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Abstract

The mutation–selection model of coding sequence evolution has received renewed attention for its use in estimating site-
specific amino acid propensities and selection coefficient distributions. Two computationally tractable mutation–
selection inference frameworks have been introduced: One framework employs a fixed-effects, highly parameterized
maximum likelihood approach, whereas the other employs a random-effects Bayesian Dirichlet Process approach. While
both implementations follow the same model, they appear to make distinct predictions about the distribution of
selection coefficients. The fixed-effects framework estimates a large proportion of highly deleterious substitutions,
whereas the random-effects framework estimates that all substitutions are either nearly neutral or weakly deleterious.
It remains unknown, however, how accurately each method infers evolutionary constraints at individual sites. Indeed,
selection coefficient distributions pool all site-specific inferences, thereby obscuring a precise assessment of site-specific
estimates. Therefore, in this study, we use a simulation-based strategy to determine how accurately each approach
recapitulates the selective constraint at individual sites. We find that the fixed-effects approach, despite its extensive
parameterization, consistently and accurately estimates site-specific evolutionary constraint. By contrast, the random-
effects Bayesian approach systematically underestimates the strength of natural selection, particularly for slowly evolving
sites. We also find that, despite the strong differences between their inferred selection coefficient distributions, the fixed-
and random-effects approaches yield surprisingly similar inferences of site-specific selective constraint. We conclude that
the fixed-effects mutation–selection framework provides the more reliable software platform for model application and
future development.

Key words: mutation–selection models, selection coefficients, protein evolution, dN/dS, sequence simulation,
molecular evolution.

Introduction
Proteins are subject to a variety of structural, functional, and
physiochemical constraints that influence their evolutionary
trajectories. A growing body of research has demonstrated
that these constraints lead individual protein sites to have
distinct tolerances to different amino acids (Porto et al. 2004;
Ramsey et al. 2011; Pollack et al. 2012; Ashenberg et al. 2013;
Bloom 2014a, 2014b; Risso et al. 2014; Abriata et al. 2015;
Doud et al. 2015; Echave et al. 2016). Recent experimental
studies have further demonstrated that, for at least several
proteins, site-wise amino-acid preferences are broadly con-
served over evolutionary time (Ashenberg et al. 2013; Risso
et al. 2014; Doud et al. 2015).

To achieve a complete picture of protein evolutionary
dynamics, it is critical that we employ robust sequence evo-
lution frameworks which explicitly incorporate site-specific
amino acid propensities. One such evolutionary model that
achieves this goal, known as the mutation–selection model, is
an implementation of the classical population genetics
Fisher–Wright model (Fisher 1930; Wright 1931) applied to

protein-coding sequences. By modeling the joint forces of
selection and mutation in protein-coding sequences along a
phylogeny, the mutation–selection framework considers site-
specific amino-acid and/or codon propensities as its focal
parameters (Halpern and Bruno 1998; McCandlish and
Stoltzfus 2014). Specifically, the mutation–selection model
estimates the scaled fitness, F ¼ 4Nef (or F ¼ 2Nef for hap-
loid organisms), where Ne is the effective population size and f
represents the Malthusian fitness, of each amino acid at a
given position in a protein-coding sequence. These fitnesses
are often used to infer the distribution of scaled selection
coefficients Sij ¼ Fj � Fi, where Fi and Fj are the scaled fit-
nesses of amino acids i and j. The distribution of S values
indicates the range of selective responses to new mutations
across a given protein sequence.

Importantly, the term “fitness”, as used in the context of
mutation–selection models, refers to the overall time-
averaged propensities of amino-acids at particular sites, and
not necessarily to exact fitness effects incurred by mutations.
Indeed, fitness effects at individual sites may fluctuate over
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time, e.g., due to epistatic interactions (Weinreich et al. 2006;
Pollack et al. 2012; Ashenberg et al. 2013; Draghi and Plotkin
2013; Gong et al. 2013; McCandlish and Stoltzfus 2014; Shah
et al. 2015). As such, our use of the word fitness throughout
this study should be interpreted primarily as a mutation–
selection model parameter indicating conserved site-specific
properties.

Recently, two alternative implementations of site-specific
mutation–selection models have been released. The first im-
plementation, known as swMutSel, estimates site-specific fit-
ness parameters as fixed-effect variables through a maximum
penalized-likelihood (MPL) approach (Tamuri et al. 2012,
2014). The second implementation, available in the
PhyloBayes software package, instead employs a Dirichlet
Process (DP) Bayesian framework and models site-specific
fitness parameters as random effects (Rodrigue et al. 2010;
Rodrigue and Lartillot 2014). For simplicity, we will refer to the
latter implementation as “pbMutSel” throughout this article.
Both platforms are based on the mutation–selection models
introduced by Halpern and Bruno (1998) and Yang and
Nielsen (2008), and they make nearly identical assumptions
about the evolutionary process. For instance, both swMutSel
and pbMutSel assume that sites evolve independently, that
there is no selection on synonymous codons (i.e., all synon-
ymous codons have the same fitness), and that nucleotide
mutation rates are shared across all sites. Furthermore, both
frameworks require a fixed phylogeny topology to compute
fitness parameters and are not currently suitable for co-
estimation of fitnesses and phylogeny.

