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ABSTRACT

Genome wide association studies (GWAS) pro-
vide a powerful approach for uncovering disease-
associated variants in human, but fine-mapping the
causal variants remains a challenge. This is partly
remedied by prioritization of disease-associated vari-
ants that overlap GWAS-enriched epigenomic anno-
tations. Here, we introduce a new Bayesian model
RiVIERA (Risk Variant Inference using Epigenomic
Reference Annotations) for inference of driver vari-
ants from summary statistics across multiple traits
using hundreds of epigenomic annotations. In simu-
lation, RiVIERA promising power in detecting causal
variants and causal annotations, the multi-trait joint
inference further improved the detection power.
We applied RiVIERA to model the existing GWAS
summary statistics of 9 autoimmune diseases and
Schizophrenia by jointly harnessing the potential
causal enrichments among 848 tissue-specific epige-
nomics annotations from ENCODE/Roadmap con-
sortium covering 127 cell/tissue types and 8 ma-
jor epigenomic marks. RiVIERA identified meaning-
ful tissue-specific enrichments for enhancer regions
defined by H3K4me1 and H3K27ac for Blood T-
Cell specifically in the nine autoimmune diseases
and Brain-specific enhancer activities exclusively
in Schizophrenia. Moreover, the variants from the
95% credible sets exhibited high conservation and
enrichments for GTEx whole-blood eQTLs located
within transcription-factor-binding-sites and DNA-
hypersensitive-sites. Furthermore, joint modeling
the nine immune traits by simultaneously inferring
and exploiting the underlying epigenomic correla-
tion between traits further improved the functional
enrichments compared to single-trait models.

INTRODUCTION

Genome wide association studies (GWAS) can help gain nu-
merous insights on the genetic basis of complex diseases,
and ultimately contribute to personalized risk prediction
and precision medicine (1–4). However, fine-mapping the
exact causal variants is challenging due to linkage disequi-
librium (LD) and the lack of ability to interpret the func-
tion of noncoding variants, which contribute to ∼90% of
the current GWAS catalog (40.7% intergenic and 48.6% in-
tronic; (5)). On the other hand, several lines of evidence have
been proposed to help interpret non-coding genetic signals,
in order to gain insights into potential regulatory func-
tions. In particular, epigenomic annotations can pinpoint
locations of biochemical activity indicative of cis-regulatory
functions (6,7). Indeed, comparison with genome-wide an-
notations of putative regulatory elements has shown en-
richment of GWAS variants in enhancer-associated histone
modifications, regions of open chromatin, and conserved
non-coding elements (3,6,8–12), indicating they may play
gene-regulatory roles. These enrichments have been used to
predict relevant cell types and non-coding annotations for
specific traits (6,9,13). Furthermore, many complex traits
potentially share causal mechanisms such as autoimmune
diseases (14,15) and psychiatric disorders (16,17). Thus,
methods that jointly model the intrinsic comorbidity impli-
cated in the GWAS summary statistics of the related traits
may confer higher statistical power of causal variants detec-
tion.

Recently, several methods were developed to utilize the
wealth of genome-wide annotations primarily provided by
ENCODE consortium to predict causal variants and novel
risk variants that are weakly associated in complex traits.
Pickrell (23) developed a statistical approach called fgwas
that models association statistics of a given trait and used
regularized logistic function to simultaneously learn the rel-
evant annotations. To account for LD, fgwas assumes at
most one causal variants per locus via a softmax function.
Kichaev et al. (18) recently developed a multivariate Gaus-
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sian framework called PAINTOR, which allows for more
than one causal SNP but at most three to be located within a
single locus by considering all of the combinatorial settings
(18). Chung et al. (19) used a maximum likelihood frame-
work called GPA to infer driver variants shared among mul-
tiple traits by modeling the corresponding GWAS P-values
as Beta distributions with an option of using one or more
sets of annotations to improve the power detecting causal
variants (19). Although useful, these methods are often de-
signed to simultaneously operate on a small number of in-
dependent annotations due to some computational con-
straints. Moreover, most methods only operate on one trait
at a time whereas exploiting the correlation between traits at
the epigenomic annotation level may prove useful for shared
causal mechanisms that go beyond the level of individual
variants.

