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SUMMARY

Mammalian DNA methylation is a critical epigenetic mechanism orchestrating gene expression 

networks in many biological processes. However, investigation of the functions of specific 

methylation events remains challenging. Here, we demonstrate that fusion of Tet1 or Dnmt3a with 

a catalytically inactive Cas9 (dCas9) enables targeted DNA methylation editing. Targeting of the 

dCas9-Tet1 or -Dnmt3a fusion protein to methylated or unmethylated promoter sequences caused 

activation or silencing, respectively, of an endogenous reporter. Targeted demethylation of the 

BDNF promoter IV or the MyoD distal enhancer by dCas9-Tet1 induced BDNF expression in 

post-mitotic neurons or activated MyoD facilitating reprogramming of fibroblasts into myoblasts, 

respectively. Targeted de novo methylation of a CTCF loop anchor site by dCas9-Dnmt3a blocked 

CTCF binding and interfered with DNA looping, causing altered gene expression in the 

neighboring loop. Finally, we show that these tools can edit DNA methylation in mice 

demonstrating their wide utility for functional studies of epigenetic regulation.
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Introduction

Mammalian DNA methylation at 5-cytosine plays critical roles in many biological 

processes, including genomic imprinting, cell fate determination, chromatin architecture 

organization, and regulation of gene expression (Bird, 2002; Jaenisch and Bird, 2003; Smith 

and Meissner, 2013). Genetic studies have revealed that DNA methylation is essential for 

mammalian development and adaptation to environmental signals (Jaenisch and Bird, 2003). 

Abnormal DNA methylation has been observed in cancer and neurological disorders 

(Robertson, 2005). Owing to the advancement in sequencing technologies, single-nucleotide 

resolution methylation maps for many types of human and mouse cells and tissues have been 

depicted (Lister et al., 2013; Lister et al., 2009). Importantly, these maps have allowed for 

the identification of differentially methylated regions (DMRs) at base pair resolution during 

different stages of normal development as well as disease (De Jager et al., 2014; Landau et 

al., 2014). However, investigation of the functional significance of these DMRs remains a 

challenge due to lack of appropriate molecular tools that enable efficient editing of DNA 

methylation in a targeted manner.

We set out to establish such a toolbox by hybridization of the key enzymes in DNA 

methylation pathway with reprogrammable sequence-specific DNA-targeting molecular 

machinery. DNA methylation is established by two de novo DNA methyltransferases 

(Dnmt3a/b), and is maintained by Dnmt1 (Smith and Meissner, 2013). Gene activation 

during development is associated with demethylation of promoter and enhancer sequences 

with the best-understood mechanism being passive demethylation by inhibition of Dnmt1. In 

addition, demethylation can be achieved through oxidation of the methyl group by TET (ten-

eleven translocation) dioxygenases to form 5-hydroxymethylcytosine (5-hmC), and then 

restoration into unmodified cytosines by either DNA replication-dependent dilution or DNA 

glycosylase-initiated base excision repair (BER), a process termed as active demethylation 

and proposed to operate during specific developmental stages such as preimplantation 

embryos or in post-mitotic neurons (Wu and Zhang, 2014).
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Clustered regularly interspaced palindromic repeats (CRISPR), a type II bacterial adaptive 

immune system, has been modified to target the Cas9 nuclease to desired genomic loci with 

sequence-specific guide RNAs for genome editing (Cong et al., 2013; Jinek et al., 2012; 

Mali et al., 2013). Importantly, a catalytically inactive Cas9 (dCas9) was generated and 

engineered in several systems as a DNA targeting module to bring effector proteins such as 

transcriptional activator/suppressor, chromatin modifier, and green fluorescence protein to 

regulate gene expression, to modify chromatin, and to image genomic loci respectively 

(Chen et al., 2013; Gilbert et al., 2013; Hilton et al., 2015; Jinek et al., 2012; Konermann et 

al., 2015; Qi et al., 2013).

In this study, we demonstrate that fusion of dCas9 with the Tet1 enzymatic domain or 

Dnmt3a allows for targeted erasure or establishment of DNA methylation, respectively. As a 

proof of principle, we first induced alterations to DNA methylation in two synthetic 

methylation reporters integrated in mouse embryonic stem cells (mESCs). Our results show 

that targeted demethylation of BDNF promoter IV is sufficient to activate its expression in 

mouse cortical neurons, and that targeted demethylation of a MyoD distal enhancer 

promotes reprogramming of fibroblasts into myoblasts and facilitates myotube formation. 

With dCas9-Dnmt3a, we demonstrate that targeted methylation at CTCF binding sites is able 

to block CTCF recruitment and to alter the expression of genes in the neighborhood loop by 

increasing their interaction frequencies with the super-enhancers insulated in the targeted 

loops. Furthermore, lentiviral delivery of dCas9-Tet1 with target gRNAs into mice enabled 

in vivo activation of a methylation reporter by demethylation of its promoter. Thus, dCas9-

Tet1 and dCas9-Dnmt3a provide powerful tools to investigate the functional significance of 

DNA methylation in a locus-specific manner.

RESULTS

A modified CRISPR system to edit DNA methylation

To achieve targeted editing of DNA methylation, we fused dCas9 with enzymes in the 

methylation/demethylation pathway (Fig 1A). Based on previous studies using the TALE 

system to target specific CpGs (Bernstein et al., 2015; Maeder et al., 2013), Tet1 and 

Dnmt3a were chosen as the effectors in our system. Co-expression of sequence-specific 

guide RNA (gRNA) would be expected to target dCas9-Tet1 or dCas9-Dnmt3a to the 

specific locus and mediate modification of DNA methylation status without altering the 

DNA sequence. To optimize this chimeric CRISPR/dCas9-effector system, we tested two 

types of dCas9-Tet1 lentiviral constructs with nuclear localization signal (NLS) at different 

positions: dCas9-NLS-Tet1 and NLS-dCas9-NLS-Tet1 (Fig S1A and S1B). We also tested 

two types of gRNA lentiviral constructs, a widely used chimeric single-guide RNA referred 

as gRNA (Jinek et al., 2012) and a modified guide RNA with enhanced capacity to guide 

Cas9 to the designed genomic locus referred as E-gRNA (Chen et al., 2013). Both gRNA 

constructs contain a puro selection cassette and a Cherry fluorescence protein cassette driven 

by an independent CMV promoter that allows for Fluorescence Activated Cell Sorting 

(FACS) of gRNA-expressing cells after lentiviral transduction (Fig S1A). Characterization 

of these constructs showed a robust gRNA-induced nuclear translocation for the dCas9-

NLS-Tet1 construct (Fig S1C–E), and thus this construct was chosen for all experiments in 
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order to minimize non-specific modifications of DNA. Two types of gRNA behaved 

similarly (Fig S1C–E) and thus were used interchangeably.

dCas9-Tet1 and dCas9-Dnmt3a enable targeted alterations of CpG methylation state

To assess whether the dCas9-Tet1 and -Dnmt3a fusion constructs would induce 

demethylation or de novo methylation, respectively, of specific sequences, we utilized a 

methylation reporter system previously developed in our laboratory (Stelzer et al., 2015). 

This reporter system consists of a synthetic methylation-sensing promoter (conserved 

sequence elements from the promoter of an imprinted gene, Snrpn) that controls the 

expression of a green fluorescence protein (GFP). Insertion of this reporter construct into a 

genomic locus was shown to faithfully report on the methylation state of the adjacent 

sequences (Stelzer et al, 2015).

a. Demethylation of specific CpGs—To test whether defined sequences could be 

demethylated, we introduced the dCas9-Tet1 construct in combination with gRNAs to target 

the Snrpn-GFP reporter inserted into the Dazl promoter (Fig 1B and Fig S2A). Dazl is a 

germ cell specific gene, which is hypermethylated and not active in ES cells, and thus the 

GFP reporter is not expressed. To activate GFP expression by dCas9-Tet1 we designed 4 

gRNAs targeting all 14 CpGs in the Snrpn promoter region. After infection with lentiviral 

vectors co-expressing dCas9-Tet1 and the 4 gRNAs for three days, some infection-positive 

cells as labeled by Cherry positive signal expressed from gRNA construct began to turn on 

GFP (Fig S2B). To assess the activation efficiency by dCas9-Tet1 with target gRNAs, we 

analyzed the cells infected by both viruses using FACS. Among the Cherry positive 

population, about 26% of cells with target gRNAs activated GFP, whereas only 1% of cells 

with a scrambled gRNA were GFP positive (Fig 1C and Fig S2C). These Cherry positive 

single cells were further cultured to allow for formation of ES cell colonies. Cells with target 

gRNAs, but not the scrambled gRNA, expressed GFP (Fig 1D). To confirm that the 

activation of GFP in these cells is caused by demethylation of the Snrpn promoter, we 

performed bisulfite sequencing of genomic DNA from these samples. As illustrated in Fig 

1E and 1F, samples from cells with target gRNAs showed robust demethylation only in the 

