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Increased global transcription activity as a
mechanism of replication stress in cancer
Panagiotis Kotsantis1, Lara Marques Silva2, Sarah Irmscher2, Rebecca M. Jones1, Lisa Folkes3,

Natalia Gromak2 & Eva Petermann1

Cancer is a disease associated with genomic instability that often results from oncogene

activation. This in turn leads to hyperproliferation and replication stress. However, the

molecular mechanisms that underlie oncogene-induced replication stress are still poorly

understood. Oncogenes such as HRASV12 promote proliferation by upregulating general

transcription factors to stimulate RNA synthesis. Here we investigate whether this increase in

transcription underlies oncogene-induced replication stress. We show that in cells

overexpressing HRASV12, elevated expression of the general transcription factor TATA-box

binding protein (TBP) leads to increased RNA synthesis, which together with R-loop

accumulation results in replication fork slowing and DNA damage. Furthermore,

overexpression of TBP alone causes the hallmarks of oncogene-induced replication stress,

including replication fork slowing, DNA damage and senescence. Consequently, we reveal

that increased transcription can be a mechanism of oncogene-induced DNA damage,

providing a molecular link between upregulation of the transcription machinery and genomic

instability in cancer.
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C
ancer is a disease of genomic instability, characterized by
high mutation rates and genomic rearrangements that
ultimately drive aggressiveness and resistance to therapy1.

One of the mechanisms proposed to cause genomic instability in
cancer is replication stress, which occurs when DNA replication
fork progression in S phase slows or stalls. This leads to collapse
of forks into DNA double-strand breaks (DSBs), as well as
incomplete sister chromatid separation in the following mitosis2.
Markers of spontaneous replication stress are found in tumour
samples and cells expressing active oncogenes, and replication
stress promotes chromosomal instability, the most common form
of genomic instability in sporadic cancers3–6. Spontaneous
replication stress is therefore increasingly regarded as a central
feature of cancer cells and there is much interest in specifically
targeting this phenotype for cancer therapy7. However, progress
in this field is hindered, because the molecular mechanisms
underlying spontaneous replication stress in cells are still largely
unknown. This impairs our ability to investigate replication stress
in vitro and in vivo, and to identify potential biomarkers or
therapeutic targets.

How can mechanisms of spontaneous replication stress be
identified? The overexpression of oncogenes such as RAS, MOS,
MYC, CDC25A or CYCLIN E is sufficient to induce replication
stress in cultured cells4,5,8–11. These oncogenes all act in the
growth factor signalling pathways that stimulate proliferation by
promoting cell growth and division. Molecular changes associated
with increased proliferation are therefore prime candidates for
causing replication stress. Indeed, we and others have reported
that CYCLIN E-induced replication stress results from
accelerated S-phase entry and increased replication initiation
during S phase9,12. So far, however, little attention has been paid
to the fact that oncogenes such as RAS and MYC do not only
activate the cell cycle machinery but also promote cell
growth through the activation of transcription and protein
translation13–16. Overexpressed c-MYC acts as a ‘universal
amplifier’, stimulating transcription by all three RNA
polymerases14,17,18. Oncogenic RAS promotes transcription
through the mitogen-activated protein kinase extracellular
signal-regulated kinase (ERK), which activates transcription
factors such as TIFIA (RRN3), UBTF, TIFIIIB (BRF1) and
TATA-box binding protein (TBP)14,15,19, and can also promote
transcription through other factors such as TERT20. Moreover,
components of the general transcription machinery itself are
found mutated, differentially expressed and deregulated across a
variety of cancers14,21.

Upregulation of transcription in cancer cells has the potential
to be a direct cause of replication stress as interference between
transcription and replication leads to replication fork slowing and
genomic instability22,23. This can result from direct collisions or
torsional stress between the two active protein complexes24.
Another important source of replication stress is the collision of
the replication machinery with RNA–DNA hybrids (R-loops)
where the nascent RNA has re-annealed with the template25.
Deregulated transcription is a common feature of cancers, but its
importance for replication stress and consequent genomic
instability has not been examined.

Here we use HRASV12 overexpression5,26 to investigate
whether the oncogene-induced increase in transcription is a
mechanism of endogenous replication stress. We report that
increased transcription activity in cells expressing HRASV12

causes replication stress, as high levels of RNA synthesis and
transcription intermediates interfere with replication fork
progression. Replication stress in these cells depends on R-loop
accumulation and on increased expression of the general
transcription factor TBP. Importantly, overexpression of TBP
alone induces replication stress and genomic instability. Our data

suggest that increased transcription activity is a mechanism
contributing to replication stress in cancer.