In this article, we describe a novel Bayesian framework
called RiVIERA (Risk Variant Inference using Epigenomic
Reference Annotations) to model GWAS summary statis-
tics in terms of P-values using large-scale reference datasets.
The main novelty of RiVIERA is the ability to perform
efficient Bayesian inference of the intrinsic causal signals
across multiple traits while simultaneously inferring and
exploiting enrichment signals and their correlation be-
tween traits over hundreds of tissue-specific epigenomic an-
notations. We achieve this efficiently via stochastic sam-
pling of loci and powerful Hamiltonian Monte Carlo sam-
pling of model parameters (20). We first use simulation
to demonstrate the utility of RiVIERA in prioritizing
driver variants and detecting functional epigenomic anno-
tations. We then apply RiVIERA to some of the most well-
powered GWAS datasets, consisting of 9 immunological
disorders from ImmunoBase (15) and Schizophrenia 2014
data from Psychiatric Genomic Consortium (21). To in-
fer tissue-specific epigenomic enrichments, we utilize the
largest compendium of epigenomic annotations to date
from ENCODE/Roadmap Consortia, consisting of 848 an-
notations including eight major epigenomic marks across
127 distinct cell types (7). This allows us to revisit the
GWAS of these 10 common complex disorders by inferring
their underlying regulatory variants implicated at the tissue-
specific epigenomic contexts.

MATERIALS AND METHODS

GWAS summary statistics

The GWAS summary statistics for the nine immune dis-
eases were obtained from ImmunoBase (17 March 2015)
(15). The nine diseases are: Autoimmune Thyroid Disease
(ATD), Celiac Disease (CEL), Juvenile Idiopathic Arthri-
tis (JIA), Multiple Sclerosis (MS), Narcolepsy (NAR), Pri-
mary Biliary Cirrhosis (PBC), Psoriasis (PSO), Rheuma-
toid Arthritis (RA), Type 1 Diabetes (T1D). We imputed
the P-values of un-genotyped SNPs using FAPI and 1000
Genome European data (Phase 1 version 3) (22). We then
obtained the P-values of SNPs that fall within the pre-
defined risk loci available from ImmunoBase for each of
the nine immune traits. For all analyses, we filtered out risk
loci or variants in the MHC regions or sex chromosomes X
and Y. The Schizophrenia 2014 (SCZ2) summary data con-
taining 642846 observed and imputed SNPs were obtained

from Psychiatric Genomic Consortium (PGC) (21). Among
these, 54 132 SNPs fall within the 105 SCZ-associated loci
of the autosomes (chr 1-22) defined by PGC (we filtered out
the 3 loci on chromosome X). Table 1 summarizes the total
number of SNPs and risk loci for each individual GWAS
that were subject to the proposed fine-mapping analyses.

Roadmap epigenome data

Roadmap epigenome data were obtained from Roadmap
epigenomic web portal (March 2015). Peaks were de-
fined if their P-values were below 0.01 (i.e. following
the definition of ‘Narrow Peaks’ (7)). In total, there are
848 epigenome tracks, including eight epigenomic marks
namely H3K4me1, H3K4me3, H3K36me3, H3K27me3,
H3K9me3, H3K27ac, H3K9ac and DNase I in in 127 cell
or tissue types, which were grouped into 19 categories (7).
To associate each SNP with the annotations, we overlapped
their genomic coordinates with each bigWig epigenome
track making use of the R packages rtracklayer and Genom-
icAlignments. SNPs that fall within a peak of an annota-
tions will have value 1 otherwise 0 for that annotation. The
resulting matrix is a Vd × K input matrix containing the
epigenomic values across K = 848 marks for each of the Vd
SNPs in disease d.