Although the mutation–selection model provides a prom-
ising framework for modeling protein sequence evolution in a
mechanistic context, it is not yet clear how one might use its
estimates to gain insight into the evolutionary process.
Whether the amino-acid fitnesses estimated by either
swMutSel or pbMutSel truly reflect evolutionary constraint
remains an open question, in particular because these two
implementations produce seemingly incompatible results:
swMutSel infers S distributions with two peaks representing
nearly neutral (centered at S¼ 0) and highly deleterious
changes, commonly defined as S < �10 in the context of
mutation–selection models (Tamuri et al. 2012, 2014;
Rodrigue 2013). In contrast, pbMutSel infers unimodal distri-
butions centered at S¼ 0, without a peak of highly deleteri-
ous changes.

The relative accuracy between these two distinct
approaches has sparked a lively debate in the literature
(Rodrigue 2013; Rodrigue and Lartillot 2014; Scheffler et al.
2014; Tamuri et al. 2014). Specifically, Rodrigue (2013) cri-
tiqued early swMutSel implementations as suffering from
overparameterization, as swMutSel’s fixed-effects framework
requires estimating 19 parameters per site. He argued that the
characteristic peak at S < �10 in swMutSel-inferred scaled
selection-coefficient distributions is an erroneous artifact of
model overparameterization. Rodrigue (2013) additionally
contended that, by modeling fitnesses as random effects,
pbMutSel avoids overfitting and certain statistical inconsis-
tencies that extensive parameterization might introduce. In
response, Tamuri et al. (2014) argued that experimental

evidence from population genetics literature supports
swMutSel’s recovery of a prominent peak of highly deleteri-
ous S < �10 changes. To ameliorate potential overfitting
artifacts, swMutSel has been updated with several likelihood
penalty functions that regularize extreme fitness estimates
(Tamuri et al. 2014).

Previous quantitative comparisons of swMutSel and
pbMutSel inferences have focused nearly exclusively on ask-
ing how well they recapitulate the gene-wide distribution of S,
or similarly the gene-wide proportions of deleterious and
beneficial substitutions (Rodrigue et al. 2010; Tamuri et al.
2012, 2014; Rodrigue 2013; Rodrigue and Lartillot 2014). In
spite of these efforts, however, there remains no conclusive
evidence supporting either swMutSel or pbMutSel as the
more reliable inference approach. Indeed, support for either
approach currently rests on theoretical arguments regarding
either pbMutSel’s more desirable statistical properties or
swMutSel’s general agreement with population-genetics liter-
ature. However, statistical consistency does not necessarily
correspond to empirical accuracy, and phylogenetic data
may not be directly comparable to population data. As
such, neither argument presents strong evidence in favor of
either pbMutSel or swMutSel.

We posit that no consensus regarding mutation–selection
implementation accuracy has emerged specifically because
performance has been assessed using whole-gene S distribu-
tions. Pooling all site-specific S values into a single distribution
makes it impossible to conduct a systematic analysis of dif-
ferences between inference methods, especially given that
these methods were implemented to estimate amino-acid
fitness values at individual sites. As a consequence of this
approach, it remains unknown how well inferred parameters
capture site-specific evolutionary processes.

Therefore, in this study, we have investigated the relative
performance of these two mutation–selection model imple-
mentations by directly comparing how well each infers evo-
lutionary constraints at individual sites, rather than focusing
primarily on S distributions. We have found that swMutSel,
specifically run with a weak likelihood penalty function, con-
sistently estimates the most accurate site-specific fitness val-
ues. By contrast, pbMutSel and strongly penalized swMutSel
parameterizations systematically underestimate the strength
of natural selection across sites, most notably at slowly evolv-
ing sites.

Results

Simulation and Inference Approach
We simulated protein-coding sequence alignments wherein
each position evolved according to a distinct mutation–
selection model parameterization. We ensured that each sim-
ulation reflected evolutionary heterogeneity seen in real
proteins by deriving simulation parameterizations from two
different empirical data sources. The first simulation data set
derived codon fitness parameters from site-specific amino
acid frequencies in structurally curated natural amino-acid
alignments (Ramsey et al. 2011). We obtained site-specific
fitness parameters for the second simulation data set using
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amino-acid propensities measured experimentally using
deep-mutational scanning (DMS) (Bloom 2014a; Firnberg
et al. 2014; Stiffler et al. 2014; Thyagarajan and Bloom 2014;
Doud et al. 2015; Kitzman et al. 2015). Derivation of simula-
tion parameters is described in depth in Materials and
Methods. A total of 11 natural alignments and four DMS
data sets were used, resulting in a total of 15 alignment pa-
rameter sets, as described in table 1. We refer to each align-
ment simulated using parameters derived from natural
alignments as “natural simulations”, and similarly to each
alignment simulated using DMS-derived parameters as
“DMS simulations”.

We assumed that all codons for a given amino acid had the
same fitness, and we assumed globally equal mutation rates.
For each gene, we simulated two alignments, each along a
balanced 512-taxon tree, with all branch lengths set equal to
either 0.5 or 0.01. We refer to these simulation conditions as
BL¼ 0.5 and BL¼ 0.01 for simulations with branch lengths of
0.5 and 0.01, respectively. Note that, in the context of

mutation–selection models, branch lengths refer to the ex-
pected number of neutral substitutions per unit time
(Spielman and Wilke 2015b). The BL¼ 0.5 simulation condi-
tion yielded alignments at evolutionary equilibrium, meaning
that each simulation should contain sufficient information to
discern the underlying stationary amino-acid fitnesses
(Spielman et al. 2016). Under the BL¼ 0.01 condition, on
the other hand, simulated sequences will not have diverged
enough to reflect their stationary states. Therefore, we expect
inferences performed on BL¼ 0.5 simulations to yield results
that are more comparable to true parameters than results
from inferences on BL¼ 0.01 simulations are.