Results
HRASV12 increases nascent RNA synthesis and R-loop formation.
To investigate whether increased transcription activity con-
tributes to oncogene-induced replication stress, we used
immortalized human fibroblasts that have been stably transfected
with pBabe-HRASV12-ERTAM, to express tamoxifen-inducible
HRASV12 (BJ-hTert HRASV12ER-TAM)27. HRASV12-ERTAM has
been well characterized as a system for inducing oncogenic
RAS26,28,29. Addition of 4-hydroxytamoxifen (4OHT) led
to HRASV12 accumulation, which activated mitogen-activated
protein kinase signalling as evidenced by ERK1/2
phosphorylation (Fig. 1a). Cells proliferated slightly faster for
up to 6 days followed by growth arrest, which was previously
shown to result from DNA damage-induced apoptosis
and senescence4,5 (Supplementary Fig. 1a–e). When using
immortalized BJ fibroblasts that were not expressing 4OHT-
inducible HRASV12, 4OHT treatment did not affect any of the
phenotypes investigated in this study (Supplementary Fig. 1f–i).

First, we investigated the effect of oncogenic HRAS on
global transcription activity. For this, we quantified nascent
RNA synthesis using nuclear incorporation of the modified
RNA precursor 5-ethynyluridine (EU) for 1 h (Fig. 1b,c). RNA
synthesis increased rapidly after HRASV12 induction and was
elevated more than twofold after 48 and 72 h HRASV12 induction
(Fig. 1d). RNA synthesis after HRASV12 induction was higher
than the highest activity observed in control cells (Fig. 1d),
arguing against changes in cell cycle distribution as the sole
explanation for the increase. Seventy-two hours of HRASV12

induction was used for most subsequent experiments.
We next used the S9.6 antibody that detects RNA/DNA

hybrids30,31, to test whether R-loop formation was increased in
HRASV12-overexpressing cells. First, we performed slot blot
analysis of isolated genomic DNA32, which revealed a threefold
increase in R-loops after 72 h HRASV12 induction (Fig. 1e,f). The
S9.6 signal could be removed by treatment with recombinant
RNase H, supporting that it was specific to R-loops. We then used
S9.6 immunoprecipitation of RNA/DNA hybrids from cells
(DNA immunoprecipitation (DIP))33 after 72 h HRASV12

induction, to investigate the distribution of R-loops across RAS
target versus control genes (Fig. 2a–f). We used quantitative PCR
(qPCR) to quantify R-loop distribution on DUSP6, SPRY2 and
C-FOS, genes that are upregulated by activated RAS (Fig. 2a–c
and Supplementary Fig. 2a). We observed an increased R-loop
formation on the promoter-proximal and selected intron regions
of all three genes. DIP analysis of C-FOS showed that in line with
previously described R-loop accumulation in actively transcribed
genes33, R-loops were significantly increased over the transcribed
regions of the gene (Fig. 2c and also see Supplementary Table 1
for PCR primer sequences). We also quantified R-loop formation
on non-RAS target control genes GAPDH1, ACTB (b-ACTIN)
and ACTG (g-ACTIN). We observed no increase in R-loops
across any of these genes (Fig. 2d–f). RNase H treatment
confirmed that DIP specifically detected R-loops (Fig. 2a–f).
RNase A treatment confirmed that DIP signal was not due
to annealing of free RNA species to DNA during sample
preparation or to S9.6 antibody recognizing double-stranded
RNA (Supplementary Fig. 2b–e). These data support that
stimulation of transcription by HRASV12 results in increased
R-loop formation.

HRASV12 causes replication stress and G1 53BP1 foci.
HRASV12 overexpression caused replication fork slowing after
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48 h, indicative of replication stress (Fig. 3a–c) and induced
phosphorylation of replication stress response factors RPA32
(serine 33) and CHK1 (serine 345) (Fig. 3d,e). These modifica-
tions were already evident at 24 h HRASV12 induction, which
may also reflect the proposed role for RPA and ATR in the
transcription stress response34. As expected, fork slowing was
associated with nuclear foci formation of DNA damage markers
gH2AX and 53BP1 (Fig. 3f,g). One consequence of replication
fork slowing is mitotic entry with under-replicated DNA, which
leads to micronuclei formation and appearance of 53BP1 bodies
in the following G1 phase35,36. Accordingly, 53BP1 foci increased
after 4 days HRASV12 induction and were mostly found in
G1 cells (Fig. 3h). Similarly, micronuclei formation peaked at
4 days HRASV12 induction (Fig. 3i). This suggests that HRASV12-
induced DNA damage requires mitotic progression, as was
previously reported for CYCLIN E10. Four days of HRASV12

induction was used for subsequent investigation of 53BP1 foci
formation.

Transcription promotes HRASV12-induced replication stress.
To test whether increased transcription causes replication stress
in cells harbouring HRASV12, we transiently inhibited RNA
synthesis using small molecule inhibitors before measuring
replication fork progression. To minimize effects on gene
expression, incubations were kept short at 100 min for triptolide
and 5,6-dichloro-1-b-D-ribofuranosyl-1H-benzimidazole (DRB)
and 4 h for a-amanitin (Fig. 4a). These treatments inhibited
ongoing RNA synthesis (Fig. 4b) but did not affect protein levels
of HRASV12 or levels of proteins with short half lives such as
CYCLIN B1 and p53 (Supplementary Fig. 3a,b). All three
transcription inhibitors increased replication fork speeds specifi-
cally in the presence of HRASV12 (Fig. 4c–f). Although such short
incubations with transcription inhibitors may not be sufficient
to reverse all effects of transcription, these data suggest that
RAS-induced replication stress is promoted by active RNA
synthesis. DRB and triptolide rescued replication more effectively
than a-amanitin, suggesting that effective inhibition of early
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Figure 1 | HRASV12 overexpression increases transcription activity. (a) Protein levels of HRAS, pERK1/2, ERK1/2 and b-ACTIN in BJ-HRASV12 cells