Snrpn promoter region but not the adjacent Dazl locus, and samples from the cells with the 

scrambled gRNA showed a similar methylation status to the uninfected (Mock) control. We 

further analyzed the GFP-positive and -negative populations within infected Cherry-positive 

cells. As shown in Fig S2D, a more robust demethylation of the Snrpn promoter region was 

observed in double positive cells (Cherry+;GFP+). These results confirm the targeted erasure 

of DNA methylation by dCas9-Tet1 with gRNAs in proliferative cells.

b. De novo methylation of specific CpGs—To assess whether a dCas9-Dnmt3a fusion 

protein could de novo methylate promoter sequences and silence gene expression, we used 

cells carrying the Snrpn-GFP reporter in the Gapdh promoter. These cells are GFP positive 

because Gapdh is unmethylated and expressed in ES cells (Stelzer et al., 2015). We infected 

the Gapdh-Snrpn-GFP ESCs with lentiviruses expressing dCas9-Dnmt3a and gRNAs 

targeting the Snrpn promoter or a scrambled gRNA (Fig 2A and Fig S2E), followed by 

FACS analysis. Among infection-positive (Cherry positive) population, about 12% of cells 

with target gRNAs inactivated GFP, whereas only 2% of cells with the scrambled gRNA 
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were GFP negative (Fig 2B and S2F). When the Cherry positive cells were grown in culture, 

GFP expression of cells with target gRNAs remained off whereas cells with the scrambled 

gRNA and mock controls remained GFP positive (Fig 2C). Furthermore, bisulfite 

sequencing showed that transduction of dCas9-Dnmt3a/gRNAs resulted in a significant 

increase of DNA methylation in the Snrpn promoter region but not in the adjacent Gapdh 
region (Fig 2D and 2E). Further analysis of the GFP-positive and -negative populations 

within infected Cherry-positive cells showed a more robust methylation of the Snrpn 
promoter region in Cherry+;GFP- cells (Fig S2G). To overcome the possible limitation 

caused by low co-transduction efficiency of both dCas9-Dnmt3a and gRNA lentiviruses, a 

Doxycycline-inducible dCas9-Dnmt3a expression cassette was integrated into the Gapdh-

Snrpn-GFP mES cell line by using a PiggyBac transposon system (Fig S2H). After delivery 

of the same group of target gRNAs, FACS analysis showed that GFP inactivation efficiency 

was increased to 25% (Fig 2F and S2I). Sorted Cherry-positive cells showed loss of GFP 

expression upon Doxycycline treatment (Fig 2G) and were robustly methylated in the Snrpn 
promoter region (Fig 2H). We also generated a new construct of dCas9-Dnmt3a-P2A-BFP 

which enables isolation of dCas9-Dnmt3a expressing cells by FACS. ~70% of GFP 

inactivation efficiency was achieved in FACS sorted double positive cells (BFP+;Cherry+) 

after lentiviral delivery of this construct together with gRNAs (Fig S2J).

In summary, our results indicate that the dCas9 fusion constructs described above either 

efficiently demethylate methylated sequences (dCas9-Tet1) or de novo methylate 

unmethylated sequences (dCas9-Dnmt3a) in dividing cells when targeted by specific guide 

RNAs.

Comparison of dCas9- and TALE-based methylation editing

To compare the methylation editing efficacy and effective range by dCas9-Tet1/Dnmt3a with 

TALE-based methods, we chose two previously reported loci edited by TALE-based method 

(Bernstein et al., 2015; Maeder et al., 2013) and designed a single gRNA targeting dCas9-

Tet1/Dnmt3 to the same site bound by the TALE-Tet1/Dnmt3a. As shown in Fig S3A and 

S3C, dCas9-Dnmt3a with one single gRNA targeting the p16 locus induced an average of 

25% increase of methylation within a 320 bp region of the p16 promoter whereas TALE-

Dnmt3a only induced 13% increase within a 650 bp region. Similarly, dCas9-Tet1 with one 

single gRNA targeting the RHOXF2 locus induced an average of 28% decrease of 

methylation within a 150 bp region of the RHOXF2 promoter whereas TALE-Tet1 only 

induced 14% decrease within a 200 bp region (Fig S3B and S3C). These results suggest that 

dCas9-Tet1/Dnmt3a system has higher efficacy and resolution for methylation editing than 

TALE-based method.

To evaluate the specificity of dCas9-Tet1/Dnmt3a-mediated methylation editing, we 

performed dCas9 ChIP-seq assay and identified 9 binding sites in the presence of gRNAs 

targeting the Dazl-Snrpn region described in Fig S2A and 18 binding sites in the presence of 

gRNAs targeting CTCF binding sites adjacent to the miR290 locus (see below Fig S6A). Fig 

S3D shows that among the identified binding sites for each group of gRNAs, the targeted 

locus (Dazl-Snrpn or miR290) showed the highest level of binding for dCas9-Dnmt3a (Table 

S1). The second and third strongest binding sites for each targeted locus were illustrated in 
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Fig S3E, and bisulfite sequencing analysis of these loci showed only marginal change in 

methylation level (Fig S3F and S3G), likely due to the significantly lower binding affinity of 

dCas9-Dnmt3a/Tet1 at these off-target loci compared to the targeted loci. These results 

indicate that dCas9-based epigenetic editing can be highly specific.

Targeted demethylation of BDNF promoter IV activates BDNF in neurons

DNA replication-independent active demethylation has been proposed to operate in post-

mitotic neurons (Guo et al., 2011; Martinowich et al., 2003). To test whether active 

demethylation can be induced in post-mitotic neurons, we applied the dCas9-Tet1 system to 

study the regulation of the BDNF gene. BDNF expression can be induced by neuronal 

activity accompanied by demethylation of its promoter IV (Chen et al., 2003; Martinowich 

et al., 2003). We designed 4 gRNAs targeting 11 CpGs in BDNF promoter IV (Fig S4A) to 

determine whether dCas9-Tet1 can activate BDNF by inducing demethylation of this 

promoter (Fig 3A). Mouse cortical neurons were isolated from E17.5 embryos and cultured 

for two days in vitro (DIV2) following a well-established experimental procedure for 

producing primary neuronal culture (Ebert et al., 2013). As shown in Fig S4B–D, KCl 

treatment induced BDNF expression in these neurons with no detectable cell proliferation. 

Neurons at day 3 in culture (DIV3) were infected with lentiviral vectors expressing dCas9-

Tet1 with or without the 4 gRNAs at almost 100% transduction efficiency (Fig S4E). At 48-

hour post infection some of the cultures were treated with KCl to induce neuronal activity. 

As shown in Fig 3B and 3C, dCas9-Tet1/gRNAs induced BDNF expression by about 6-fold, 

whereas dCas9-Tet1 in the absence of gRNAs showed only a slight induction (less than 2-

fold) and a catalytically dead form of Tet1 (dC-dT) showed no induction. Importantly, the 

same group of dCas9-Tet1/gRNAs did not induce Npas4 expression (Fig S4F), another 

neuronal activity-inducible gene (Lin et al., 2008). Co-transduction of dCas9-Tet1 with each 

individual gRNA targeting the BDNF promoter IV showed a 2–3 fold induction of BDNF 

(Fig S4G). We performed bisulfite sequencing to examine the methylation state of BDNF 
promoter IV. As shown in Fig 3D and 3E, dCas9-Tet1/gRNAs significantly reduced 

methylation in this region in contrast to gRNA negative controls while KCl treatment also 

induced demethylation of CpGs at positions of −148, −66 and 19 (relative to transcription 

start site).

Our results demonstrate that demethylation of the BDNF promoter IV can be induced by 

dCas9-Tet1/gRNAs and is sufficient to activate BDNF expression. Because post-mitotic 

neurons were used for these experiments, loss of methylation was likely due to active 

demethylation. To further support this conclusion, we examined 5-hmC level in the BDNF 
promoter IV during the time course of dCas9-Tet1 induced demethylation by Tet-assisted 

Bisulfite sequencing (TAB-seq) analysis. As shown in Fig S4H, 5-hmC was detected 40-

hour post infection with dCas9-Tet1 and gRNA lentiviruses and diminished after 60 hours. 

Similarly, 5-hmC was also detected after KCl treatment (Fig S4I). As bisulfite sequencing 

method does not distinguish unmethylated 5-cytosine (5-C) and 5-formlycytosine/5-

carboxylcytosin (5-fC/5-caC) generated from 5-hmC, it is possible that some CpGs were 5-

fC/5-caC modified after targeting with dCas9-Tet1/gRNA. Nevertheless, inhibition of the 

base excision repair pathway by treatment with ABT-888 (an inhibitor of PARP) reduced the 
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activation of BDNF by KCl treatment (Fig S4J), suggesting that demethylation of BDNF 
promoter IV contributes to BDNF activation.