Importantly, natural and DMS simulations featured dis-
tinct evolutionary pressures: all natural S distributions fea-
tured relatively high proportions of strongly deleterious
changes (jSj � 10), whereas all DMS S distributions were
unimodal, with varying degrees of spread (fig. 1). Similarly,
natural simulations contained stringent levels of selective
constraint, with most sites under strong purifying selection,
but sites in the DMS simulations were subject to moderate-
to-weak purifying selection (supplementary fig. S1,
Supplementary Material online). We note that the effective
population size for DMS experiments is likely smaller than the
effective population size in natural settings, partially explain-
ing why these data sets feature weaker selection pressures.
That said, all DMS preferences employed here have corrected
to account for selection’s relatively weaker stringency in DMS
experiments, thereby partially ameliorating artifacts caused
by differences in population size (Bloom 2014b, 2016).

Findings from previous mutation–selection model studies
would suggest that natural simulations would favor the
swMutSel platform, which is known to estimate large propor-
tions of deleterious changes, and conversely DMS simulations
would favor the pbMutSel platform, which tends to infer
strictly unimodal S distributions (Rodrigue et al. 2010;
Tamuri et al. 2012, 2014; Rodrigue 2013). Therefore, the dif-
ferent features across our simulation sets allowed us to di-
rectly contrast how each mutation–selection inference
platform behaves on data with realistic levels of evolutionary
heterogeneity, without biasing results towards one particular
implementation.

We processed each simulated alignment with both
swMutSel and pbMutSel. For swMutSel, we processed each
alignment both without a penalty and under four penalty

Table 1. Description of Data Sets Used to Derive Simulation
Parameters.

Name Type Length Mean Site Entropy Mean Site dN/dS

1B4T_A Natural 115 1.12 0.27
1W7W_B Natural 125 0.95 0.23
2CFE_A Natural 151 0.92 0.21
2BCG_Y Natural 156 1.01 0.26
1G58_B Natural 165 1.06 0.25
1GV3_A Natural 176 1.08 0.26
1V9S_B Natural 177 1.10 0.27
2FLI_A Natural 190 1.20 0.30
1RII_A Natural 195 1.13 0.27
1R6M_A Natural 203 1.13 0.28
1IBS_A Natural 291 1.07 0.28
Gal4a DMS 64 1.92 0.47
LACb DMS 262 2.08 0.61
NPc DMS 498 2.38 0.70
HAd DMS 564 2.25 0.63

NOTE.—The Type column indicates whether the source of simulation parameters
was a natural alignment (“Natural”) or deep-mutational scanning data (“DMS”).
Natural alignments are named according to their corresponding PDB [Protein Data
Bank (Berman et al. 2000)] ID and chain, i.e., the name 1B4T_A corresponds to PBD
ID 1B4T, chain A.
aYeast Gal4.
bTEM-1 b-lactamase.
cInfluenza nucleoprotein.
dInfluenza H1N1 hemgglutinin.

1GV3_A Gal4 LAC HA NP
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FIG. 1. Distributions of true scaled selection coefficients, S, for a representative natural simulation (1GV3_A) and each DMS simulation. Scaled
selection coefficients have been binned at S � 10 and S � �10 for visualization. Histograms depicting the true S distribution for all other natural
simulations are provided in supplementary figures S8–S10, Supplementary Material online. S distributions shown represent the selection coef-
ficients among all possible single-nucleotide changes, across all sites.
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functions (Tamuri et al. 2014). Penalty functions examined
included the multivariate normal penalty function with the
r2 parameter equal to either 10 or 100 (referred to as mvn10
and mvn100, respectively), as well as the Dirichlet-based pen-
alty function with the a parameter equal to either 0.1 or 0.01
(referred to as d0.1 and d0.01, respectively). Each set of
penalty-function parameterizations represents stronger to
weaker penalties, i.e., mvn10 and d0.1 are stronger penalties
than are mvn100 and d0.01, respectively. We refer to each
swMutSel inference using its respective penalty specification
and to each swMutSel inference without a penalty function as
“unpenalized”.

Distance between True and Inferred Parameters
Depends on Method and Data set
We first assessed how the inferred site-specific fitness values
compared with the true fitness values. We derived, for each
site-specific set of inferred fitnesses, the corresponding equi-
librium amino-acid frequencies (Sella and Hirsh 2005;
Spielman and Wilke 2015a). We calculated the Jensen–
Shannon distance (JSD) between the inferred and true equi-
librium frequency distributions. JSD is defined as

JSDðP;QÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðP;MÞ þ DðQ;MÞ

2

r
; (1)

where P ¼ ðp1; . . . ; p20Þ and Q ¼ ðq1; . . . ; q20Þ are the
amino-acid frequency distributions to be compared,
M ¼ ðPþ QÞ=2 is the element-wise average between P
and Q, and DðA; BÞ ¼

P
i ailnðai=biÞ is the Kullback–

Leibler divergence between distributions A ¼ ða1; . . . ; a20Þ
and B ¼ ðb1; . . . ; b20Þ. JSD values range from 0 for com-
pletely identical distributions to 1 for completely dissimilar
distributions.

Across all data sets, JSD values were 1.5–2 times larger for
BL¼ 0.5 than for BL¼ 0.01 simulations (fig. 2). This result
reflects that the true amino-acid frequencies represent
those present under an evolutionary equilibrium, which is
not reached under such short time scales of 0.01 branch
lengths.