after RAS induction for the times indicated. (b) EU incorporation (1 h) was used to measure nascent RNA synthesis after RAS induction for the times

indicated. (c) Representative images of EU staining (red) after RAS induction for 72 h. (d) Quantification of nuclear EU intensity after RAS induction for the

times indicated. N¼4 (48 and 72 h), N¼ 5 (24 h). (e) RNA/DNA hybrid slot blot of genomic DNA from BJ-HRASV12 cells after RAS induction for 72 h,
±RNase H. S9.6 antibody was used to detect RNA/DNA hybrids (top panel) with single-strand DNA antibody (bottom panel) as a loading control.

Serial dilutions of genomic DNA (1/1¼4mg) were probed with S9.6 antibody for standards (left panel). (f) Fold enrichment in RNA/DNA hybrids

compared with control. N¼ 3. Means ±s.e.m. (bars) are shown. Student’s t-test, *Po0.05, **Po0.01 and ***Po0.001. Scale bars, 10 mm.
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stages of transcription removes more obstacles to replication
forks than does inhibiting transcription during elongation
(Fig. 4f).

We previously observed that increased CDK activity and new
origin firing underlies replication stress in cells overexpressing
CYCLIN E12. In contrast, inhibiting new origin firing using
CDK inhibitor roscovitine could not rescue HRASV12-induced
replication fork slowing (Supplementary Fig. 3c–e). Together, our
data suggest that replication stress in cells expressing HRASV12 is
promoted by transcription but not by CDK activity.

To test whether HRASV12-induced DNA damage was
transcription dependent, we first incubated cells with DRB for
100 min and stained for 53BP1 24 h later. DRB reduced 53BP1
foci formation; however, its impact was limited by the short
incubation time (Supplementary Fig. 3f,g). We therefore used
gH2AX chromatin immunoprecipitation (ChIP) to test whether
transcription and R-loop formation was associated with DNA
damage in cells harbouring HRASV12. Indeed, we observed an
increase in gH2AX signal over the transcribed promoter-
proximal region of the C-FOS gene, correlating with strong
induction of R-loops, 72 h after HRASV12 induction (Figs 2c
and 4g). This gH2AX induction was replication dependent, as it
could be prevented by blocking replication with Aphidicolin
(Fig. 4g and Supplementary Fig. 1d). In contrast, we did not
detect an increase in replication-dependent gH2AX levels across
the intron 1 region of the b-ACTIN gene (Fig. 4h). This suggests
that HRASV12 triggers R-loop-associated DNA damage that also
depends on replication.

R-loops promote HRASV12-induced replication stress. We next
decided to further investigate the role of R-loops in HRASV12-
induced replication stress. We used transient transfection to
express green fluorescent protein (GFP)-tagged human RNaseH1,
an enzyme that degrades RNA/DNA hybrids on overexpression37

(Fig. 5a,b). Interestingly, we observed that protein and messenger
RNA levels of endogenous RNaseH1 were elevated in cells
overexpressing HRASV12, suggesting an increased requirement
for R-loop processing activities (Fig. 5b,c). The specificity of
RNaseH1 antibody was verified using small interfering RNA
(siRNA) depletion of RNaseH1 (Supplementary Fig. 4a).
Overexpression of GFP-RNaseH1 reduced R-loop levels in the
nucleus, as indicated by S9.6 immunostaining (Fig. 5d,e and also
see Supplementary Fig. 5 for validation of immunostaining
method). As the expression construct contains the RNaseH1
mitochondrial targeting sequence, mitochondrial R-loops were
also reduced (Fig. 5d). RNaseH1 overexpression effectively
improved replication fork progression in cells harbouring
HRASV12 (Fig. 5f,g). GFP-RNaseH1 also decreased HRASV12

induction of 53BP1 foci (Fig. 5h,i) and DSB induction measured
by pulse-field gel electrophoresis (Supplementary Fig. 4b,c).
GFP-RNaseH1 overexpression did not affect hydroxyurea-
induced 53BP1 foci formation or the cell cycle profile
(Supplementary Fig. 4d,e). These data support that HRASV12-
induced replication stress is promoted by the presence of R-loops.