Running existing fine-mapping software on simulated data

fgwas. The software fgwas (23) (version 0.3.4) were
downloaded from GitHub. We prepared the input for fg-
was (i) the z scores calculated as the t-statistics of the lin-
ear coefficients of the genotype of each variant fitted sep-
arately by least square regression on the simulated contin-
uous phenotypes (Materials and methods) and (ii) 100 dis-
cretized epigenomic annotations at P < 0.01. To enable fine-
mapping, we issued -fine flag and specify the region num-
bers for each SNP in the input file as required by the soft-
ware. As part of the outputs from fgwas, we obtained ‘PPA’
and ‘estimate’ for the causal variants and influences of each
epigenomic annotations, respectively.

GPA. GPA (0.9–3) (19) was downloaded from GitHub
and run with default settings. Same as above, we set the an-
notations to one at P-value <0.01 and 0 otherwise. To test
for trait-relevant annotations, we followed the package vi-
gnette. Briefly, we fit two GPA models with and without the
annotation and compared the two models by aTest func-
tion from GPA, which performs likelihood-ratio (LR) test
via χ2 approximation, and obtained the enrichment scores
as the −log10 P-value.

PAINTOR. PAINTOR (version 2.1) was downloaded
from GitHub (18). As suggested in the documentation, we
prepared a list of input files for every locus including sum-
mary statistics as t-statistics, LD matrices, and binary epige-
nomic annotations. We ran the software with default set-
ting with assumption of at most two causal variants per
locus. We then extracted the ‘Posterior Prob’ and ‘Enrich-
ment.Values’ as the model predictions for causal variants
and causal annotations, respectively.
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Table 1. GWAS data summary

Abbrev Trait Total Loci gwSNPs cSNP st cSNPs mt

ATD Autoimmune Thyroid Disease 4206 8 630 38 49
CEL Celiac Disease 29 784 39 2592 344 211
JIA Juvenile Idiopathic Arthritis 13 427 22 3 440 223
MS Multiple Sclerosis 61 360 104 2096 884 339
NAR Narcolepsy 1316 3 62 22 16
PBC Primary Biliary Cirrhosis 14 573 19 2498 172 111
PSO Psoriasis 24 832 34 457 305 171
RA Rheumatoid Arthritis 38 207 78 470 1978 719
SCZ2 Schizophrenia 54 132 105 5217 2481 NA
T1D Type 1 Diabetes 41 945 57 2832 826 327

We investigated 10 GWAS traits as listed above. Abbrev: abbreviation of the trait names; Total: total number of SNPs in the risk loci with imputed and
observed summary statistics; Loci: total number of risk loci for each trait; gwSNPs: SNPs that pass GWAS cutoff P < 5e-8; cSNP st: total number of SNPs
that are included into the 95% credible set based on single-trait risk inference using RiVIERA; cSNP mt: SNPs in 95% credible set constructed based on
multi-trait joint risk inference using RiVIERAacross the nine immune traits (without SCZ2).

Details of RiVIERA Bayesian model

Inference of empirical prior πvd. We first define the empir-
ical prior function of a variant v being associated with dis-
ease d as a logistic function:

πvd = [1 + exp(−[
∑

k

wkdevk + w0d ])]−1 (1)

where wkd ∈ wd denotes the linear coefficient or the influ-
ence of the kth epigenomic mark affecting disease d and w0d
is the linear bias.

We assume that epigenomic causal effect wkd follows a
multivariate Gaussian distribution with zero mean and un-
known covariance:

wkd ∼ N (0,�−1
w ) (2)

�w ∼ W(�0, ν0) (3)

where �w is a D × D inverse covariance matrix �w = �−1
w

to model the pairwise epigenomic correlation among D dis-
eases. It follows a Wishart distribution with identity matrix
as prior (i.e. by default, we assume aprior no correlation be-
tween the target traits) and ν0 = 0 (i.e. by default, we did
observe any samples aprior that are indicative of the cor-
relation between any two diseases being modeled). The hy-
perparameters can be easily modified to incorporate prior
belief on the correlation between any two diseases of inter-
ests.