Trends for results from natural simulations were consistent
between branch-length conditions: unpenalized swMutSel

and multivariate normal penalties displayed the lowest JSD
values, of roughly 0.15 on an average. In fact, their JSD distri-
butions were statistically indistinguishable for a given data set
(P> 0.99, mixed-effects linear model). Under Dirichlet penal-
ities and pbMutSel, JSD for natural simulations sharply in-
creased, with pbMutsel universally showing the highest JSD.

By contrast, DMS simulations showed different trends be-
tween branch length conditions. For BL¼ 0.5, DMS simula-
tions had low mean JSD values under unpenalized swMutSel
and multivariate normal penalties, but their JSD values either
slightly decreased or remained unchanged under swMutSel
Dirichlet penalties and pbMutSel. Moreover, Gal4 consis-
tently showed larger JSD values across unpenalized and mul-
tivariate normal swMutSel penalties, and it further showed
increased JSD under pbMutSel, similar to natural simulations.
This outlying result may be due to shorter length of Gal4
compared with the other simulated genes (table 1). The
JSD values for DMS and natural simulations were most com-
parable under the d0.01 penalty in swMutSel (fig. 2A), sug-
gesting that this parameterization may be least sensitive to
selection pressures in the data. The DMS simulations under
BL¼ 0.01, however, displayed the opposite trends from
BL¼ 0.5: JSD was decreased from unpenalized swMutSel to
reach its lowest values under pbMutSel. Again, the Gal4 DMS
simulation yielded an increased JSD for pbMutSel.

Why were JSD results consistent between branch length
conditions for natural simulations but not for DMS simula-
tions? We suggest that this finding directly resulted from dif-
ferent selective constraints operating between data sets. First,
note that careful statistical analysis on swMutSel and
pbMutSel has shown that swMutSel “considers unobserved
amino acids as highly deleterious”, whereas pbMutSel is “less
conclusive in this regard” (Rodrigue 2013). The DMS data sets
featured far weaker selective pressure across sites, meaning
that more amino acids were selectively permitted per site.
However, under the short time scale of BL¼ 0.01, relatively
few substitutions will have occurred. DMS sites will therefore
appear far more conserved than they truly are under statio-
narity. By contrast, the relatively higher selective constraint in
natural simulations means that fewer amino acids will be
tolerated per site. While the full stationary distribution of
states will still not be reached at BL¼ 0.01, enough changes
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FIG. 2. Jensen–Shannon distance between true and inferred amino-acid frequency distributions. (A) BL¼ 0.5 simulations. (B) BL¼ 0.01 simula-
tions. Each point represents the mean JSD across sites for a given simulation, and labeled points correspond to DMS simulations. Note that the
y-axis of each panel has a different range.
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will likely have occurred to reveal the most fit amino acids,
leading to lower JSD at low divergence.

We further considered that JSD might be an overly sensi-
tive metric wherein distances between small values will ap-
pear inflated. For example, comparing frequencies of 10�4

and 10�5 may yield fairly large JSD, but in fact these frequen-
cies are comparable in terms of evolutionary pressures. To
test this possibility, we additionally calculated the sum of
absolute differences of site-specific frequencies, and we recov-
ered broadly the same trends as for the JSD analysis (supple
mentary fig. S2, Supplementary Material online), and thus JSD
results did not appear to be artifactual.

Extensively Parameterized Models Best Infer
Evolutionary Constraint
Importantly, JSD is not an explicit evolutionary measure. For
instance, while a large JSD indicates high dissimilarity, it is
neither possible to tell how this dissimilarity relates to selec-
tion pressure nor whether high JSD corresponds to system-
atically biased or randomly distributed error in estimates.
Furthermore, distance metrics like JSD may obscure the
true evolutionary constraint. Consider an amino-acid whose
presence is not tolerated at a given site: Whether this amino-
acid has an associated scaled selection coefficient of –100 or –
200 amounts to the same evolutionary pressure, although its
JSD may instead be quite large.

Therefore, we next asked whether site-specific inferences
from swMutSel and pbMutSel corresponded to the true se-
lective constraint at each site. We measured selective con-
straint at individual sites using two metrics: predicted dN/dS
and Shannon entropy H. We predicted a dN/dS rate ratio for
each site’s set of mutation–selection parameters as described
in Spielman and Wilke (2015a, 2015b) [see also dos Reis
(2015) for an alternative method of dN/dS calculation]. The
predicted dN/dS value indicates the expected substitution-
rate ratio under evolutionary equilibrium. Further, because
our simulations assumed symmetric nucleotide mutation
rates and no codon bias, all true dN/dS ratios are constrained
to dN=dS 2 ½0; 1� (Spielman and Wilke 2015a).

Entropy is calculated for a given alignment column as

H ¼ �
X

i

PilnPi; (2)

where Pi is the frequency of amino-acid i, and the sum
runs over all 20 amino-acids. Entropy is bounded by
H 2 ½0; 3:0�, and the value 3:0 ¼ lnð1=20Þ indicates that
each amino acid is equally frequent. Both metrics have
clear, widely accepted interpretations: Lower values indi-
cate stronger selective constraint, and higher values indi-
cate progressively weaker constraint. Moreover, dN/dS
uniquely provides an evolutionarily aware summary sta-
tistic for the selection pressure acting at a given site. While
entropy calculations consider only amino-acid frequen-
cies, dN/dS is calculated directly from substitution rates
between codons. As such, dN/dS is geared more specifi-
cally towards evolutionary analysis than is entropy.

