
Am. J. Trop. Med. Hyg., 95(4), 2016, pp. 746–753
doi:10.4269/ajtmh.16-0348
Copyright © 2016 by The American Society of Tropical Medicine and Hygiene

Review Article
Human Helminths and Allergic Disease: The Hygiene Hypothesis and Beyond
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Abstract. There is much debate about the interaction between helminths and allergic disease. The “Hygiene
Hypothesis,” a very popular concept among scientists and the lay public, states that infections, especially during child-
hood, can protect against allergic diseases. Indeed, helminth infections are known to induce regulatory responses in the
host that can help the control of inflammation (including allergic inflammation). However, these infections also induce
type-2-associated immune responses including helminth-specific IgE that can cross-react against environmental aller-
gens and mediate IgE-driven effector responses. Thus, it is the delicate balance between the parasites’ anti- and
pro-allergenic effects that define the helminth/allergy interface.

The immune system has evolved, in large part, through its
interaction with microbes and parasites, an interaction that
drives specific or specialized immune responses to deal with
the widely varying groups of microorganisms. For example,
parasite-derived induction of interleukin (IL)-4, IL-5, and
IL-13 coordinate the prototypical responses to metazoan
helminth pathogens,1 whereas viral- and bacterial-specific
induction of Type 1 and Type 2 interferons are required for
control of these types of infections.1 Interestingly, these responses
(broadly inflammatory in nature) themselves, if uncontrolled,
can harm the host by causing allergic diseases (Th2-associated
inflammation) or autoimmune/inflammatory disorders (typi-
cally Th1- and/or Th17-associated). Typically, on the heels of
such inflammation come anti-inflammatory networks that are
required to prevent long-standing tissue damage.2

These regulatory (or anti-inflammatory) processes triggered
during infection underlies the “Hygiene Hypothesis”3 that
states that infections, especially during childhood when
immune responses are being “educated” and the T- and B-cell
memory pool is being created, protect against inflammation-
associated disorders4 because they modulate or limit immune-
mediated effector responses. Indeed, the presence of helminth
infections has been associated (to a small degree) with modu-
lation of the severity of inflammatory bowel disease,5 diabetes,6

and arthritis7–9 to cite just a few examples.
There is little consensus among the many studies that have

examined the interaction between helminth infection and
atopy (Table 1). This lack of consensus is most likely related
to the differences in outcome measures/definitions used in the
many studies that have used a variety of outcomes including:
1) the severity or frequency of asthma, rhinitis, or eczema;
2) the frequency of allergen sensitization by skin prick tests
(SPTs); or 3) the levels of allergen-specific IgE (asIgE) levels
in the blood. Other causes for the disparate results relate to
variation among the species of infecting helminths and differ-
ences in the age of the populations being studied. To attempt
to reconcile these differences, meta-analyses have been per-

formed; these, too, have not been conclusive. For example,
while Ascaris lumbricoides was found to be a risk factor for
the development of asthma, hookworm infection was asso-
ciated with a protective effect.60 Infection with other para-
sites such as Trichuris trichiura, Enterobius vermicularis, and
Strongyloides stercoralis had no effect on the outcome of
asthma.60 Conversely, the presence of A. lumbricoides was
found to lower the frequency of atopy (measured by SPT) to
at least one environmental allergen in most studies61 (Table 1),
but not to the perennial allergens, cockroach or house dust
mite (HDM).61 Hookworm infection has also been associ-
ated with protection from atopy to some allergens, but not
to HDM or to cockroach extract.61 Interestingly, the major-
ity of the published studies demonstrate that while helminth
infection decreases the frequency of SPT positivity, these
infections are associated with increased allergen-specific IgE
(asIgE) (Figure 1).
The concept that helminth infection modulates allergic