We also tested whether some of the replication stress caused by
HRASV12 might be due to ribonucleotide (NTP) depletion as a
result of increased RNA synthesis. Supplementing growth
medium with ribonucleosides improved fork speeds and
reduced 53BP1 foci formation in the presence of HRASV12

(Supplementary Fig. 6a–c). However, HPLC quantification
showed no reduction in NTP levels or dNTP levels as
detectable (Supplementary Fig. 6d,e). This is in line with
previous reports demonstrating that nucleoside supplementation
can rescue fork progression even in the absence of
detectable nucleotide depletion38. Our data thus suggest that
transcription contributes to HRASV12-induced replication stress
predominantly via direct conflicts with transcription machinery
and R-loops (Fig. 5j).
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HRASV12-induced replication stress depends on TBP. We next
turned our attention to transcription factors that may promote
RNA synthesis and therefore replication stress downstream of
HRASV12. TBP expression is induced by RAS signalling in a
number of human, murine and Drosophila cell types19,39,40, and
TBP mRNA and protein levels were accordingly increased after
HRASV12 induction (Fig. 6a–c). We used siRNA depletion to test
whether TBP promotes HRASV12-induced replication stress
(Fig. 6d,e). TBP depletion decreased nascent RNA synthesis in
HRASV12-expressing cells (Fig. 6f). Importantly, TBP depletion
also prevented HRASV12-induced fork slowing (Fig. 6g,h) and
TBP-depleted cells displayed fewer HRASV12-induced 53BP1 foci
(Fig. 6i). Similar results were obtained using a different siRNA
sequence targeting TBP (Supplementary Fig. 7a–e). We noticed
that the alternative TBP siRNA also reduced RNA synthesis and
replication fork speeds in control cells, suggesting that generally
low RNA synthesis may affect replication (Supplementary
Fig. 7c,d). TBP depletion did not prevent hydroxyurea-induced
53BP1 foci (Supplementary Fig. 6f) and did not affect the cell
cycle profile of 53BP1 foci-positive cells, suggesting that the
reduction in foci was not due to a G2 arrest (Supplementary
Fig. 7g).

To test whether TBP acts in the same pathway as ongoing RNA
synthesis, we combined TBP siRNA with DRB treatment.
Combining both treatments rescued replication fork progression
and 53BP1 foci formation to a similar extent as TBP depletion

alone (Fig. 6j,k and Supplementary Fig. 8a). To further test
whether ribonucleoside addition was affecting replication stress
via a different pathway to transcription41, we combined TBP
siRNA and DRB with nucleoside supplementation. Compared
with transcription inhibition alone, exogenous nucleosides
had no additional effect on either the rescue of replication fork
progression or the reduction in 53BP1 foci (Supplementary
Fig. 8b–e).

These data suggest that the main pathway of HRASV12-
induced replication stress is via upregulation of transcription, and
that TBP is involved in this upregulation of transcription and the
replication fork slowing and genomic instability that result from
it (Fig. 6l).

TBP overexpression alone causes replication stress. We
reasoned that if TBP was a downstream effector in HRASV12-
induced replication stress, then overexpression of TBP alone
should cause replication stress. We therefore generated BJ-hTert
fibroblasts for doxycycline-inducible overexpression of TBP
(BJ-TBPind; Fig. 7a). Inducing TBP overexpression over several
days led to a steady increase in RNA synthesis activity as
measured by EU incorporation (Fig. 7b,c). Importantly, the
increase in transcription activity during TBP overexpression
was accompanied by replication fork slowing, consistent
with replication stress (Fig. 7d and Supplementary Fig. 9a).
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Similar results were observed in human MRC5 fibroblasts over-
expressing TBP (Supplementary Fig. 9b–d). To test whether
TBP-induced fork slowing depended on ongoing transcription,
we treated TBP-overexpressing cells with DRB for 100 min,
to inhibit nascent RNA synthesis (Fig. 7e). DRB treatment

rescued the TBP-induced fork slowing (Fig. 7f and
Supplementary Fig. 9e), supporting that TBP overexpression
causes replication stress through nascent RNA synthesis.

We next characterized the effect of TBP overexpression on
DNA damage, genomic instability and proliferation. Similar to
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HRASV12-expressing cells, cells overexpressing TBP displayed
increased formation of micronuclei and 53BP1 foci (Fig. 7g), and
53BP1 foci were mostly found in G1 cells (Fig. 7h). Finally, TBP
overexpression eventually led to growth arrest and senescence,
similar to that caused by HRASV12 (Fig. 7i and Supplementary
Fig. 9f,g). In agreement with this, p53 levels were increased after
TBP induction (Fig. 7a and also see Supplementary Fig. 10 for
original images of western blottings).

Thus, our data show that TBP alone is able to increase
transcription activity and cause replication stress with features
that resemble oncogene-induced replication stress.

TBP expression and replication stress in cancer. Finally, we
investigated the relationship of TBP and RNASEH1 mRNA
expression with oncogenes and replication stress markers in
tumour samples using The Cancer Genome Atlas (TCGA) data
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sets42–50 (Table 1). In a number of cancers, TBP or RNASEH1
expression correlated positively with expression of RAS or MYC
oncogenes and the CHEK1 or CHEK2 checkpoint kinases, which
are activated by oncogene-induced replication stress4,5. These
data support that the relationship between oncogenes, TBP,
R-loops and replication stress could be present in cancer tissues.

Discussion
We report that increased transcription is a new mechanism of
oncogene-induced replication stress. Overexpression of oncogenic
HRASV12 increases RNA synthesis and R-loop formation,
and this directly contributes to replication stress induced by
HRASV12. HRASV12-induced replication stress is mediated by the
general transcription factor TBP, which is a downstream target of
RAS signalling. Accordingly, overexpression of TBP itself causes
replication stress and genomic instability. The transcription
machinery is frequently deregulated in cancer cells21 and our data

suggest that transcription-associated replication stress could be an
important mechanism promoting genomic instability in cancer
(Fig. 7j).