To test whether endogenous Tet activity was required to regulate BDNF expression upon 

neuronal activity stimulation, we treated DIV3 neurons with 2-hydroxygluterate, a 

competitive inhibitor for α-ketoglutarate-dependent dioxygenases including Tet enzymes 

(Xu et al., 2011). As shown in Fig S4K, pharmacological inhibition of Tet enzymatic activity 

completely abolished the induction of BDNF expression by KCl treatment. Furthermore, 

mouse primary cortical neurons carrying a Tet1 null mutant showed significantly attenuated 

activation kinetics of BDNF (Fig S4L), supporting a role of endogenous Tet for induction of 

neuronal activity.

Targeted demethylation of the MyoD distal enhancer facilitates myogenic reprogramming 
of fibroblasts

The role of MyoD as a master regulator for muscle development was initially defined by the 

observations that demethylation of DNA in fibroblasts by 5-Aza (5-Aza-2’-deoxycytidine) 

treatment resulted in activation of MyoD and subsequent myoblast conversion and myotube 

formation (Constantinides et al., 1977; Davis et al., 1987; Lassar et al., 1986). Six muscle-

specific DMRs have been described within the 50 kb upstream region of MyoD gene 

(Schultz et al., 2015), and DMR-5 overlaps with a known distal enhancer of MyoD (Brunk 

et al., 1996) as shown in Fig 4A. To test whether demethylation of DMR-5 would activate 

MyoD in fibroblasts, we designed 4 gRNAs targeting this DMR (Fig S5A). Co-expression of 

dCas9-Tet1 with these gRNAs in C3H10T1/2 cells, a sub-clone from mouse embryonic 

fibroblasts previously used for 5-Aza mediated MyoD activation (Constantinides et al., 

1977), resulted in a moderate induction of MyoD expression (3-fold) as shown in Fig 4B. 

Combination of dCas9-Tet1/MyoD DMR-5 gRNAs with 5-Aza treatment resulted in a 

higher induction of MyoD as shown in Fig S5F. Bisulfite sequencing showed a substantial 

reduction of methylation in the DMR-5 region of sorted infection-positive cells transduced 

with dCas9-Tet1 and target gRNAs lentiviruses, but not with a catalytically dead Tet1 (dC-

dT) or a scrambled gRNA (Fig 4C and 4D). To investigate whether demethylation of the 

MyoD distal enhancer region could reprogram fibroblasts into muscle cells, we infected 

C3H10T1/2 cells with lentiviruses expressing dCas9-Tet1 and gRNAs. The cells were 

cultured for 14 days and analyzed for MyoD and MHC (Myosin Heavy chain, a myotube 

specific marker) expression. As shown in Fig 4E and 4F, co-expression of dCas9-Tet1 with 

gRNAs targeting DMR-5 induced a moderate expression level of MyoD, but was not 

sufficient to induce myotube formation in the absence of 5-Aza treatment.

We then investigated whether targeted demethylation of DMR-5 would synergize with 5-Aza 

treatment to induce myotube formation (Fig S5B). To follow the process of myotube 

formation after 5-Aza treatment, a time-course experiment was performed. Multi-nucleated 

myotube (MHC-positive) with heterogeneous sizes began to form 14 days post treatment, 

and both MyoD-positive cell ratio and myotube density and size then increased up to day-25 

(Fig S5C–E). Co-expression of dCas9-Tet1 with gRNAs targeting MyoD DMR-5 facilitated 

the myotube formation 14 days post-treatment as evidenced by significantly more mature, 

multi-nucleated MHC+ clusters (>2 nuclei per MHC+ cluster) compared to cells expressing 
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only dCas9-Tet1 or dC-dT with MyoD DMR-5 gRNAs (Fig 4E, 4G, and 4H). A similar 

observation was made when the cells were analyzed at a later time point (16-day) post-

treatment (Fig S5G–J). Our results suggest that demethylation of the MyoD distal enhancer 

by dCas9-Tet1/gRNA synergizes with 5-Aza in C3H10T1/2 cells to substantially facilitate 

myoblast conversion and myotube formation.

Targeted de novo methylation of CTCF binding sites alters CTCF-mediated chromatin 
loops

CTCF is a highly conserved zinc finger protein that plays a primary role in the global 

organization of chromatin architecture (Phillips and Corces, 2009). Transcriptional 

enhancers normally interact with their target genes through the formation of DNA loops 

(Gibcus and Dekker, 2013; Gorkin et al., 2014; Kagey et al., 2010), which typically are 

constrained within larger CTCF-mediated loops called insulated neighborhoods (Dowen et 

al., 2014; Ji et al., 2016; Phillips-Cremins et al., 2013), which in turn can form clusters of 

loops that contribute to topologically associating domains (TADs) (Dixon et al., 2012; Nora 

et al., 2012). Deletion of the CTCF loop anchor sites of insulated neighborhoods can cause 

enhancers to interact inappropriately with genes located outside the loop and thus increase 

their expression (Dowen et al., 2014). Interestingly, methylation of the DNA recognition site 

of CTCF has been reported to block CTCF binding (Bell and Felsenfeld, 2000; Wang et al., 

2012). To study whether methylation of specific CTCF sites could alter CTCF-mediated 

chromatin loops, we applied the dCas9-Dnmt3a system to target CTCF anchor sites (Fig 

5A). We designed specific gRNAs (Fig S6) targeting dCas9-Dnmt3a to two CTCF sites to 

investigate whether de novo methylation would interfere with the looping function of CTCF 

(Fig 5B and 5F). Doxycycline-inducible dCas9-Dnmt3a mES cells (Fig S2H) were infected 

with lentiviruses expressing the gRNAs and transduced cells were FACS sorted for 

subsequent analysis.

Targeting of dCas9-Dnmt3a to the CTCF binding site bordering the miR290 loop that 

harbors a super-enhancer (Fig 5B) induced de novo methylation of CpGs at this site (Fig 5D 

and 5E). Gene expression analysis of transduced cells showed a significant elevation of 

Nlrp12 gene, which is outside of this super-enhancer-containing insulated neighborhood and 

next to the targeted CTCF site, but did not affect the expression of genes that are located 

inside the miR290 loop or of genes in other neighboring loops including AU01801 and 

Myadm (Fig 5C). Similarly, targeting of dCas9-Dnmt3a to the CTCF binding site bordering 

the Pou5f1 gene loop that harbors another super-enhancer (Fig 5F) induced methylation of 

CpGs in the CTCF binding sequence (Fig 5H and 5I), and increased the expression of 

H2Q10, which is located in a neighboring loop and next to the targeted CTCF site, but did 

not affect the expression of Pou5f1 gene itself or Tcf19 gene in the other neighboring loop 

(Fig 5G). For either targeted CTCF sites, a catalytically inactive Dnmt3a form (dC-dD) did 

not induce changes in methylation level or gene expression as did by dC-D (Fig 5C–E, and 

5G–I). These observations are consistent with the results obtained when these CTCF sites 

were deleted (Dowen et al., 2014), and support the notion that methylation of the CTCF 

binding site interferes with its insulator function.
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To test whether targeted methylations of CTCF binding sites would result in increased 

interaction frequencies between insulated super-enhancers and activated genes, 

Chromosome Conformation Capture (3C) assay was performed at these loci. As shown in 

Fig 6A, the interaction frequency between super-enhancers in the miR290 loop and the 

newly activated gene (Nlrp12) in the neighboring loop was significantly increased but the 

interaction between Nlrp12 and Myadm genes remained the same, indicating an open 

conformation for this targeted CTCF loop. To confirm that the increased interaction 

frequency was due to blocking CTCF anchoring, we performed a CTCF ChIP assay. Binding 

of CTCF to the targeted genomic site was significantly reduced in the sample with miR290 
target gRNAs as compared to the sample with a scrambled gRNA, gRNAs targeting other 

CTCF binding sites or a catalytically inactive dC-dD with miR290 target gRNAs (Fig 6B), 

supporting the notion that DNA methylation blocks CTCF anchoring and thus alters the 

CTCF loop conformation. A similar set of experiments was performed for the second CTCF 

loop (Pou5f1 loop) demonstrating increased interaction frequency between the insulated 

super-enhancers and the newly activated gene (H2Q10), and decreased binding of CTCF 

after targeted methylation of its binding site (Fig 6C and 6D).

In summary, our results demonstrate that the dCas9-Dnmt3a system can be used to change 

the methylation state of specific CTCF anchor sites and thus to interfere with the CTCF 

looping function.