We calculated site-specific dN/dS and entropy for each
true and inferred distribution of site-specific amino-acid

fitnesses and nucleotide mutation rates (Spielman and
Wilke 2015a), and we compared the resulting true and pre-
dicted values across inference methods (figs. 3 and 4 and
supplementary figs. S3–S7, Supplementary Material online).
Specifically, we measured r2 between inferred and true pa-
rameters, the estimator bias of each inference method, and
finally the slope of the linear relationship between inferred
and true parameters. r2 indicates the percent of variance in
the true parameters explained by inferred parameters, esti-
mator bias indicates whether an inference method tends to
overestimate or underestimate true parameters, and the
slope indicates whether an inference method tends to over-
estimate (slope> 1) or underestimate (slope< 1) larger pa-
rameters relative to smaller parameters. Note that we
performed hypothesis tests on the slope using the null hy-
pothesis of slope equal to 1, rather than the more traditional
null of slope equal to 0, to test specifically for this deviation.

Unlike JSD, the results for dN/dS and H comparisons
showed similar trends across data sets and branch-length
conditions. For BL¼ 0.5 simulations, we found excellent
agreement between true and predicted quantities for natural,
LAC, and Gal4 simulations when run with unpenalized
swMutSel, mvn100, mvn10, and d0.01 (figs. 3 and 4A and
B). However, unpenalized swMutSel, mvn100, and mvn10
tended to slightly underestimate dN/dS and entropy, i.e.,
overestimate selective constraint. On the other hand, d0.01
mostly showed no estimator bias for natural simulations, and
finally d0.1 and pbMutSel overestimated dN/dS and entropy
(figs. 3 and 4C and D). The NP and HA DMS simulations
yielded similar patterns to the other simulations, although
these simulations were associated with generally lower r2

values. Further, the estimator bias for the NP simulation, un-
der pbMutSel inference as measured using entropy, was not
statistically significant (Bonferroni-corrected P> 0.05). Finally,
no true-inferred slopes, for either dN/dS or entropy, showed a
statistically significant deviation from 1 (Bonferroni-corrected
P> 0.05) for BL¼ 0.5 (fig. 4E and F).

Unexpectedly, even though DMS simulations (particularly
NP and HA) featured unimodal selection coefficient distribu-
tions which we suspected would be more suited to pbMutSel
analysis, weakly penalized swMutSel in fact gave the best
performance across all data sets. In addition, all metrics con-
sidered here showed that unpenalized swMutSel in fact out-
performed pbMutSel for DMS simulations, in spite of the
paucity of highly deleterious amino acids in these simulations.
pbMutSel, and to a lesser extent d0.1, systematically over-
estimated dN/dS and entropy, thereby inferring much weaker
selection pressure than was truly present. This trend was
pronounced for highly constrained, i.e., low dN/dS, sites, ex-
plaining why estimator bias was generally larger for natural
simulations. Indeed, all sites in the NP and HA DMS simula-
tions had dN=dS � 0:24, and roughly 90% of sites in Gal4 and
LAC simulations had dN=dS � 0:2 (supplementary fig. S1,
Supplementary Material online). As such, a small minority
of sites, if any, were subject to very strong purifying selection
in DMS simulations. By contrast, between 40% and 60% of
sites in natural simulations had dN=dS � 0:2 (supplemen
tary fig. S1, Supplementary Material online), and hence
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overestimation by d0.1 and pbMutSel was more apparent for
natural simulations.

For the BL¼ 0.01 simulations, all methods performed
poorly, likely because sequences did not attain the evolution-
ary equilibrium reflected by the true parameter values (fig. 3C
and D and supplementary figs. S4, S6, and S7, Supplementary
Material online). Specifically, unpenalized swMutSel, mvn100,
and mvn10 strongly underestimated dN/dS and entropy,
meaning that they inferred far more stringent evolutionary
constraint than existed. Further, d0.01 showed the least esti-
mator bias for natural simulations, and d0.1 showed the least
estimator bias for DMS simulations, likely resulting from the
different selection pressures between simulation sets.
pbMutSel greatly overestimated dN/dS and entropy, often
to the point where virtually no relationship existed between
true and inferred metrics. These results suggest that muta-
tion–selection models might be unreliable for analyzing data
sets with low divergence. Even so, the overall patterns ob-
served for r2, estimator bias, and slope were consistent be-
tween branch length conditions, implying that dN/dS and
entropy, moreso than JSD, served as robust indicators of mu-
tation–selection model performance.

Causes of Site-Specific Inference Error across Methods
We next asked whether a given site’s underlying selective
constraint, as represented by the true site-specific dN/dS,
influenced error in the inferred fitness values, as represented
by site-specific JSD. In other words, we examined whether the
selection pressure at individual sites biased fitness inferences
within a given gene. Given the broad comparability between
dN/dS and entropy metrics (fig. 4), we considered only the
more evolutionarily aware dN/dS. In addition, we studied only
the BL¼ 0.5 simulations.