diseases emerged in the 1970s62–64 and has been debated
ever since.40,65–70 As depicted in Table 1, it has often been
observed that helminth infections commonly reduce the fre-
quency of SPT reactivity and increase the levels of asIgE
(Table 1 and Figure 1). This apparent dichotomy was felt to
reflect the expansion of polyclonal IgE-secreting B cells, an
expansion that would lead to high levels of IgE with multiple
specificities leading to an inability to trigger a mast cell or
basophil response. It was thought that allergens, in such con-
ditions, could not physically cross-link the asIgE bound to
the high-affinity Fc epsilon (FcεRI) because of the multiple
differing IgE antibody specificities on proximal FcεRIs.
Although theoretically possible, this concept has largely been
discarded based on studies that suggest that the ratio of poly-
clonal to antigen-specific IgE needed to prevent basophil or
mast cell degranulation rarely is achieved in vivo since it
requires only cross-linking a few hundred FcεRIs on cell
membranes to trigger activation.71,72 More recent data allow
us to propose other mechanisms at work in helminth infection
that drive asIgE in helminth-infected populations (e.g., cross-
reactive IgE) or modulate SPT positivity (e.g., IL-10) as
discussed below.
Because chronic helminth infections often induce both IgE

and IgG isotypes, especially IgG4 antibodies, it has been
proposed that IgG can also contribute to the modulation of
type I hypersensitivity responses. IgGs are usually induced in
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quantities 1,000- to 10,000-fold greater than those of IgE,
and as such, the IgG antibodies bind antigen prior to the
antigen being available to trigger an IgE-mediated effector
response. This so-called “blocking phenomenon” has been
explored, and two mechanisms have been identified: physi-
cal73,74 and inhibition of target cells by FcγRIIb activation
by IgG complexed to antigens.74–76 Although other IgG iso-
types have been implicated in physical IgE blocking, IgG4
seems to play a major role.77 It has been demonstrated that
IgG can intercept allergen before it binds to IgE present on
membranes of mast cells and basophils,74 and that allergen-
IgG complexes can deactivate target cell by activation of the
inhibitory Fc receptor (FcγRIIb), that in turn activates phos-
phatases in the molecular cross-linking regions of IgE shut-
ting down FcεRI signaling.78,79

A more unifying explanation suggests that IL-10, a pri-
marily T-cell–derived cytokine commonly induced in chronic
helminth infection,80–82 may underlie the protection from SPT
positivity.11,83 Indeed, it is believed that the IL-10 modified Th2
response may be responsible for the parasite-antigen-specific
tolerance imprinted on the host by helminth infection.80,84,85

Parasite-induced IL-10 or other regulatory mechanisms—that
can involve cell populations such as Tregs81,86 and Bregs87–89—
can increase the IgE-induced activation threshold of baso-
phils,90 regulate T-cell91,92 and B-cell activation,92 promote
IgG class switch,93 and IgG4-producing B-cell differentia-
tion and proliferation.94 Moreover, IL-10 has been shown to
drive down the production of IgE while at the same time
induce isotype switching to IgG4.95,96

Despite the regulatory responses that helminth infections
can induce in the host, these may not be sufficient to coun-
teract the Th2-associated processes that mediate many aller-
gic diseases. This puts into a framework the concept that a
very delicate balance between pro- and anti-allergenic effec-
tor responses is required to maintain homeostasis. It is widely
known that helminth parasites are associated with antigen-
driven expansion of Th2 cells97–99 along with polyclonal T-cell
activation.97–99 Interestingly, allergen extracts and helminths
excretory/secretory products often share similar properties
that can lead to Type 2-associated responses. For example,
both are rich in proteases100 that can promote Th2 differenti-
ation through protease-activated receptor 2101–103 directly on
T cells102 or indirectly by inducing IL-33 or thymic stromal
lymphopoietin production by tissue cells104,105 or IL-13 pro-
duction by macrophages.106 In addition, both allergens and
helminths are known to increase numbers and activity of type
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FIGURE 1. Aggregated overview of multiple studies on the
helminth/allergy interface. The areas shaded black indicate increased
prevalence of allergic reactivity in the presence of helminth infec-
tion, the areas shaded white indicate decreased prevalence, and
those in gray indicate no change in prevalence on clinical outcome
(left circle), skin prick test (SPT; middle circle), and aeroallergen-
specific IgE (asIgE; right circle).
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2 innate lymphoid cells107–110 that license dendritic cells to
promote Th2 priming in lymph nodes.111