In vivo demethylation of an endogenous locus for gene activation by dCas9-Tet1

To test whether the dCas9-mediated DNA methylation-editing tools could be used to alter 

methylation in vivo we utilized a methylation sensitive reporter mouse previously generated 

(Fig 7A, Stelzer et al, Cell Reports, 2016, in press). In these transgenic mice, a methylation 

sensitive Snrpn-GFP cassette was inserted into the Dlk1-Dio3 locus to report the 

methylation status of its intergenic-differentially methylated region (IG-DMR). As the IG-

DMR of this locus acquires paternal methylation during spermatogenesis, the GFP reporter 

(IG-DMRGFP/Pat) is constitutively repressed in heterozygous mice carrying the paternal 

Snrpn-GFP allele (Stelzer et al., Cell Reports, 2016, in press). As shown above the GFP 

reporter in the Dazl locus was activated by targeted promoter demethylation in mES cells 

(Fig 1). To assess whether the Dlk1-Dio3 locus GFP reporter could be activated by dCas9-

Tet1 in differentiated cells we derived adult mouse skin fibroblast cells from the tails of IG-

DMRGFP/Pat transgenic mice, which were then transduced by lentiviruses expressing dCas9-

Tet1 with Snrpn target gRNAs or a scrambled gRNA, or a catalytically dead form of Tet1 

(dC-dT) with Snrpn target gRNAs (Fig 7A). The results in Fig 7B and 7C reveal GFP 

reporter activation in about 80% of Cherry (gRNA) positive fibroblasts but only when 

transduced by both dCas9-Tet1 and Snrpn gRNAs lentiviruses. FACS analysis of these cells 

further confirmed this notion (Fig S7A–C).

To investigate whether the DNA methylation status can be modified in vivo, we infected 3 

epidermal sites on the ventral side of an IG-DMRGFP/Pat transgenic mouse with the dCas9-

Tet1 and Snrpn gRNAs (Fig S7D). Cells were sparsely infected with cherry expression seen 

only in some of the hair follicles. dCas9-Tet1 with Snrpn gRNAs, but not dCas9-Tet1 with 

the scrambled gRNA or dC-dT with Snrpn gRNAs, was able to activate GFP reporter 
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expression in about 85% infected skin dermal cells in vivo (Fig 7H, S7E&F). In addition we 

infected the brain of an IG-DMRGFP/Pat transgenic mouse with lentiviral vectors using a 

stereotaxic setup and analyzed the effect on targeted DNA methylation in brain slices by 

confocal microscopy. To eliminate possible inter-individual variability, we injected lentiviral 

vectors expressing dCas9-Tet1 and Snrpn gRNAs, as well as the two negative control vector 

combinations into different regions of the same brain (Fig 7D). As shown in Fig 7E&F, after 

infection with all three lentiviral combinations as indicated by Cherry expression, only 

lentiviral vectors expressing dCas9-Tet1 with Snrpn gRNAs, but not vectors expressing 

dCas9-Tet1 with sc gRNA or dC-dT with Snrpn gRNAs, activated the GFP reporter with an 

activation efficiency of about 70% (Fig 7G).

DISCUSSION

In this study we have repurposed the CRISPR/Cas9 system to edit the methylation status of 

genomic sequences. The catalytically inactive Cas9 protein (dCas9) was fused either to the 

catalytic domain of Tet1 (dCas9-Tet1) or to Dnmt3a (dCas9-Dnmt3a) to predictably alter the 

epigenetic state of target sequences. A GFP reporter inserted into the promoter region of the 

methylated and silenced Dazl gene was demethylated and activated when targeted by dCas9-

Tet1 whereas the GFP reporter inserted into the promoter region of the active and 

unmethylated Gapdh gene was de novo methylated and silenced when targeted by dCas9-

Dnmt3a. When the dCas9-Tet1 was targeted to the inactive BDNF promoter IV in post-

mitotic neurons, the promoter became demethylated and activated. Importantly, this tool 

predictably altered the methylation state and activity of regulatory regions: Targeted 

demethylation of the inactive distal enhancer of MyoD activated the gene and facilitated 

muscle differentiation and targeted methylation of CTCF anchor sites inhibited CTCF 

binding and interfered with its function as an insulator between chromatin loops. Finally, the 

editing tools can in vivo alter the methylation state of regulatory sequences as injection of 

the lentiviral vectors of dCas9-Tet1 with target gRNAs into the dermis or brain of transgenic 

mice demethylated the methylated Snrpn promoter in the Dlk1-Dio3 imprinted locus and 

activated the methylation-sensing GFP reporter.

Dynamic DNA methylation has been proposed to decode neuronal activities (Sweatt, 2013). 

For instance, treatment of neurons with KCl has been shown to de-silence promoter IV of 

BDNF and induce BDNF expression associated with demethylation of some methylated 

CpGs in the promoter region (Chen et al., 2003; Martinowich et al., 2003). When the BDNF 
promoter IV was targeted by dCas9-Tet1, extensive demethylation of methylated CpGs was 

observed, and BDNF was activated to a similar level as when the cultures were treated with 

KCl. Because the neurons were post-mitotic, the dCas9-Tet1-mediated demethylation of the 

promoter sequences was likely the result of active demethylation as has been proposed 

previously (Wu and Zhang, 2014). Although it is possible that some CpGs in the BDNF 
promoter were 5-fC/5-caC modified after targeting with dCas9-Tet1/gRNA, blocking 

restoration of 5-fC/5-caC into unmethylated cytosine by inhibition of the BER pathway 

reduced BDNF expression, suggesting that demethylation of the BDNF promoter IV 

contributes to the activation of BDNF. Importantly, our results establish a causal relationship 

between demethylation of BDNF promoter IV and gene activation.
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The role of DNA methylation as a barrier between cell lineages is consistent with the 

previous observation that demethylation of DNA in fibroblasts by treatment with 5-Aza can 

activate MyoD and mediate myotube formation (Constantinides et al., 1977). Targeting of 

dCas9-Tet1 to the methylated distal enhancer of MyoD in fibroblasts induced demethylation 

of CpGs and resulted in a moderate activation of MyoD but failed to generate myoblasts. 

However, when dCas9-Tet1/gRNA lentiviral transduction was combined with 5-Aza 

treatment, a significantly enhanced myoblast and myotube formation was observed as 

compared to 5-Aza treatment alone. It is possible that demethylation of the additional DMRs 

in combination with the distal enhancer may be required to induce efficient conversion of 

fibroblasts to myoblasts.

Recent studies of mammalian chromosome structure reveal that chromatin is organized in 

topologically associating domains and gene loops mediated by chromatin architecture 

proteins such as Cohesin and CTCF (Dekker and Mirny, 2016). Emerging data suggest that 

higher-order chromatin structures confer epigenetic information during development and are 

frequently altered in cancer (Ji et al., 2016; Narendra et al., 2015). It has been reported that 

binding of CTCF is inhibited when its recognition sequence is methylated (Bell and 

Felsenfeld, 2000; Wang et al., 2012). Targeting of dCas9-Dnmt3a to two CTCF binding sites 

induced de novo methylation of CpGs in these sites and interfered with the insulator 

function of the protein as evidenced by increased interaction frequencies between insulated 

super-enhancers in the targeted loop and genes in the neighboring loop causing up-

regulation of these genes. This suggests that the dCas9-Dnmt3a system is a useful tool to 

manipulate chromatin structure and to assess its functional significance during development 

and in disease context.

Our results indicate that dCas9 fused to the epigenetic effectors Tet1 and Dnmt3a represent a 

powerful toolbox to edit DNA methylation of specific genomic sequences. Comparison of 

these tools with TALE-based method showed a higher efficacy and resolution for 

methylation editing, and dCas9 ChIP-seq followed by bisulfite sequencing of potential off-

target binding loci revealed marginal changes in methylation levels, suggesting that high 

specificity can be achieved with properly designed gRNAs. During the preparation of our 

manuscript, Vojta et al. also reported that dCas9 fused with Dnmt3a can be used to 

methylate two human gene promoters (Vojta et al., 2016), and Xu et al. and Choudhury et al. 

reported that dCas9 fused with Tet1 can be used to demethylate gene promoters (Choudhury 

et al., 2016; Xu et al., 2016). Therefore, these dCas9-Dnmt3a/Tet1 tools will be useful to 

gain insight into the functional significance of DNA methylation in diverse biological 

processes such as gene expression, cell fate determination, and organization of high-order 

chromatin structures.

Methods and Resources (6 sub-sections)

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by the 

corresponding author Rudolf Jaenisch (jaenisch@wi.mit.edu)
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse lines and breeding strategies—Tet1 mutant mice were previously generated in 

our lab (Dawlaty et al., 2011). Tet1 KO mice in the study were maintained in a mixed 129 

and C57BL/6 background. To obtain Tet1 KO mice, male and female mice heterozygous for 

Tet1 were crossed. To obtain wild type mouse primary cortical neurons, male and female 

C57BL/6 mice were mated. IG-DMRGFP/Pat methylation reporter mouse line was generated 

as described (Ref: Stelzer et al., Parent-of-origin DNA methylation dynamics during mouse 

development, Cell Report, in press). Male mice with IG-DMRGFP/Pat reporter allele were 

crossed with C57BL/6 females to generate adult offsprings carrying the paternally 

transmitted allele for in vivo DNA methylation editing analysis. Mice were handled in 

accordance with institutional guidelines and approved by the Committee on Animal Care 

(CAC) and Department of Comparative Medicine (DCM) of Massachusetts Institute of 

Technology.

