this interpretation, it would be interesting to see

whether neural activation in BA 6 varies with task difficulty.

Yet the two studies aiming for particular control of this issue

also found activation in BA 6 [54,55]. This suggests that BA 6

may also be concerned with IT-specific issues.

The right precentral gyrus (BA 44), also known as the pars

opercularis of the inferior frontal gyrus borders the insula and

is considered relevant for phonological and syntactic

processing as well as music perception [94]. Other studies

have associated emotional expression, verbal understanding,

language accentuation, generating melodies, as well as behav-

iour monitoring and inhibition [22], in particular selective

response suppression in go/no-go tasks [95], with this area.

The IT of detecting individual heartbeats shares many charac-

teristics with this functional description, involving decoding of

an on-going complex stream of information into relevant

versus irrelevant discrete events. As strategies for cardiocep-

tion vary, it should also be noted that the three studies using

a heartbeat detection task used tone detection as CT. This may

have implicitly led participants to using auditory strategies in

the IT. Furthermore, BA 44 activation in the IT . CT contrast

may reflect selective suppression of response to events other

than the actual heartbeat. Finally, the specific task of identify-

ing heartbeats while scanner noise and vibration distract

may reflect processing of whether a signal matches a template

or not. Comparing a variety of CT and asking partici-

pants about their interoceptive strategies could improve our

understanding of this issue.
(b) On hemispheric specialization
With regards to hemispheric specialization, it is noteworthy

that the current meta-analysis indicates right-hemispheric

dominance for processing heart-related interoceptive infor-

mation. Although only three of the nine individual fMRI
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studies have tentatively suggested right-hemispheric domi-

nance in their hypotheses [50–52], outcomes of several

studies already provide evidence for a stronger association

of interoceptive accuracy/sensitivity with right-insular acti-

vation. In the study by Critchley and co-workers [50],

accuracy of heartbeat perception correlated with the BOLD

response most strongly in the right anterior insula/opercular

cortex, but this could also be explained by subjective anxiety

symptoms (see above). Caseras and co-workers [54] reported

that only right-sided insula activity correlated with interoceptive
accuracy/sensitivity, while left-sided activity was linked to

increased state and trait anxiety as assessed with the

Spielberger Trait and State Anxiety Inventory [96]. Kuehn

and co-workers [51] found only right-hemispheric activation

in participants with high cardioceptive accuracy. Further evidence

for right-insular dominance for interoception comes from elec-

troencephalography- (EEG-) based dipole source-localization

studies [97,98]. EEG studies on the so-called heartbeat-evoked

potential also have shown greater amplitudes over right elec-

trode positions for subjects with high cardioceptive accuracy/
sensitivity [99,100]. Altogether, it is striking that aspects of

accuracy are quite prominent in these studies.

The right-sided dominance of interoceptive information

processing may instead suggest non-verbal information pro-

cessing which may partly explain why interoception is

often described as gut-feeling rather than explicit knowledge.

The right-insular cortex has also been considered particularly

important for cerebral regulation of cardiac functions

[101,102]. For example, after strokes involving the right-

insular cortex the risk of cardio-autonomic dysfunction was

enhanced [103], and right-sided stroke was associated with

reduced heart rate variability [104]. While (rest and digest

related) parasympathetic activity is re-represented in the left

(or dominant) insula, (distress related) sympathetic activity

is re-represented in the right (or non-dominant) hemisphere

[22]. A review regarding the role of interoception in anxiety

disorders [18] suggests particularly strong links to panic dis-

order, where hypervigilant processing and biased evaluation

of heart-related symptoms is at the core of both psycho-

pathology and therapeutic approaches. Altogether, this

opens interesting perspectives on the role of interoception

with regards to (chronic) stress, as this affects the balance

between parasympathetic and sympathetic nervous system

activation. In this regard, it appears promising to focus on

laterality and sub-cortical connectivity of neural activation

associated with interactions of interoception and different

levels of state and trait anxiety.
(c) Tasks and methods
As reviewed above, considerable variation exists in the study

set with regards to task characteristics as well as measurement

and analysis features. It may be argued that this heterogeneity

hampers the meta-analysis. However, it may also be con-

sidered a particular strength of a meta-analysis to reveal

which areas are consistently activated across the IT . CT con-

trasts obtained from individual studies. Interpretation of the

current findings should therefore consider such characteristics.