Markers of replication stress are observed in early tumours and
cancers and other conditions of high proliferation, such as stem
cell reprogramming or viral infection51,52. Recent studies have
provided first candidates for the mechanisms causing such
endogenous replication stress. So far, all of these have involved
deregulation of the cell cycle, including re-replication53

and premature or increased replication initiation, resulting in
depletion of nucleotides or replication enzymes9,10,12. In addition,
reactive oxygen species play important roles in DNA damage in
cancer, but whether they can cause replication stress is still
uncertain54,55. Our data support that increased transcription is
another pathway causing endogenous replication stress, which
may act in parallel or independently of cell cycle deregulation.
HRASV12 overexpression did increase the density of active
replication origins, which could be reversed by CDK inhibition.
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Figure 7 | TBP overexpression causes replication stress and senescence. (a) Protein levels of TBP, p53 and TUBULIN (loading control) in BJ-TBPind cells
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However, CDK inhibition was unable to relieve HRASV12-
induced replication fork slowing, suggesting that increased
replication initiation is not a cause but a consequence of
HRASV12-induced replication stress (Supplementary Fig. 3d,e).
Our data suggest that HRASV12 causes replication stress by a
mechanism that is different from oncogenes such as CYCLIN E
and CDC25A10,12.

Our data support that HRASV12 overexpression promotes
accumulation of R-loops, which can be a major cause for
replication fork slowing and DNA breakage23. An elegant study
recently reported that loss of tumour suppressors BRCA1 or
BRCA2 increases R-loop levels, because these proteins act to
prevent R-loop formation56. Our findings add an important new
angle to this observation, showing that oncogenes can induce
R-loops, which suggests that increased R-loop levels might also be
common in cancer cells that are proficient in BRCA1 or BRCA2.
Interestingly, we observed increased protein levels of endogenous
RNaseH1 in cells overexpressing HRASV12 (Fig. 5b,c). RNaseH1
and RNaseH2 are the main RNase activities counteracting R-loop
formation and upregulation of these enzymes may be a response
of cancer cells to increased R-loop levels23. Although the biology
of increased RNaseH1 expression in response to HRASV12

requires further investigation, it supports the idea that
oncogenic replication stress is strongly connected with R-loop
metabolism.

One exciting implication of our findings is the potential to
discover new factors involved in promoting replication stress.
Components of the transcription machineries are found
overexpressed in cancer21,57. TBP is one of several general
transcription factors that have been implicated in oncogene-
induced cell transformation39,58. The TBP promoter contains
binding sites for oncogenic transcription factors and TBP is
differentially expressed in cancers (Table 1)59. RAS has been
reported to upregulate TBP expression through RAF-MEK and

RALGDS signalling19, and TBP levels are also increased by other
growth factor signalling pathways such as epidermal growth
factor/epidermal growth factor receptor59,60 (Fig. 7j). We report
here that increased TBP levels cause replication stress and
markers of genomic instability. TBP expression also correlates
with the expression of MYC, RAS and checkpoint kinases in a
number of cancers (Table 1). As TBP overexpression did not
increase RNA synthesis as strongly as HRASV12 overexpression
and TBP depletion did not completely rescue HRASV12-induced
replication stress, other transcription factors such as UBTF may
also be involved downstream of HRASV12 (Fig. 7j).

A previous report showed that TBP is important for HRASV12

transforming function, and that TBP overexpression alone
promotes anchorage-independent growth and tumour growth
in vivo49. Our data presented here support the idea that TBP
promotes the oncogenic phenotype by increasing transcription
activity and replication stress. There is however no evidence that
TBP itself is an oncogene, as TBP overexpression promoted
tumour growth but not tumourigenesis itself49. Some cancer types
show recurrent mutations in TBP that affect the length of the
amino-terminal glutamine-rich motif (for example, Q72dup in
diffuse large B-cell lymphoma and adrenocortical carcinoma)61.
It is yet unknown whether such mutations have pathogenic
relevance in cancer and whether they could be oncogenic.

Finally, increased RNA synthesis and elevated levels of R-loops
could be correlated with replication stress in cancer. Identifying
the molecular mechanisms that directly cause spontaneous
replication stress should therefore help to predict and detect
replication stress more accurately in cells and tissues. Nascent
RNA synthesis can only be measured in live cells but increased
expression of transcription factors and RNA polymerase
subunits21, as well as increased R-loops and expression of
RNases H1 or H2, might be promising candidates for markers of
transcription-associated replication stress.

Table 1 | TCGA data sets showing correlation between mRNA expression of TBP or RNASEH1 with oncogenes and replication
stress markers.