Along with this strong, specific, and polyclonal Th2 activa-
tion induced by helminth infection, these infections also
induce both polyclonal- and antigen-specific IgE produc-
tion.112 Whether a result of this Th2-associated response or
of some other type of response (e.g., Treg, IL-10, trans-
forming growth factor-β), it has been observed that helminth
infection causes decreases in IgG responses to parenterally-
administered vaccines113 and increases in IgE responses
to bystander antigens.114–117 This IgE bystander effect has
been suggested to be one of the reasons that helminth par-
asites can promote allergic reactivity through mechanisms
that include: B-cell IgE polyclonal activation; IgE potenti-
ation in which infection creates an environment that will
favor IgE production to other nonparasite antigens; and
IgE cross-reactivity among parasite antigens and environ-
mental allergens.
There has been increased interest in IgE cross-reactivity

involving helminth parasites and allergens as well.116–128 We
have demonstrated that helminth infection can be associated
with increased IgE responses to many different allergens,
especially those structurally related to parasite antigens.116 Indi-
viduals infected with filarial parasites were shown to have
higher levels of IgE against HDM and cockroach extracts (that
have several major allergens with homologues in filarial para-
sites) but not against timothy grass extract, an allergen extract
with just a few minor allergen homologues in helminths.116

In more detailed studies, cross-reactivity among allergens
and parasite molecules has been well described for tropo-
myosin,120,122,129 considered a pan-allergen.130 Tropomyosins
are highly conserved across many species and cross-reactivity
is not surprising from the structural point-of-view. This aller-
gen has dominated discussions about helminth-allergen
cross-reactivity, and many reviews have already discussed its
implications in detail.131,132 However, studies on allergen
and parasite protein sequences have found that huge num-
bers of allergens have both linear133 and conformational134

epitopes with significant similarity to homologous helminth
proteins. The structural basis for this “allergenicity” has been
inferred from bioinformatic analyses, in which it has been
shown that the level of identity conservation between aller-
gens and parasite proteins were negatively correlated with
IgE prevalence to that allergen.133 Furthermore, most of the
major allergens with homologues in helminth parasites show
medium to low levels of conservation with helminth proteins
(amino acid identities ranging from 20% to 40%),133 levels
of identity deemed unlikely to be subject of antibody cross-
reactivity. Nevertheless, evidences of cross-reactivity among
less-conserved pairs of antigens have been demonstrated
recently,116,117,120,123,133 suggesting that this may be a broader
phenomenon than previously appreciated. It was noticed that
extracts of the cockroach Blatella germanica (Bla g) can
inhibit the binding of IgE to several Anisakis simplex aller-
gens.118 Similarly, IgE binding to several Ascaris allergens
can also be inhibited by Dermatophagoides pteronyssinus
(Der p) or Blomia tropicalis (Blo t) extracts, including
glutathione-S-transferase (GST).120

GSTs are major allergens of HDM,119 cockroach,135 mold,136,137

and parasites.138,139 Among the 13 classes of canonical GSTs,
there are many that show very little amino acid conservation.140

Even with the small degree of sequence conservation, cross-

reactivity among parasite and allergenic GST has been demon-
strated formally.123 There was found to be a significant positive
correlation of antiallergenic (Bla g 5, Der p 8, and Blo t 8) and
antiparasite (Ascaris and filarial) GST-specific IgE levels in
humans.123,138 In addition, experimental models have corro-
borated these findings. For example, Heligmosomoides poly-
gyrus infection induced IgE anti-cockroach GST,123 and
immunization studies with Ascaris antigens induced IgE and
Th2 cells against HDM extract.117 Despite helminth protein
and allergen cross-reactions leading to cross-sensitization in
humans are possible,58,141–144 formal proof has not, to date,
been demonstrated, especially for poorly conserved allergen-
helminth proteins pairs.
Thus, the interface between helminth infection and allergic

disorders reflects the delicate balance between the regulatory
responses and the pro-allergenic effects of the parasites.
Despite the relatively consistent finding that the presence of
an active helminth infection results in lower prevalence of
SPT to common environmental allergens, the fact that these
same helminth infections markedly increase levels of antigen-
specific IgE suggest that the complex interplay among this
antigen- and allergen-specific IgE, the high affinity FcεRI on
effector cells, the regulatory and effector cytokines, and the
cells at barrier sites must be studied in concert to truly under-
stand this very complex interaction.
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