Mouse primary cortical neuron culture, EDU labeling and neural induction—
Dissociated E17.5 cortical neuron cultures were generated from wild type or Tet1 KO mouse 

embryos as described previously (Ebert et al., 2013). Briefly, E17.5 cortices were dissected 

in ice-cold 1 X HBSS (Gibco 14185-052) containing 1 x pen/strep (Gibco: 15140122), 1 x 

pyruvate (Gibco: 11360070) and 30 mM Glucose. Tissues were minced into around 1 mm3 

and dissociated with Papain neural tissue dissociation system (Worthington Biochemicals) 

following the manufacturer’s instruction. Cells were resuspended in NM5 media (%5 FBS 

(Hyclone), 2% B27 supplement (Gibco 17504044), 1 x pen/strep and 1 x glutamax I (Gibco 

35050-061)). 1 x 106 cells were plated per well of a 6-well plate coated with poly-D-lysine 

(PDL, Sigma). On DIV2, cells were treated with 2.5 uM AraC overnight (Sigma C-6645) to 

eliminate the excessive cell division of mitotic astrocytes and neural progenitor cells. 

Cultures were fed at DIV3 with fresh NM5 media and subsequently membrane depolarized 

with 50 mM KCl or infected with preferred lentivirus. We started the treatment at the very 

beginning of the in vitro culture so the step of AP5 and TTX (tetrodotoxin) treatment to 

silence basal activity in the culture before KCl treatment was omitted. For EDU labeling, 

primary neuronal culture were treated with EDU at a final concentration of 10 uM for 24 

hours followed by Click-it EDU labeling procedure according to the manufacturer’s 

instruction (Thermo Fisher Scientific). Cells were fixed for immunohistochemical analysis, 

lysed in Trizol to extract total RNA for RT-qPCR or lysed to extract DNA for bisulfite 

sequencing analysis.

METHOD DETAILS

Plasmid design and construction—PCR amplified Tet1 catalytic domain from 

pJFA344C7 (Addgene plasmid: 49236), Tet1 inactive catalytic domain from MLM3739 

(Addgene plasmid: 49959), or Dnmt3a from pcDNA3-hDNMT3A (Addgene plasmid: 

35521) were cloned in modified pdCas9 plasmid (Addgene plasmid: 44246) with BamHI 

and EcoRI sites. Then dCas9-NLS-Tet1 or dCas9-NLS-Dnmt3a were PCR amplified and 

cloned into FUW vector (Addgene plasmid: 14882) with AscI and EcoRI to package 

lentiviruses. NLS-dCas9-NLS-Tet1 was cloned by inserting annealed oligos (NLS) into 

FUW-dCas9-NLS-Tet1 with XbaI and AscI. The gRNA expression plasmids were cloned by 

inserting annealed oligos into modified pgRNA plasmid (Addgene plasmid: 44248) with 
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AarI site. The PiaggyBac-dCas9-Tet1 and -dCas9-Dnmt3a were cloned by ligation of PCR-

amplified dCas9-NLS-Tet1 or dCas9-NLS-Dnmt3a from FUW constructs with modified 

PiggyBac transposon vector (Wilson et al., 2007) with NheI and EcoRI. All constructs were 

sequenced before transfection. Primer information for gRNA design and construction is 

listed in Supplemental Table S2. Related plasmids have been deposited into Addgene 

plasmid database. TALE-Dnmt3a construct targeting p16 locus is a gift from Dr. Klaus 

Kaestner, and TALE-Tet1 targeting RHOXF2 locus is from Addgene (Plasmid #49943). Full 

length protein sequences of dCas9-Dnmt3a and dCas9-Tet1CD and their mutants are listed 

in Supplemental Table S6.

Cell culture, lentivirus production, and stable cell line generation—Mouse 

embryonic stem cells (mESCs) were cultured on irradiated mouse embryonic fibroblasts 

(MEFs) with standard ESCs medium: (500 ml) DMEM supplemented with 10% FBS 

(Hyclone), 10 ug recombinant leukemia inhibitory factor (LIF), 0.1 mM β-mercaptoethanol 

(Sigma-Aldrich), penicillin/streptomycin, 1 mM L-glutamine, and 1% nonessential amino 

acids (all from Invitrogen). C3H10T1/2 cells were cultured in standard DEME medium with 

10% FBS. Lentiviruses expressing dCas9-Tet1, dCas9-Dnmt3a, and gRNAs were produced 

by transfecting HEK293T cells with FUW constructs or pgRNA constructs together with 

standard packaging vectors (pCMV-dR8.74 and pCMV-VSVG) followed by ultra-

centrifugation-based concentration. Virus titer (T) was calculated based on the infection 

efficiency for 293T cells, where T = (P*N) / (V), T = titer (TU/ul), P = % of infection 

positive cells according to the fluorescence marker, N = number of cells at the time of 

transduction, V = total volume of virus used. Note TU stands for transduction unit. To 

generate stable cell lines with integrated Doxycycline-inducible dCas9-Tet1 or dCas9-

Dnmt3a transgenes, PiggyBac-dCas9-Tet1 or -dCas9-Dnmt3a construct, with a helper 

plasmid expressing transposase, were transfected into C3H10T1/2 cell using X-tremeGENE 

9 transfection reagent (Roche) or into mESCs cells using Xfect transfection reagent 

(Clontech), according to the provider’s protocol. Stably integrated cells were selected with 

G418 (400 ug/ml) for 10 days. Adult mouse fibroblasts were derived from tails of IG-

DMRGFP/Pat reporter mice. Briefly, ~ 2 cm-long mouse tail was obtained from 3 month old 

mouse carrying paternally transmitted IG-DMR-Snrpn-GFP methylation reporter, and 

sterilized by 70% EtOH. ~ 2 mm x 2 mm minced tail pieces were digested with 5 ml of 

1mg/ml Collagenase IV at 37°C for 90 min in a 15 ml Falcon tube. 5 ml MEF medium were 

added into the tube to terminate the digestion. Dissociated cells were extruded through a 40 

um cell strainer with gentle grind using a syringe plug. Cells were then collected and 

cultured for viral infection. Cells were analyzed 3 days post-infection in this study.

Viral infection of mice and tissue sample preparation—Mice were infected with 

appropriate lentiviral cocktails in accordance with institutional guidelines and approved by 

the Committee on Animal Care (CAC) and Department of Comparative Medicine (DCM) of 

Massachusetts Institute of Technology. Specifically, to infect mouse skin, lentiviruses 

expressing dCas9-Tet1 with sc gRNA, an inactive mutant of dC-dT with target gRNAs, and 

dCas9-Tet1 with target gRNAs were delivered by Hamilton syringe into multiple dermal 

sites on the ventral side of the deeply anesthetized mouse carrying the Paternal IG-DMRGFP 

reporter allele (Fig S7D). To infect mouse brain, various lentiviral mixtures were delivered 
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by stereotaxic setup (Leica BIOSYSTEMS, BenchMark Digital Stereotaxic with Manual 

Fine Drive) into the following locations (relative to the Franklin and Paxinos mouse brain 

atlas) of the deeply anesthetized mouse carrying the paternal IG-DMRGFP/Pat reporter allele 

(Fig 7D): dCas9-Tet1 with sc gRNA (A-P 0.70mm, M-L 1.50mm, D-V 1.50mm), an inactive 

mutant of dC-dT with Snrpn gRNAs (A-P −1.90mm, M-L −1.50mm, D-V 1.50mm), and 

dCas9-Tet1 with Snrpn gRNAs (A-P −1.90mm, M-L 1.50mm, D-V 1.50mm). The titers for 

dC-T/dC-dT and gRNA lentiviruses are 1.2 x 104 TU/ul and 1.2 x 105 TU/ul respectively. 

Mice were sacrificed 3 days after infection. The animals were fixed by transcardial perfusion 

with 4% paraformaldehyde (PFA)/PBS. Fixed skin pads and brain samples were dissected 

and post fixed with 4% paraformaldehyde (PFA)/PBS overnight at 4 °C. The brain samples 

were sectioned with a vibratome (Leica VT1100) at 150 um thickness and the skin samples 

were sectioned with a cryostat (Leica) at 10 um thickness followed by immunohistochemical 

analysis. For vibratome sectioning, tissues were embedded in 3% agarose gel. For 

cryosectioning, tissues were equilibrated in 30% sucrose/PBS prior to embedding in Optimal 

Cutting Temperature (OCT) compound.

Immunohistochemistry, microscopy, and image analysis—Neurons, HEK293T 

cells, mouse ES cells and C3H10T1/2 cells were fixed with 4% paraformaldehyde (PFA) for 

10 min at room temperature. Cells were permeablized with PBST (1 x PBS solution with 

0.1% Triton X-100) before blocking with 10% Normal Donkey Serum (NDS) in PBST. 