We regressed site-specific JSD against dN/dS, and we ana-
lyzed the slope of each regression (fig. 5A and B). For natural
simulations, unpenalized swMutSel, mvn100, mvn10, and
d0.01 JSD increased with decreasing selection pressure, i.e.,
increasing dN/dS, as indicated by positive slopes. However,
5 of the 11 natural data sets yielded slopes that did not sig-
nificantly differ from 0 (Bonferroni-corrected P> 0.05) when
run with d0.01, suggesting that this swMutSel parameteriza-
tion may be less biased by selection pressures. By contrast,
d0.1 and pbMutSel displayed the opposite trend from the
other approaches: JSD was lowest for these approaches at
sites with weak selective constraint, i.e., high dN/dS.
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FIG. 4. Performance of mutation–selection model inference platforms on simulations with branch lengths of 0.5. Labeled points correspond to
DMS simulations. (A and B) r2 between true and inferred dN/dS (A) and entropy (B) across inference methods, for all simulated data sets. (C and D)
Estimator bias of inference methods relative to true dN/dS (C) and entropy (D) values, for all simulated data sets. Open points indicate biases that
were not significantly different from 0 (Bonferroni-corrected P> 0.05, test for intercept in linear model), and solid points indicate biases that were
significantly different from 0 (Bonferroni-corrected P< 0.05). The straight line indicates an estimator bias of 0, meaning an unbiased predictor.
Note that panels (C and D) use different y-axis ranges, due to the different scales between dN/dS and entropy. (E and F) Slope for the linear
relationship of inferred regressed on true dN/dS (E) and entropy (F) values. Open points indicate slopes that were not significantly different from 1
(Bonferroni-corrected P> 0.05, test for slope in linear model not equal to 1), and solid points indicate biases that were significantly different from 1
(Bonferroni-corrected P< 0.05). The straight line indicates the null slope of 1. A corresponding figure for simulations using branch lengths of 0.01 is
in supplementary figure S7, Supplementary Material online.
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For DMS simulations, on the other hand, all slopes were
weakly negative (fig. 5A and B), meaning that all inference
approaches yielded more precise fitness estimates for sites
with weaker selection pressure. Moreover, many of the slopes
for DMS simulation comparisons were not statistically different
from 0 (fig. 5B), namely when run with mvn10 and d0.01.
Therefore, fitness estimates made by the d0.01 swMutSel pa-
rameterization were least influenced by underlying site-specific
selection pressure across both natural and DMS data sets.

We hypothesized that the source of discrepancy between
natural and DMS simulations (fig. 5A and B), could be traced
back to the different selective landscapes between data sets.
We therefore again regressed site-specific JSD on true dN/dS,
but using only a subset of each data set so that each gene had
fully comparable distributions of selective constraint. In par-
ticular, for each regression, we included only sites whose true
dN/dS was in the range 0:3 � dN=dS � 0:6. This analysis
indeed showed that nearly all slopes were not significantly
different from zero (Bonferroni-corrected P> 0.05, fig. 5C).
Thus, it appeared that swMutSel had specific difficulty esti-
mating fitnesses at sites with low selective constraint, and
conversely pbMutSel had specific difficulty estimating fit-
nesses at sites with high selective constraint. The platforms
performed comparably, in terms of site-specific error, for sites
subject to moderate purifying selection.

Inferred Selection Coefficient Distributions Depend
on Method, Not on Data set
Previously, it has been an open question whether observed
features of inferred S distributions, namely the presence of

large proportions of deleterious changes, were primarily
caused by the data being analyzed or instead by the statistical
properties of the specific inference approach applied
(Rodrigue 2013). We therefore next asked whether compar-
ing true and inferred S distributions revealed similar patterns
about methodological performance as dN/dS and entropy
comparisons did.

In fact, we found instead that the inference approach, not
the underlying data set, seemed to predict the shape of the
inferred S distribution (fig. 6 and supplementary figs. S8–S10,
Supplementary Material online). For example, across all DMS
simulations, pbMutSel estimated S distributions that were
most similar to the true S distributions, yet for natural sim-
ulations, S distributions estimated by unpenalized swMutSel
most resembled the true distributions. Our analysis of site-
specific selective constraint with dN/dS and entropy, how-
ever, did not find that either of these two approaches inferred
the most reliable selection pressures. Instead, unpenalized
swMutSel tended to underestimate dN/dS entropy, and con-
versely pbMutSel substantially overestimated these quantities
(fig. 4 and supplementary fig. S7, Supplementary Material
online).

Discussion
We have investigated the utility of mutation–selection model
inference platforms for inferring site-specific selective con-
straints from coding sequences. We found that swMutSel,
run specifically with a weak-to-moderate Dirichlet penalty
function, consistently inferred site-specific fitness values
that reliably captured each site’s evolutionary constraint, as
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inference method. Results are shown for simulations with branch lengths of 0.5. Labeled points correspond to DMS simulations. (A) Site JSD
regressed on true site dN/dS. The line in each panel indicates the linear regression line. (B) Slope of relationship shown in panel (A) for all simulated
data sets. (C) Slope of relationship shown in panel (A) for all simulated data sets, considering only a subset of sites whose true dN/dS falls in the
range dN=dS 2 ½0:3; 0:6�. For panels (B) and (C), the straight line indicates the y¼ 0 line, meaning no linear relationship between JSD and dN/dS.
Open points indicate slopes that were not significantly different from 0 (Bonferroni-corrected P> 0.05), and solid points indicate slopes that were
significantly different from 0 (Bonferroni-corrected P< 0.05).