TCGA data set MYC RAS CHEK1 CHEK2

TBP mRNA expression correlation with:
Colorectal adenocarcinoma 0.41 (5%)** 0.54 (1%)** 0.42 (2%)**
Glioblastoma multiforme 0.41 (5%)** 0.33 (10%)* 0.47 (1%)**
Stomach adenocarcinoma 0.34 (10%)** 0.42 (5%)** 0.45 (1%)**
Lung adenocarcinoma 0.39 (1%)** 0.37 (1%)**
Lung squamous cell carcinoma 0.32 (5%)*
Bladder urothelial carcinoma 0.46 (1%)** 0.34 (5%)*
Acute myeloid leukemia 0.31 (5%)* 0.30 (10%)*
Skin cutaneous melanoma 0.31 (1%)**
Pheochromocytoma and Paraganglioma 0.31 (5%)* �0.36 (5%)*
Liver hepatocellular carcinoma 0.45 (1%)**

RNASEH1 mRNA expression correlation with:
Colon adenocarcinoma 0.48 (1%)**
Glioblastoma multiforme 0.71 (1%)**
Lung adenocarcinoma 0.5 (1%)** 0.48 (1%)** 0.38 (5%)**
Lung squamous cell carcinoma 0.31 (5%)* 0.44 (1%)** 0.36 (1%)*
Breast invasive carcinoma 0.37 (10%)** 0.57 (1%)** 0.4 (5%)**
Pheochromocytoma and Paraganglioma 0.38 (10%)**
Prostate adenocarcinoma 0.3 (10%)**
Pancreatic adenocarcinoma 0.48 (1%)**
Thyroid carcinoma 0.51 (5%)**
Brain lower grade glioma �0.37 (10%)**

Blank cells, no correlation; MYC, CMYC/NMYC; RAS, NRAS/HRAS/KRAS; TBP, TATA-box binding protein.
Values: Pearson’s coefficient r (0.3–0.5: positive correlation, 0.5–1: strong positive correlation, �0.3–�0.5: negative correlation, empty cell: no correlation). Values in brackets: top % of all genes;
*Po0.00005 and **Po0.000001, Student’s t-test.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13087

10 NATURE COMMUNICATIONS | 7:13087 | DOI: 10.1038/ncomms13087 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


Methods
Cell lines and reagents. Human BJ-hTert HRASV12ER-TAM (Agami and de Vita
labs26,27) BJ-hTert and MRC5 fibroblasts (ATCC) were authenticated using 8-locus
short tandem repeat (STR) profiling (LGC Standards). Cells were confirmed to be
free of Mycoplasma infection and were grown in DMEM medium (Sigma) with
10% fetal bovine serum (Sigma) supplemented with L-glutamine (Gibco) in a
humidified atmosphere containing 5% CO2. For BJ-TBPind cells, human TBP
complementary DNA (Origene, SC118124) was inserted into a pInducer20
lentivirus construct to generate TBP-pInducer20 and infected BJ-hTert cells were
selected with 500mg ml� 1 G418 (Gibco). HRASV12 was induced with 333 nM
4OHT (Sigma) and TBP expression was induced with 2 mg ml� 1 doxycycline
(Sigma). 4OHT or doxycycline remained present during all experiments.

DRB (100 mM) was from Sigma, and triptolide (1 mM) and a-amanitin
(10 mg ml� 1) were from Tocris Bioscience. Ribonucleosides (adenosine, guanosine,
uridine and cytidine, 10mM) were obtained from Sigma. Roscovitine (25 mM) was
from Sigma. Hydroxyurea (2 mM) was from Acros Organics, bleomycin
(10 mg ml� 1) was from Sigma and cycloheximide (100 mg ml� 1) was from
Calbiochem.

DNA fibre analysis. Cells were pulse labelled with 25 mM CldU and 250 mM IdU
for 20 min and harvested. DNA fibre spreads were prepared by spotting 2 ml of cells
(5� 105 cells per ml in PBS) onto microscope slides followed by lysis with 7 ml of
0.5% SDS, 200 mM Tris-HCl pH 7.4 and 50 mM EDTA. Slides were tilted and
DNA spreads fixed in methanol/acetic acid (3:1). HCl-treated fibre spreads were
incubated with rat anti-bromodeoxyuridine (detects CldU, BU1/75, AbD Serotec,
1:1,000) and mouse anti-bromodeoxyuridine (detects IdU, B44, Becton Dickinson,
1:500) for 1 h, fixed with 4% paraformaldehyde (PFA) to increase staining intensity
and incubated with anti-rat IgG AlexaFluor 555 and anti-mouse IgG AlexaFluor
488 (Molecular Probes) for 1.5 h. Images were acquired on an Nikon E600
microscope using a Nikon Plan Apo � 60 (1.3 numerical aperture) oil lens,
a Hamamatsu digital camera (C4742-95) and the Volocity acquisition software
(Perkin Elmer). Images were analysed using ImageJ (http://rsbweb.nih.gov/ij/).
In each independent experiment, at least 300 fibres were measured per condition.