Cells were then incubated with appropriately diluted primary antibodies in PBST with 5% 

NDS for 1 hours at room temperature or 12 hours at 4 °C, washed with PBST for 3 times at 

room temperature and then incubated with desired secondary antibodies in TBST with 5% 

NDS and DAPI to counter stain the nuclei. Cells were washed 3 times with PBST before 

mounted onto slides with Fluoromount G (SouthernBiotech). Immunostaining procedures 

for tissue sections were previously described (Wu et al., 2014a). Briefly, sections were 

permeablized with PBST (1 x PBS solution with 0.5% Triton X-100) for 1 hour at RT before 

blocking with 10% Normal Donkey Serum (NDS) in PBST. Slices were then incubated with 

desired primary antibodies in PBST with 5% NDS for 24 hours at 4 °C, washed with PBST 

for 3 times at room temperature and then incubated with secondary antibodies in TBST with 

5% NDS and DAPI to counter stain the nuclei. Sections were washed 3 times with PBST 

before slide mounting. The following antibodies were used in this study: Chicken anti-GFP 

(1:1000, Aves Labs), Mouse anti-Cas9 (7A9, 1:1000, Active Motif), Rabbit anti-BDNF 

(1:1000, Thermo Fisher), Chicken anti-MAP2 (1:1000, Encor Biotech), Mouse anti-MAP2 

(1:1000, Sigma-Aldrich), Mouse anti-Tuj1 (1:1000, Biolegend), Rabbit anti-MyoD (C-20, 

1:1000, Santa Cruz Biotechnology), Mouse anti-MHC (MF20, 1:1000, R&D systems), 

Mouse anti-MyoG (F5G, 1:1000, Thermo Fisher). Images were captured on a Zeiss LSM710 

confocal microscope and processed with Zen software, ImageJ/Fiji, and Adobe Photoshop. 

For imaging based quantification, unless otherwise specified, 3–5 representative images 

were quantified and data were plotted as mean ± SD with Excel or Graphpad.

FACS analysis—To assess the proportion of GFP and/or Cherry positive cells after 

treatment, the treated cells were dissociated with trypsin and single-cell suspensions were 

prepared in growth medium subject to a BD FACSAria cell sorter according to the 
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manufacture’s protocol at the Whitehead Institute Flow Cytometry Core. Data were 

analyzed with FlowJo software.

Fibroblast-to-myoblast conversion assay—Myoblast conversion assay was described 

previously (Constantinides et al., 1977). Briefly, C3H10T1/2 mouse embryonic fibroblast 

cells were plated as 1 x 104 cells per well in 6-well plate, and then infected with lentiviruses 

expressing dCas9-Tet1 and target gRNAs. 24-hour post infection, cells were treated with 

vehicle control (HEPES buffer) or 5-Azacytidine (1 uM) for 24-hour, and harvested at 

different time points for subsequently analysis. DMRs upstream of mouse MyoD gene were 

defined based on human/mouse genome homology (Schultz et al., 2015).

Western blot—HEK293T cells were transfected with various constructs by X-tremeGENE 

9 reagent following manufacturer’s protocol. 2-day post transfection, cells were lysed by 

RIPA buffer with proteinase inhibitor (Invitrogen), and subject to standard immunoblotting 

analysis. Mouse anti-Cas9 (1:1000, Active Motif) and mouse α-Tubulin (1:1000, Sigma) 

antibodies were used.

RT-qPCR—Cells were harvested using Trizol followed by Direct-zol (Zymo Research), 

according to manufacturer’s instructions. RNA was converted to cDNA using First-strand 

cDNA synthesis (Invitrogen SuperScript III). Quantitative PCR reactions were prepared with 

SYBR Green (Invitrogen), and performed in 7900HT Fast ABI instrument. Primer 

information for RT-qPCR is listed in Supplemental Table S3.

ChIP assay—ChIP experiment was performed as previously described (Dowen et al., 

2014). Briefly, cells were cross-linked by 1% formaldehyde in the medium for 10 min in 

room temperature, and then quenched by adding 0.125 M Glycine for 5 min. Collected cells 

were washed with PBS twice, and then re-suspended in 3.5 ml of sonication buffer. 

Sonication was performed for 10 cycles with 0.5 min pulse on and 1 min rest, and 24 watts 

in ice-water mixture. Then cell lysate was spun down with 14,000 x rpm for 10 min at 4 °C. 

50 ul of supernatant was saved as input for gDNA. 10 ul of anti-CTCF antibody (EMD 

Millipore: 07729) or anti-Cas9 antibody (Active Motif) was added and incubate overnight at 

4 °C. 50 ul protein G dynabeads was added into antibody-cell lysate mixture and incubate 

overnight at 4 °C. Then beads were washed with sonication buffer, sonication buffer with 

high salt (500 mM NaCl), LiCl wash buffer, and TE buffer. Bound protein-DNA complex 

was eluted from beads by incubation in a 65 °C oven for 15 min, and then reverse cross-

linked under 65 °C over-night. The bound DNA was purified with Qiagen QIAquick PCR 

Purification Kit, and then subject to qPCR analysis or sequencing.

ChIP-seq data analysis—Sequencing data was analyzed with a previously reported 

method (Wu et al., 2014b). Reads are demultiplexed and the first 25 bases are mapped to 

mouse genome (mm10) using STAR (Dobin et al., 2013), requiring unique mapping 

allowing one mismatch. Mapped reads are collapsed and the same number of reads (about 

15 million) are randomly sampled from each sample to match sequencing depth. Peaks are 

called using MACS (Zhang et al., 2008) with default settings. For each sample, the other five 

samples are each used as a control and only peaks called over all five controls are defined as 

candidate peaks. Candidate peaks are filtered by fold of enrichment over background and the 

Liu et al. Page 15

Cell. Author manuscript; available in PMC 2017 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



threshold is chosen such that no peaks pass this threshold in the four control samples (input, 

mock IP, dCas9 alone, and scrambled gRNA). Note that six candidate peaks in input mapped 

to 45S rRNA and mitochondria DNA are excluded from the analysis. Raw data is available 

in the following link: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

token=ktohskmgnhudhud&acc=GSE83890

Bisulfite Conversion, PCR and Sequencing—Bisulfite conversion of DNA was 

established using the EpiTect Bisulfite Kit (Qiagen) following the manufacturer’s 

instructions. The resulting modified DNA was amplified by first round of nested PCR, 

following a second round using loci specific PCR primers (Supplemental Table S3). The first 

round of nested PCR was done as follows: 94 °C for 4 min; 55 °C for 2 min; 72 °C for 2 

min; Repeat steps 1–3 1 X; 94 °C for 1 min; 55 °C for 2 min; 72 °C for 2 min; Repeat steps 

5–7 35X; 72 °C for 5 min; Hold 12 °C. The second round of PCR was as follows: 95 °C for 

4 min; 94 °C for 1 min; 55 °C for 2 min; 72 °C for 2 min; Repeat steps 2–4 35 X; 72 °C for 

5 min; Hold 12°C. The resulting amplified products were gel-purified, sub-cloned into a 

pCR2.1-TOPO-TA cloning vector (Life technologies), and sequenced. Primer information 

for bisulfite sequencing is listed in Supplemental Table S4.

Locus-specific TAB-seq—TAB-Seq was performed as described previously (Yu et al., 

2012). Briefly, 1 ug of genomic DNA from treated mouse cortical neuron was glucosylated 

in a solution containing 50 mM HEPES buffer (pH 8.0), 25 mM MgCl2, 100 ng/ml model 

DNA, 200 mM UDP-Glc, and 1 mM bGT at 37C for 1 hr. After the reaction, the DNA was 

column purified. The oxidation reactions were performed in a solution containing 50 mM 

HEPES buffer (pH 8.0), 100 mM ammonium iron (II) sulfate, 1 mM a-ketoglutarate, 2 mM 

ascorbic acid, 2.5 mM DTT, 100 mM NaCl, 1.2 mM ATP, 15 ng/ml glucosylated DNA, and 

3 mM recombinant mTet1. The reactions were incubated at 37C for 1 hr. After proteinase K 

treatment, the DNA was column purified and then applied to EpiTect Bisulfite Kit 

(QIAGEN) following the supplier’s instruction. The resulting modified DNA was amplified 

by first round of nested PCR, following a second round using loci specific PCR primers 

(Supplemental Table S3). The resulting amplified products were gel-purified, sub-cloned 

into a pJET cloning vector (Life technologies), and sequenced. Primer information for 

bisulfite sequencing is listed in Supplemental Table S4.