Mutation–Selection Model Performance . doi:10.1093/molbev/msw171 MBE

2997

Deleted Text: s
Deleted Text: c
Deleted Text: d
Deleted Text: d
Deleted Text: m
Deleted Text: n
Deleted Text: d
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw171/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw171/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw171/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw171/-/DC1
Deleted Text: &ndash;


represented by dN/dS and entropy. pbMutSel, as well as
swMutSel run with a strong Dirichlet penalty function, sys-
tematically underestimated the strength of natural selection
across sites. In addition, swMutSel multivariate normal pen-
alties estimated fitness values that were nearly identical to
unpenalized swMutSel, suggesting that these penalties may
not substantially reduce overparameterization. Importantly,
our results were robust to the proportion of deleterious
changes in the data: d0.1 swMutSel appeared most suited
for genes with moderate-to-weak purifying selection (i.e.,
unimodal S distributions), and d0.01 swMutSel was the best
performing method for genes subject to strong purifying se-
lection (i.e., S distributions with large proportions of deleteri-
ous changes). We therefore recommend selecting one of
these swMutSel parameterizations for data analysis, depend-
ing on the strength of natural selection suspected to act on
the gene being analyzed.

Rather than focusing our analysis on S distributions, we
instead analyzed mutation–selection inferences on a site-
specific basis using site entropy as well as the evolutionarily

meaningful summary statistic dN/dS. This strategy allowed for
a more fine-grained analysis of inferred parameters compared
with whole-gene S distributions that can obscure site-specific
evolutionary processes. Furthermore, our approach high-
lighted a considerable disconnect between S distributions
and site-specific evolutionary constraint: The mutation–selec-
tion implementation that provided the best S estimates did
not necessarily provide the best estimates of site-specific se-
lection pressure, and vice versa. Instead, inferred S distributions
appeared to be driven primarily by the inference method ap-
plied and not by features of the data set. This discordance
reveals why previous studies focusing almost exclusively on S
as a litmus test to compare performance of swMutSel and
pbMutSel have been unable to reach a consensus.

We additionally emphasize that, while weakly penalized
swMutSel emerged here as the more reliable mutation–selec-
tion inference platform, dN/dS ratios and entropy predicted
from all inferences showed strong relationships with their
corresponding true parameters (figs. 3 and 4), and indeed
with one another. For example, dN/dS and entropy predicted

True Unpenalized mvn100 mvn10 d0.01 d0.1 pbMutSel

0
2000
4000
6000
8000

−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10

Selection Coefficients

C
ou

nt

1GV3_A

True Unpenalized mvn100 mvn10 d0.01 d0.1 pbMutSel

0
250
500
750

1000
1250

−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10

Selection Coefficients

C
ou

nt

Gal4

True Unpenalized mvn100 mvn10 d0.01 d0.1 pbMutSel

0
2500
5000
7500

10000

−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10

Selection Coefficients

C
ou

nt

LAC

True Unpenalized mvn100 mvn10 d0.01 d0.1 pbMutSel

0

5000

10000

−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10

Selection Coefficients

C
ou

nt

HA

True Unpenalized mvn100 mvn10 d0.01 d0.1 pbMutSel

0
5000

10000
15000

−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10−10 −5 0 5 10

Selection Coefficients

C
ou

nt

NP

FIG. 6. True and inferred distributions of scaled selection coefficients for a subset of simulations, under branch lengths of 0.5. Histograms for
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from unpenalized swMutSel and pbMutSel were, on an aver-
age, correlated with r2 ¼ 0:81 and r2 ¼ 0:56, respectively,
across all BL¼ 0.5 simulations. These high correlations con-
trast with conclusions drawn from previous studies that
swMutSel and pbMutSel make fundamentally distinct, even
incompatible, inferences. Therefore, while performance differ-
ences between swMutSel and pbMutSel were clearly present,
they were smaller than one might assume based on S distri-
butions alone.

Moreover, the larger r2 associated with dN/dS, compared
with entropy, suggests that entropy is a much more sensitive
measurement, specifically in terms of selection pressure. For
example, consider a given amino acid whose stationary fre-
quency is estimated by different platforms as 10�6 and 10�8.
In evolutionary terms, these frequencies amount to virtually
the same result: Natural selection strongly disfavors this
amino acid, which is not likely to fix if it arises by mutation.
dN/dS calculations will recognize the similar consequences of
these frequencies and yield similar values. By contrast, en-
tropy calculations will be much more sensitive to the two-
order of magnitude difference in frequencies. For this reason,
the r2 between unpenalized swMutSel and pbMutSel was
higher for dN/dS than for entropy.

We suggest that some modifications to pbMutSel’s default
settings, such as changing the fixed dispersion parameter for
its Dirichlet prior, may produce more reliable inferences.
Although such efforts may be helpful, there remained salient
differences in runtime between swMutSel and pbMutSel. For
example, each swMutSel inference required between 6 and
72 h to converge (with unpenalized swMutSel inferences on
the longer HA and NP DMS simulations taking the most
time), whereas each pbMutSel inference required between
1 and 3 weeks. In other words, each swMutSel inference con-
verged nearly 10 times more quickly than did each pbMutSel
inference. From a practical standpoint, swMutSel’s relatively
short runtime and reliable inferences make it the preferred
inference platform. We therefore recommend the use of
swMutSel with a weak (d0.01) Dirichlet penalty for highly
constrained genes or with a moderate (d0.1) Dirichlet penalty
for more weakly constrained genes.