Immunofluorescence. Cells were washed and fixed as follows. gH2AX and 53BP1:
CSK buffer (10 mM PIPES, 300 mM sucrose, 100 mM NaCl and 3 mM MgCl2) for
1 min, 0.5% Triton X-100 in CSK buffer for 1 min and 4% PFA for 10 min at room
temperature; Cyclin A and CldU: 4% PFA for 10 min and 0.3% Triton X-100 in
PBS for 5 min at room temperature; S9.6: methanol for 10 min on ice and 0.5%
Triton X-100 in PBS for 5 min at room temperature. RNase H (New England
Biolabs) was used at 0.05 U ml� 1 for 36 h at 37 �C. RNase A (Invitrogen) was used
at 0.05 ngml� 1–2mgml� 1 for 2 h at 37 �C. Samples were blocked with 3% BSA/10%
fetal bovine serum. Primary antibodies were mouse anti-phospho-Histone
H2AX (Ser139) (JBW301, Millipore 05-636, 1:1,000), rabbit anti-53BP1 (Bethyl
A300-272A, 1:30,000), mouse anti-Cyclin A (6E6, Thermo Scientific MS1061, 1:50),
rat anti-CldU (BU1/75, AbD Serotec OBT0030G, 1:250) and mouse
anti-RNA/DNA hybrid (S9.6, gift from Professor Richard Gibbons, hybridoma
supernatant 1:100). Secondary antibodies were anti-mouse IgG AlexaFluor 488 and
anti-rabbit IgG AlexaFluor 555 (Molecular Probes). DNA was counterstained
with 4,6-diamidino-2-phenylindole (DAPI) and images acquired as above. For
quantification of nuclear S9.6 intensity, ImageJ was used to generate nuclear masks
based on DAPI staining and mean S9.6 fluorescence intensities per pixel were
quantified per nucleus.

EU incorporation assay. EU incorporation assays were performed using the
Click-iT RNA Alexa Fluor 594 Imaging Kit (Invitrogen) according to the
manufacturer’s instructions. Cells were incubated with 1 mM EU for 1 h, fixed with
4% PFA for 15 min at room temperature, permeabilized with 0.5% Triton X-100
for 15 min and Click-iT reaction was performed. DNA was counterstained with
DAPI and images were acquired as above. ImageJ was used to generate nuclear
masks based on DAPI staining and mean AlexaFluor 594 fluorescence intensities
per pixel were quantified per nucleus.

siRNA and DNA transfection. siRNAs against TBP (TBPsi #1: sense 50-GAA
UCUUGGUUGUAAACUU-30 and TBPsi #2: sense 50-GGAUAAGAGAGCC
ACGAAC-30) were purchased from Ambion and Dharmacon. siRNA against
RNaseH1 (s48357) was purchased from Ambion. ‘Allstars negative control siRNA’
was purchased from Qiagen. Cells were transfected with 50 nM siRNA using
Dharmafect 1 reagent (GE Dharmacon). For RNaseH1 overexpression, cells were
transfected with 2.5 mg pCMV6-AC-RNase H1-GFP (Origene) using TransIT-2020
(Mirus Bio). Empty pcDNA 3.1 (þ ) vector was purchased from Invitrogen.

Western blotting. Cell extracts were prepared in UTB buffer (50 mM Tris-HCl
pH 7.5, 150 mM b-mercaptoethanol and 8 M urea) and sonicated to release
DNA-bound proteins. Primary antibodies used were mouse anti-HRAS
(Santa Cruz sc-29, 1:500), mouse anti-TBP (1TBP18, Abcam ab818, 1:2,000),
rabbit anti-RNaseH1 (Abcam ab83179, 1:3,000), rabbit anti-phospho-ERK1/2
(Cell Signaling 9101, 1:1,000), rabbit anti-ERK1/2 (Cell Signaling 9102, 1:1,000),

rabbit anti-gH2AX (Bethyl A300-081A, 1:1,000), rabbit anti-phospho-S345 CHK1
(Cell Signaling 2341, 1:1,000), rabbit anti-CHK1 (Cell Signaling 2345S, 1:1,000),
rabbit anti-phospho-S33 RPA32 (Bethyl A300-426A, 1:1,000), mouse anti-RPA32
(9H8, Abcam ab2175, 1:2,000), rabbit anti-Turbo-GFP (Evrogen AB513, 1:10,000),
mouse anti-p53 (DO-1, gift from Professor David Lane, 1:100), mouse anti-
CyclinB1 (V152, Abcam ab72, 1:1,000), mouse anti-aTUBULIN (B512, Sigma
T6074, 1:10,000), rabbit anti-bACTIN (Cell Signaling A967S, 1:5,000) and mouse
anti-GAPDH (6C5, Abcam ab8245, 1:10,000).

ChIP analysis. ChIP was performed using 5 mg of anti-gH2AX (Merck Millipore,
07-164) and H2AX (Merck Millipore, 07-627) antibodies as previously
described62,63. Where indicated, samples were treated with 0.5 mM Aphidicolin
(Sigma) for 2 h before ChIP. The immunoprecipitated (gH2AX or H2AX antibody
in immunoprecipitation (IP) reaction), control (beads only) and input DNAs were
used as templates for qPCR, containing QuantiTect SYBR Green PCR Master Mix
(QIAGEN) and gene-specific primers (see Supplementary Table 1).