Chromosome Conformation Capture (3C) assay—5 x 106 mESCs were fixed with 

1% formaldehyde for 20 min at room temperature, and the reaction was quenched by 0.125 

M glycine for 5 min at room temperature. Cross-linked cells were collected and washed with 

1 ml ice cold PBS. Cell pellet was re-suspended with 550 µl lysis buffer (10 mM Tris-HCl 

with pH 8.0, 10 mM NaCl, and 0.2% IGEPAL CA630 with proteinase inhibitor), and 

incubated on ice for 20 min. Cell pellet was then washed twice with 1 x NEB buffer 2 (NEB, 

B7002S), then incubated with 50 µl 0.5% SDS for 10 min at 62 °C. After heating, 145 µl 

H2O and 25 µl 10% Triton X-100 were added into the mixture and incubate for 15 min at 

37 °C. 25 µl 10 x NEB buffer 2 and 100 U BglII (NEB, R0144S) were added to digest 

chromatin over night at 37 °C. The digest reaction was inactivated by incubation for 20 min 

at 62 °C. Then 713 µl H2O, 120 µl 10 x T4 DNA ligase buffer (NEB, B0202), 100 µl 10% 

Triton X-100, 12 µl 10 mg/ml BSA, and 5 µl T4 DNA ligase (NEB, M0202) were added and 

Liu et al. Page 16

Cell. Author manuscript; available in PMC 2017 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=ktohskmgnhudhud&acc=GSE83890
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=ktohskmgnhudhud&acc=GSE83890


incubated for 22 hour at 16 °C. The chromatin was reverse cross-linked, and DNA was 

purified by phenol:chloroform:isoamyl alcohol (Sigma, P3803) extraction. The 3C 

interactions at the miR290 and Pou5f1 loci (Fig 6A and 6C) were analyzed by quantitative 

real-time PCR using custom Taqman probes. The amount of DNA in the qPCR reactions 

was normalized across 3C libraries using a custom Taqman probe directed against the Actb 
locus. Primer and probe sequences are listed in Supplemental Table 5.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical parameters including the exact value of n, the definition of center, dispersion and 

precision measures (mean ± SEM) and statistical significance are reported in the Figures and 

the Figure Legends. Data is judged to be statistically significant when p < 0.05 by two-tailed 

Student’s T-Test or 2-way ANOVA, where appropriate.

DATA AND SOFTWARE AVAILABILITY

Raw data files for the ChIP-seq analysis have been deposited in the NCBI Gene Expression 

Omnibus under accession number GSE83890.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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highlights

dCas9-Tet1 and -Dnmt3a enable precise editing of CpG methylation in vitro 
and in vivo

Targeted demethylation of BDNF promoter IV activates BDNF in neurons

Targeted enhancer demethylation facilitates MyoD-induced muscle cell 

reprogramming

Targeted de novo methylation of CTCF motifs alters CTCF-mediated 

chromatin loops
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In brief

DNA methylation patterns can be specifically altered in mammalian cells using CRISPR/

Cas9-based approaches.
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Figure 1. 
Activation of the Dazl-Snrpn-GFP reporter by dCas9-Tet1.

(A) Upper panel: schematic representation of a catalytic inactive mutant Cas9 (dCas9) fused 

with Tet1 for erasing DNA methylation, and with Dnmt3a for de novo methylation of 

specific sequences. Lower panel: an optimized dCas9-effector construct and a guide RNA 

construct with puro and Cherry cassettes.

(B) Schematic representation of targeting the Snrpn promoter region by dCas9-Tet1 with 

specific gRNAs to erase methylation and activate GFP expression.
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(C) Dazl-Snrpn-GFP mESCs were infected with lentiviruses expressing dCas9-Tet1 (dC-T) 

with a scrambled gRNA (sc gRNA) or 4 gRNAs targeting the Snrpn promoter region (target 

gRNA). Percentage of GFP positive cells were calculated by flow cytometric analysis of 

these cells 3-day post infection, and shown as the mean percentages of GFP positive cells ± 

SD of two biological replicates. Note that the percentages of GFP-positive cells are 

expressed as the fraction of infected Cherry-positive cells.

(D) Left, representative fluorescence images of the sorted Cherry positive cells in C after 

culturing for 1 week. Scale bar: 250 um. Right, percentages of GFP positive colonies were 

quantified, and shown as the mean percentages of GFP positive cells ± SD of two biological 

replicates.

(E) Bisulfite sequencing of cells described in C.

(F) Methylation levels of individual CpGs in the Snrpn promoter region and the adjacent 

Dazl locus. Shown is the mean percentage ± SD of two biological replicates. See also Figure 

S1 and S2.
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Figure 2. 
Silencing of the Gapdh-Snrpn-GFP reporter by dCas9-Dnmt3a.

(A) Schematic representation of targeting the Snrpn promoter region by dCas9-Dnmt3a with 

specific gRNAs to methylate the promoter and silence GFP expression.

(B) Gapdh-Snrpn-GFP mESCs were infected with lentiviruses expressing dCas9-Dnmt3a 

(dC-D) with a scrambled gRNA (sc gRNA) or gRNAs targeting the Snrpn promoter region 

(target gRNA). Percentage of GFP negative cells was calculated by flow cytometric analysis 

3-days after infection, and is shown as the mean percentages of GFP negative cells ± SD of 

two biological replicates. Note that the percentages of GFP-positive cells are expressed as 

the fraction of infected Cherry-positive cells.

(C) Left, representative fluorescence images of the sorted Cherry-positive cells in B after 

culturing for 1 week. Scale bar: 250 um. Right, percentages of GFP negative colonies were 
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quantified, and are shown as the mean percentages of GFP negative cells ± SD of two 

biological replicates.

(D) Bisulfite sequencing of cells described in B.

(E) Methylation levels of individual CpGs in the Snrpn promoter region and the adjacent 

Gapdh locus. Shown is the mean percentage ± SD of two biological replicates.

(F) Gapdh-Snrpn-GFP mESCs with Doxycycline-inducible dCas9-Dnmt3a were infected 

with lentiviruses expressing gRNAs targeting the Snrpn promoter region in the presence of 

Doxycycline (2 ug/ml). Percentages of GFP negative cells were calculated by flow 

cytometric analysis 3-day after infection, and are shown as the mean percentages of GFP 

negative cells ± SD of two biological replicates. Note that the percentages of GFP-positive 

cells are expressed as the fraction of infected Cherry-positive cells.

(G) Left, representative fluorescence images of the sorted Cherry-positive population in F 

after culturing for 1 week with or without Doxycycline. Scale bar: 250 um. Right, 

percentages of GFP negative colonies were quantified, and are shown as the mean 

percentages of GFP negative cells ± SD of two biological replicates.

(H) Methylation level of each individual CpG in the Snrpn promoter region and the adjacent 

Gapdh locus from cells in G. Shown is the mean percentage ± SD of two biological 

replicates. See also Figure S2.
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Figure 3. 
Targeted demethylation of BDNF promoter IV by dCas9-Tet1 to activate BDNF in neurons.

(A) Schematic representation of targeting BDNF promoter IV by dCas9-Tet1 (dC-T) with 

specific gRNAs to erase methylation and activate BDNF expression.

(B) Mouse cortical neurons cultured in vitro for 3 days (DIV3) were infected with 

lentiviruses expressing dC-T with or without gRNAs targeting the BDNF promoter IV, or a 

catalytic dead form of Tet1 (dC-dT) with BDNF gRNAs for 2 days, and then treated with or 
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without KCl (50 mM) for 6 hours before harvesting for RT-qPCR analysis. Bars are mean ± 

SD of three biological replicates.

(C) Representative confocal images for BDNF induction in B. Stained in red for MAP2 (top 

two panels) or Cherry (bottom two panels), green for BDNF, blue for DAPI and grey for 

dCas9. Scale bar: 50 um.

(D) Bisulfite sequencing of neurons in C.

(E) Methylation levels of each individual CpGs in the BDNF promoter IV region. Shown is 

the mean percentage ± SD of two biological replicates.

See also Figure S4.
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Figure 4. 
Targeted demethylation of the MyoD distal enhancer by dCas9-Tet1 to facilitate conversion 

of fibroblasts to myoblasts.

(A) Schematic representation of targeting the MyoD distal enhancer (DE) region in DMR-5 

by dCas9-Tet1 (dC-T) with specific gRNAs.

(B) C3H10T1/2 cells were infected with lentiviruses expressing dC-T with target gRNAs, or 

a catalytic dead form of Tet1 (dC-dT) with target gRNAs for 2 days. Cherry positive cells 
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were FACS sorted for RT-qPCR analysis. Bars represent mean ± SD of three experimental 

replicates.

(C) Bisulfite sequencing of cells in B.

(D) Methylation level of individual CpGs in the MyoD DE region. Shown is the mean 

percentage ± SD of two biological replicates.

(E) Representative confocal images for C3H10T1/2 cells on day 14 in the fibroblast-to-

myoblast conversion assay. Stained in green for MyoD, magenta for MHC and blue for 

DAPI. Scale bar: 200 um.

(F) Quantification of MyoD positive cell ratio 14-day post infection with lentiviruses 

expressing dC-T alone, dC-T or dC-dT with gRNAs targeting DMR-5.

(G) Distribution profile of MHC positive cell clusters based on nuclei number per MHC+ 

cluster (grouped as 2–5, 6–10, 11–20 and >20 nuclei per MHC+ cluster) 14-days post 

infection.

(H) Quantification of myotube density in MHC positive clusters with more than 2 or 5 nuclei 

at 14-days after infection. Data are quantified from 3–5 representative images for F-H. Bars 

represent mean ± SD.

See also Figure S5.
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Figure 5. 
Targeted methylation of CTCF binding sites.

(A) Schematic representation of targeting the CTCF binding site by dCas9-Dnmt3a with 

specific gRNAs to induce de novo methylation, blocking CTCF recruitment, and opening 

CTCF loops which alters gene expression in the adjacent loop.