Consistently, the studies’ IT required cardioceptive attentiveness
involving focused attention to one’s heartbeat for a given

time interval and/or cardioceptive accuracy/sensitivity involving

exact counting of perceived heartbeats in a given time interval,

and the CT required focused attention to discrete (external)
tones uncorrelated to one’s heartbeat. It should be noted that

variation in the design of CTs lead to variable degrees of

control of attentional demand characteristics in the IT . CT

contrast. Most studies’ CTs simply required attention to

target stimuli. Other studies’ CTs also involved discrimination

of rare targets against a series of concurrent tones. Brain

activation identified in the current meta-analysis may therefore

reflect aspects of attentional demand characteristics not

controlled by the particular CTs of individual studies.

Summarizing table 1 provides further information for cor-

rect interpretation of the current findings. First of all, it is

notable, that several studies failed to provide all details

necessary for precise replication of both study protocol and

analysis. The number of volumes per task had to be estimated

in five studies, coil-type was not reported in four studies, and

resampled voxel size was only reported in four studies.

Second, it should be noted that smoothing kernel varied

greatly from 5 to 12 mm full width at half maximum

(FWHM). Kernel size can have profound effects on outcomes,

and an FWHM of at least 8 mm has been suggested as opti-

mal for group inference [105]. In the current meta-analysis,

one could roughly conclude that findings of studies with

larger smoothing kernel may be overrepresented while

studies with smaller kernel may be underrepresented. In

the current meta-analysis, a kernel of 6 mm FWHM was

used most often. Replication may benefit from choosing similar

kernel size. With regards to field strength, the study set is well

balanced with four studies using a 1.5 Tesla scanner, and four

studies using a 3 Tesla scanner; 3 Tesla can be considered to be

the current gold standard for psychological fMRI experiments,

because lower field strength leads to reduced detection power

whereas higher field strength involves increasing issues due to

movement artefacts. Henceforth, the 3 Tesla studies could be

weighted in more strongly when interpreting the results of

the current meta-analysis.

When considering further task details, it is important to

note that variation in measurement and task features or

sample characteristics is unfortunately confounded in any

pair of studies one might compare. The limited available data

also renders statistical comparison of sub-sets of studies rather

questionable as they would comprise three or four studies at

the most, and variations other than the feature of interest

would not be well balanced across the compared study sets.

Hence, it would be impossible to evaluate the basis for

differences in brain activity identified in such a comparison.

Considering that the MKDA approach relies on location

of cluster peaks and sample size to compute meta-analysis

further underlines that the results most likely reflect large

commonalities between studies rather than being affected

by subtle detail.
(d) Limitations and recommendations
The number of available BOLD fMRI studies with human

participants on interoception is rather limited. Almost all of

these studies have applied IT concerned with cardioception.

Therefore, comparative meta-analysis of neural activation

associated with different target organs is currently not pos-

sible. Studies investigating interoception of target organs

other than the heart also deviate in many procedural aspects.

Therefore, stringent comparison is rendered rather futile due

to confounders. In addition, IT and CT are not always concep-

tually clear with regards to which aspects of interoception are
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examined. In this regard, the recently introduced model by

Garfinkel and co-workers [5,6] may provide a valuable tool.

The current findings can also not differentiate more general

from heart-specific aspects of interoceptive information proces-

sing. To improve upon this situation, it would be helpful

if studies would at least uniformly report findings of

whole-brain analysis regarding the basic contrast IT . CT. A

comparative meta-analysis across a variety of tasks with the

unique commonality of particular target organs might solve

these issues, when more studies become available.