RNA/DNA hybrid immunoprecipitation. DIP analysis was performed with
RNA/DNA hybrid antibody (0.3 mg ml� 1 per IP reaction) purified from S9.6
hybridoma cell lines as previously described33. The immunoprecipitated
(S9.6 antibody in IP reaction), control (beads only) and input DNAs were used as
templates for qPCR. DIP RNase H-sensitivity analysis was carried out before IP
step with the addition of 25 U RNase H (NEB, M0297S). One hundred microlitres
of nuclease digestion reaction contained 1� reaction buffer and it was performed
for 3 h at 37 �C.

Slot-blot experiments. Slot-blot experiments were carried out as described32.
Genomic DNA (1.2 mg) were treated with 2 U of RNase H per mg of DNA
(NEB, M0297S) for 2 h at 37 �C before loading on the slot blot. Half of the
DNA sample was probed with S9.6 antibody (1:1,000) and the other half with
anti-ssDNA antibody (MAB3031, Millipore, 1:25,000) as described32. Secondary
antibody was goat anti-mouse horseradish peroxidase (1:10,000). Images were
acquired with LAS-4000 (Fujifilm) and quantified using Image Studio Lite software
(Li-COR Biosciences).

Cell proliferation and b-galactosidase assays. For proliferation assays, 1� 105

or 2� 105 cells were seeded in 12-well plates and incubated with 10 mg ml� 1

resazurin for 2 h at the indicated time points. Resorufin fluorescence at 590 nm was
measured using a BMG Labtech PHERAstar FS microplate reader. Cell numbers
were determined by multiplying the number of initially seeded cells with (FRn/FR0)
(FRn: fluorescence reading at time point, FR0: initial fluorescence reading).
b-Galactosidase staining was performed using the Senescence b-Galactosidase
Staining Kit (Cell Signaling) according to the manufacturer’s instructions.

Nucleotide quantification. Cells were harvested and nucleotides extracted with
70% ice-cold methanol. Precipitated proteins were removed by centrifugation and
supernatants stored at � 80 �C. Supernatants were dried in a heated vacuum
centrifuge and reconstituted in HPLC starting eluent. Samples were analysed by
HPLC (Waters 2695, Watford, UK) with a photodiode array detector (Waters
2996). Separation was achieved using an Ace C18 (3 mm, 3� 125 mm, Hichrom,
UK) column maintained at 35 �C with eluent A: 10 mM potassium dihydrogen
phosphate and 10 mM tetrabutylammonium hydrogen sulfate, 10% methanol
pH 6.9; eluent B: 50 mM potassium dihydrogen phosphate, 6 mM
tetrabutylammonium hydrogen sulfate and 30% methanol pH 7, using a flow rate
of 0.6 ml min� 1 and a gradient of 25–80% B over 25 min, with a run time of
30 min. Nucleotides were identified by comparing with absorbance spectra and
retention times of commercially available standards.

Quantitative real-time PCR. Total RNA was harvested using TRIZOL reagent
(Invitrogen) followed by DNase I treatment (Roche), 1.5 mg of total RNA was
reverse transcribed using SuperScript Reverse Transcriptase III (Invitrogen) with
random hexamers (Invitrogen), following manufacturer’s instructions. The qPCR
primers for amplification are listed in Supplementary Table 1. For quantitative
real-time PCR, 2 ml of cDNA was analysed using a Rotor-Gene RG-3000 real-time
PCR machine (Corbett Research) with QuantiTect SYBR green (Qiagen). Cycling
parameters were 95 �C for 15 min, followed by 45 cycles of 94 �C for 20 s,
58 �C–62 �C for 20 s and 72 �C for 20 s. Fluorescence intensities were plotted
against the number of cycles by using an algorithm provided by the manufacturer.

Pulsed field gel electrophoresis. Cells (2� 106) per sample were treated as
indicated, harvested and melted into 1.0% InCert-Agarose (Lonza) inserts. Inserts
were digested in 0.5 M EDTA-1% N-laurylsarcosyl-proteinase K (1 mg ml� 1) at
room temperature for 48 h and washed three times in TE buffer. Inserts were
loaded onto a separation gel (1% chromosomal-grade agarose, Bio-Rad).
Separation was performed using a CHEF DR III (BioRad; 120 field angle, 240 s
switch time, 4 V cm� 1, 14 �C) for 20 h. Images of ethidium bromide-stained gels
were acquired using a Syngene G:BOX gel imaging system. DSBs (chromosome
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fragments 42 Mb) were quantified by densitometry using ImageJ. Intensity of
DNA entering the gel was normalized to total DNA and untreated control to obtain
final values.

Statistical analysis. Unless stated otherwise, all values are means ±1 s.e.m. of
results from independent biological repeats. Scatter plots show pooled data, but
numerical values displayed on plots represent the means ±1 s.e.m. of the results
from independent repeats. Numbers of repeats N are indicated in the figure
legends. Statistical tests were performed using the one-tailed Student’s t-test.
Coexpression data were obtained using CBioPortal61,64 and statistical analyses were
performed using the Student’s t-test based on t¼ (r*On� 2)/(O� r2) where r is
Pearson’s coefficient and n is number of samples in analysis.

Data availability. The authors declare that all the data supporting the findings of
this study are available within the article and its Supplementary Information files
and from the corresponding authors upon reasonable request.
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