(B) Schematic representation of CTCF target-1 (miR290 locus) with super-enhancer and 

miR290 in the loop, AU018091 gene in the left neighboring loop, and Nlrp12 gene in the 

right neighboring loop (close to the targeted CTCF binding site). The Myadm gene is in the 
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adjacent loop right to the loop containing Nlrp12. The super-enhancer domain is indicated as 

a red bar. The targeted CTCF site is highlighted with a box. ChIP-seq binding profiles (reads 

per million per base pair) for CTCF in black and H3K27Ac (super-enhancer) in red, and 

methylation track in yellow with DMR in blue are also shown.

(C–E) Doxycycline-inducible dCas9-Dnmt3a mESCs were infected with lentiviruses 

expressing a scrambled gRNA or CTCF target-1 gRNAs. Cherry-positive cells were FACS 

sorted, cultured in the presence of Doxycycline, and then harvested for RT-qPCR analysis in 

C, for bisulfite-sequencing analysis in D&E. Bars represent mean ± SD of three 

experimental replicates.

(F) Schematic representation of CTCF target-2 with super-enhancer and Pou5f1 gene in this 

loop as in B.

(G–I) The same set of experiments were performed as described in C-E for CTCF target-2, 

and cells were harvested for RT-qPCR analysis as in C and for bisulfite sequencing as in D 

and E. Bars represent mean ± SD of three experimental replicates.

See also Figure S6.
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Figure 6. 
Targeted methylation of CTCF binding sites to manipulate CTCF loops.

(A) Quantitative Chromosome Conformation Capture (3C) analysis of cells described in Fig 

5C at the miR290 locus. The super-enhancer domain is indicated as a red bar. The targeted 

CTCF site is highlighted with a box. Arrows indicate the chromosomal positions between 

which the interaction frequency was assayed. Asterisk indicates the 3C anchor site. ChIP-seq 

binding profiles (reads per million base pair) for CTCF in black and H3K27Ac (super-

enhancer) in red, and methylation track in yellow with DMR in blue are also shown. The 

interaction frequencies between the indicated chromosomal positions and the 3C anchor 

sites are displayed as a bar chart (mean ± SD) on the bottom panel. qPCR reactions were run 

in duplicates, and values are normalized against the mean interaction frequency in cells with 

a scrambled gRNA. (p < 0.05 for all three regions; Student’s t test, ns stands for non-

significant, NC stands for negative control.)
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(B) Anti-CTCF ChIP experiment was performed using cells in A followed by quantitative 

PCR analysis. Bars represent mean ± SD of three experimental replicates.

(C) Quantitative Chromosome Conformation Capture (3C) analysis of cells described in Fig 

5G at the Pou5f1 locus as in A.

(D) Anti-CTCF ChIP experiment was performed using cells in C followed by quantitative 

PCR analysis. Bars represent mean ± SD of three experimental replicates.
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Figure 7. 
Targeted ex vivo and in vivo DNA methylation editing by dCas9-Tet1 to activate a silenced 

GFP reporter.

(A) Schematic diagram illustrating the experimental procedure for the ex vivo activation of a 

silenced GFP reporter in mouse fibroblast cells. Mouse tail fibroblast cells were derived 

from a genetically modified mouse line carrying a paternal IG-DMR-Snrpn-GFP allele (IG-

DMRGFP/Pat) in the Dlk1-Dio3 locus. The IG-DMR-Snrpn promoter on the paternal allele is 

hypermethylated so that the GFP reporter is constitutively silenced. The cultured fibroblast 
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cells were infected with lentiviral vectors expressing dCas9-Tet1 and gRNAs to demethylate 

the Snrpn promoter and activate the GFP reporter.

(B) Representative immunohistochemical images of IG-DMRGFP/Pat fibroblasts infected 

with lentiviruses expressing dCas9-Tet1 (dC-T) with a sc gRNA, an inactive form of dCas9-

Tet1 (dC-dT) with Snrpn target gRNA, or dCas9-Tet1 with Snrpn target gRNA. Stained in 

red for Cherry, green for GFP and DAPI for nuclei. Scale bar: 100 um.

(C) Quantification of the percentage of IG-DMRGFP/Pat mouse fibroblast cells with GFP 

activation in Cherry (gRNAs) positive cells. Bars represent mean ± SD of three experimental 

replicates.

(D) Schematic diagram illustrating the experimental procedure for in vivo activation of GFP 

reporter in the IG-DMRGFP/Pat mouse brain. Lentiviral vectors expressing dC-T and sc 

gRNA, dC-dT and Snrpn target gRNAs, and dC-T and Snrpn target gRNAs were delivered 

with stereotaxic microinjection approach. Brains were sliced and analyzed by 

immunohistochemical approaches.

(E) Representative confocal micrographs for the IG-DMRGFP/Pat mouse brains infected with 

dC-T and sc gRNA, dC-dT and Snrpn target gRNAs, and dC-T and Snrpn target gRNAs. 

Only dC-T with the target gRNAs activated the GFP expression. Scale bar: 100 um.

(F) Confocal micrograph of the boxed area in E. Stained in red for Cherry, green for GFP 

and DAPI for nuclei in E and F. Scale bar: 25 um.

(G–H) Quantification of the percentage of IG-DMRGFP/Pat cells with GFP activation in 

Cherry (gRNAs) positive cells in the in vivo lentiviral delivery experiment in the brain (G) 

and in the skin epidemis (H). Bars represent mean ± SD of more than four representative 

images from 2 animals.

See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-Cas9 (IF staining) Active Motif Cat#61577 (7A9-3A3)

Mouse monoclonal anti-Cas9 (ChIP) Active Motif Cat#61757 (8C1-F10)

Rabbit polyclonal anti-CTCF EMD Millipore Cat#07729

Chicken polyclonal anti-GFP Aves Labs Cat#GFP-1020

Rabbit polyclonal anti-BDNF Thermo Fisher SCIENTIFIC Cat#OSB00017W

Chicken polyclonal anti-MAP2 Encor Biotech Cat# CPCA-MAP2

Mouse monoclonal anti-MAP2 Sigma-Aldrich Cat#M2320

Mouse monoclonal anti-Tuj1 Biolegend Cat#MMS-435P

Rabbit polyclonal anti-MyoD (C-20) Santa Cruz Biotechnology Cat#sc-304

Mouse monoclonal anti-MHC (MF20) R&D systems Cat#MAB4470

Mouse monoclonal anti-MyoG (F5G) Thermo Fisher SCIENTIFIC Cat#MA5-11486

Chemicals

2-Hydroxyglutarate TRC Toronto Research Chemicals Cat#H942596

ABT-888 Selleck Cat#S1004

5-Aza-2’-deoxycytidine Sigma Aldrich Cat#A3656-5MG

Doxycycline hyclate Sigma Aldrich Cat#D9891-100G

Critical Commercial Assays

EpiTect Bisulfite Kit Qiagen Cat#59104

TAB-seq kit Wisegene Cat#K001

DNeasy Blood & Tissue Kit Qiagen Cat#69504

Zymoclean Gel DNA Recovery Kit Zymo Research Cat#D4002

DNA Clean & Concentrator-5 Zymo Research Cat#D4013

X-tremeGENE™ 9 DNA Transfection Reagent Sigma Aldrich Cat#6365809001

Xfect™ mESC Transfection Reagent Clontech Cat#631320

Direct-zol RNA Miniprep Zymo Research Cat#R2050

SuperScript III First-Strand Synthesis SuperMix Life Technologies Cat#18080400

Fast SYBR Green Master Mix Life Technologies Cat#4385618

Papain neural tissue dissociation system Worthington Biochemicals Cat#LK003150

Deposited Data

Raw data files for RNA sequencing NCBI Gene Expression Omnibus GSE83890

Experimental Models: Organisms/Strains

Mouse: C57Bl/6J Jackson Laboratories RRID:IMSR_JAX:000664

Mouse: B6; Tet1 KO mouse Dawlaty et al., 2011 N/A

Mouse: B6; Dlk1-Dio3 IG-DMR-Snrpn-GFP Stelzer et al., 2016 (in press) N/A

Experimental Models: Cell Lines

V6.5 mESC (C57BL/6 x 129S4/SvJae) Brambrink et al., 2006 N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Dazl-Snrpn-GFP V6.5 mESC Stelzer et al., 2015 N/A

Gapdh-Snrpn-GFP V6.5 mESC Stelzer et al., 2015 N/A

C3H10T1/2 cell line Constantinides et al., 1977 N/A

Recombinant DNA

dCas9-Tet/Dnmt This paper N/A

pgRNA This paper N/A

See “Plasmid design and construction” in METHOD DETAILS 
section

Sequence-Based Reagents

See Table S2, S3, S4, S4 for primer sequences This paper N/A

Software and Algorithms

MACS (ChIP-seq algorithms) Wu et al., 2014b http://liulab.dfci.harvard.edu/MACS/

ImageJ (Fiji) NIH http://imagej.net/Fiji
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