Materials and Methods

Generation of Simulated Data
Sequences were simulated according to the mutation–selec-
tion model in Halpern and Bruno (1998), which assumes a
reversible Markov model of sequence evolution. For each site
k, this model’s rate matrix is given by

q
ðkÞ
ij ¼

liju
ðkÞ
ij single nucleotide change

0 multiple nucleotide changes
;

(
(3)

where lij is the site-invariant mutation rate between codons i
and j, and u

ðkÞ
ij , the site-specific relative fixation probability

from codon i to j, is defined as

u
ðkÞ
ij ¼

S
ðkÞ
ij

1� e�S
ðkÞ
ji

; (4)

where S
ðkÞ
ij is the scaled selection coefficient from codon i to j

at site k (Halpern and Bruno 1998). Note that u
ðkÞ
ij can also be

expressed as

u
ðkÞ
ij ¼ ln

pðkÞj lij

pðkÞi lji

 !
= 1�

pðkÞi lji

pðkÞj lij

 !
; (5)

where pðkÞi is the equilibrium frequency of codon i at site k
(Halpern and Bruno 1998; Spielman and Wilke 2015a).

For all simulations, we specified equal mutation rates, lij

¼ l ¼ const: We determined each alignment’s site-specific
codon frequencies from two sources. First, we used a set of
structurally curated natural amino-acid alignments, with each
sequence homologous to a given PDB structure, compiled by
Ramsey et al. (2011). For each of those alignments that con-
tained at least 150 taxa, we calculated each site’s amino acid
frequencies, which we converted to codon frequencies under
the assumption that all synonymous codons for a given
amino acid had the same frequency. In addition, sites which
contained fewer than 150 amino acids (e.g., a column in an
alignment with 200 taxa but half of whose characters are
gaps) were discarded. A total of 11 natural alignments, with
a number of codon positions ranging from 115 to 291, re-
mained after this procedure. We additionally set the equilib-
rium frequency of all unobserved amino acids to 10�9.

Second, we used four sets of experimentally determined
amino acid propensities from deep-mutational scanning
(DMS) experiments. The genes used were influenza H1N1
hemagglutinin (Thyagarajan and Bloom 2014), influenza nu-
cleoprotein (Bloom 2014a; Doud et al. 2015), TEM-1 b-lacta-
mase (Firnberg et al. 2014; Stiffler et al. 2014), and yeast Gal4
(Kitzman et al. 2015). We specifically used scaled experimen-
tal amino-acid propensities, as given by and described in
Bloom (2016). Because we simulated all alignments with sym-
metric nucleotide mutation rates, the amino-acid propensi-
ties obtained from DMS experiments were equivalent to
stationary amino-acid frequencies (Sella and Hirsh 2005;
Bloom 2016), which we used for simulation.

For all derived codon frequency parameters, we computed
codon fitness parameters to calculate selection coefficient
distributions, where Fi ¼ log ðpiÞ for a given codon i (Sella
and Hirsh 2005). This relationship holds specifically in the
presence of symmetric mutation rates. Using the resulting
fitness parameters and equal mutation rates, we then simu-
lated an alignment corresponding to each of the 11 natural
alignments and four DMS profiles using Pyvolve (Spielman
and Wilke 2015b). We conducted all simulations along a 512-
taxon balanced tree with all branch lengths equal to either 0.5
or 0.01, yielding a total of 30 simulated alignments.

Mutation–Selection Model Inference
We processed all alignments, both simulated and empirical,
with swMutSel v1.6 (Tamuri et al. 2014) and pbMutSel, spe-
cifically, PhyloBayes-MPI v1.5a (Rodrigue and Lartillot 2014).
swMutSel inference was carried out under five specifications,
including without the use of a penalty function, and two
parameterizations each for both the multivariate normal

Mutation–Selection Model Performance . doi:10.1093/molbev/msw171 MBE

2999

Deleted Text: to
Deleted Text: six 
Deleted Text:  
Deleted Text: ours
Deleted Text: one 
Deleted Text: to 
Deleted Text: three 
Deleted Text: ten 
Deleted Text: -
Deleted Text: -
Deleted Text: s
Deleted Text: d
Deleted Text: &ndash;
Deleted Text: -
Deleted Text: eleven 
Deleted Text: &ndash;
Deleted Text: -
Deleted Text: eleven 
Deleted Text: &ndash;
Deleted Text: s
Deleted Text: m
Deleted Text: i


and the Dirichlet penalty functions. For the multivariate nor-
mal penalty, we set r2 to either 10 or 100, and for the
Dirichlet penalty, we set a to either 0.1 or 0.01.

For inference with pbMutSel, we followed the inference
approach given in Rodrigue (2013). We ran each chain for
5500 iterations, saving every five cycles until a total sample
size of 1100 was obtained. The first 100 samples were dis-
carded as burnin, and hence the final posterior distribution
from which fitnesses were calculated contained 1000 MCMC
draws. Convergence was assessed visually using Tracer
(Rambaut et al. 2014). Note that for inferences on NP and
HA simulations we saved every three, rather than five, cycles
for computational tractability.

We further note that we computed dN/dS and entropy
from the posterior mean of all MCMC cycles for a given
inference. An alternative approach might instead compute
these quantities for each MCMC cycle, and finally, average
these quantities across all draws. However, this procedure is
not currently possible with the PhyloBayes software.

Statistical Analysis and Data Availability
All statistical analyses were conducted in the R programming
language (R Core Team 2015). All statistical tests were per-
formed with a significance value of a ¼ 0:05, with correction
for multiple testing using the Bonferroni correction. Simulated
data, statistical analyses, and all code used are freely available
from the github repository https://github.com/sjspielman/mut
sel_benchmark, last accessed August 16, 2016.

Supplementary Material
Supplementary figures S1–S10 are available at Molecular
Biology and Evolution online (http://www.mbe.oxfordjour
nals.org/).
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