With regard to the subset of studies using versions of the

heartbeat detection task [9], it is important to note that none of

these studies has assessed interoceptive accuracy/sensitivity
directly in the scanner. Therefore, results of the current meta-

analysis instead reflect all aspects involved in cardioception

rather than the aspect of accuracy/sensitivity alone. Of note,

neural activity correlated with interoceptive accuracy/sensitivity
assessed outside the scanner only in some of the brain areas

identified in the contrast IT . CT (see above). Yet a recent

study has developed a task for assessing interoceptive accu-
racy/sensitivity in the scanner. The authors found similar

significant neural activity to the current meta-analysis includ-

ing the right middle frontal gyrus, right inferior frontal

operculum, bilateral insular cortices, left inferior frontal tri-

angular gyrus, left superior middle frontal gyrus and bilateral

inferior parietal gyri [47]. Cluster peak coordinates particularly

pointed out the posterior right insula (BA 13) and the left claus-

trum. Connectivity analysis in this study further highlighted

involvement of prefrontal areas. These findings suggest that

brain areas associated with assessing heart-focused interoceptive
accuracy/sensitivity largely overlap with brain areas relevant for

cardioceptive attentiveness as identified in the current meta-

analysis. Future reviews and meta-analyses would however

greatly profit if all studies assessing specific aspects of intero-

ception would report correlations between brain areas

identified in the basic contrast IT . CT.

Owing to the limited availability of data, it is currently also

not possible to consider whether neural activation truly reflects

enhanced information processing or inhibition. To this end, it

would be helpful if more studies reported data on deactivation

related to interoception. Together with appropriate baselines,

as for example introduced by Critchley and co-workers [50],

this could help to systematically approach this issue.

Finally, the great variation in candidate regions and

hypotheses in the current set of studies is remarkable. This

underlines the need for further refinement of functional-

anatomical models underlying interoception. A meta-analysis

is one approach for identifying particularly important

structures by revealing the most consistently active areas

across variations of task details, samples and experiments.
However, the current approach ignores a huge amount of

information that could be exploited if original raw data

were shared, for example, in open databases available

online (e.g. www.openfMRI.org or www.nitric.org).
5. Conclusion and outlook
Findings of the current meta-analysis on nine studies report-

ing BOLD fMRI contrast regarding cardioceptive attentiveness
(i.e. focused attention to one’s heartbeat for a given time

interval) and/or cardioceptive accuracy (i.e. exact counting of

perceived heartbeats in a given time interval) as compared to

a CT corroborate and extend established models of interocep-

tive processing [22]. The MKDA meta-analysis has revealed a

complex network involving the posterior (granular) insula

(BA 13), the claustrum, as well as temporal and frontal

areas, highlighting right-hemispheric dominance of cardio-

ception. This may reflect non-verbal information processing

involving sequence monitoring and features of acoustic

event detection that may be applied to identification of indi-

vidual heartbeats. Notably, the claustrum has not been

considered in individual studies but emerged as an impor-

tant brain area in the meta-analysis, possibly orchestrating

top-down attention deployment and processing of feed-

forward cardioceptive information related to prefrontal

neural activity. Although some of the individual studies have

emphasized the role of the anterior insula [20,50,54,55], the

current findings suggest that this area may rather be concer-

ned with evaluative aspects of interoception and probably

negative or anxious emotion. Further research is required on

different targets organs (e.g. stomach or bladder) and specific

aspects of interoception such as interoceptive sensibility and

metacognitive awareness in order to further improve our

understanding of the neural correlates of interoception.
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Endnote
1Please note that the original authors may have used deviating termi-
nology and sometimes have used the same labels with deviating
definitions. The terminology in the current manuscript has been uni-
fied in accord with the definitions of Garfinkel and co-workers [5,6].
2The reference list is available upon request from the corresponding
author.
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