Additionally, the bias w0d follows a Gaussian distribution
with unknown variance and mean determined based on our
prior belief of the causal fraction �0:

w0d ∼ N (logit(π0), λ−1
0d ) (4)

λw0d ∼ �(α0, β0) (5)

where logit(π0) = log π0
1−π0

. By default, we set �0 to 0.01, im-
plying that 1% of the SNPs in the risk loci are expected to
be causal when no functional enrichment. We set α = 0.01
and β = 0.0001 to enable a broad hyperprior for w0d.

Notably, wkd can be interpreted as enrichment coefficient
for annotation k in disease d, where a positive wkd will in-
crease the causal prior �vd when evk = 1. During the train-
ing, however, wkd may become negative, which makes the

interpretation difficult. Thus, we constrain wkd to be non-
negative values, which involves imposing infinitely high po-
tential energy for negative wkd. More details are described
in Supplementary Text 1.

Inference of variant causality cvd given prior πvd and model
parameters μd, φd. Because the target association variable
avd for variant v in disease d represents P-values, which are
continuous and restricted to the interval (0, 1), we assume
that it follows a Beta distribution with unknown mean �d
and unknown precision �d:

avd ∼ B(μd , φd ) (6)

Note that we re-parameterize Beta density function from
the traditional ‘rate’ p and ‘shape’ q parameters, and in-
stead use mean � = p/(p + q) and precision � = p + q, as
per (24,25). Specifically, the density function of association
variable avd is defined as follows:

f (avd ; μd , φd ) =
�(φd )

�(μdφd )�((1 − μd )φd )
a(μdφd−1)

vd (1 − avd )(1−μd )φd−1 (7)

Further, we let the mean μd and precision φd follow Beta
and uniform prior, respectively:

μd ∼ B(μ0, φ0) (8)

φd ∼ U (0, φmax) (9)

where the hyperparameters (μ0, φ0) reflect apriori belief on
the P-value signal of a causal variant. By default, we set
μ0 = 0.1 and φ0 = 2. If φmax = ∞, φ follows an improper
prior. Because it is unlikely to have a very large �, by default,
we set φmax to 1000. Notably, as long as φmax is large, the
inference results remain the same with different φmax values.

With the prior p(cvd |wd , ev) ≡ πvd and likelihood
p(avd|�d, �d) ≡ f(avd; �d, �d) established, the posterior
probability of association (PPA) (26) of variant v being
causal for disease d then follows:

p(cvd |avd , πvd ) = p(avd |cvd )p(cvd |wd , ev)∑
v′∈Vb

p(av′d |cv′d )p(cv′d |wd , ev′ )
(10)

whereVb represent all variants within locus b. The 95% cred-
ible set Cbd for each locus b is the minimal number of SNPs
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v′ ∈ Cbd in the locus such that
∑

v′∈Cbd
p(cv′d |av′d , πv′d ) ≥

0.95.

Joint posterior distribution. The complete likelihood den-
sity function treating cvd as missing values is defined as:

L =
∏

v,d

f (avd , πvd , cvd , |ev, μd , φd )

=
∏

v,d

[πvd p(avd |μd , φd )]cvd (1 − πvd )(1−cvd ) (11)

The logarithmic joint posterior density function is then:

log p(�|D) = log f (μ, φ, W,�w, λ0d |E, cd , πd , ad )

∝ log f (�w|�0, ν0) + ∑
d log f (λ0d |α0, β0)

+ log f (W|�w) + ∑
d log f (w0d |μw0 , λ0d )

+ log f (μd |μ0, φ0) + log f (φd )

+∑
v,d log f (avd , πvd , cvd |ev, μd , φd ) (12)

In principle, causality is inferred by integrating out all nui-
sance parameters:

p(cvd |ad , evd ) = ∫
f (cvd |ad , ev, μd , φd , wd , �w)

f (μd , φd , wd , �w|ad , ev)dμd , φd , wd , �w (13)

which is not tractable. We employ Markov Chain Monte
Carlo (MCMC) to sample from the joint posterior.

Markov Chain Monte Carlo. We use Gibbs sampling (27)
to sample the precision matrix �w of epigenomic effects
from the posterior distribution. Specifically, Gibbs sam-
pling requires a closed form posterior distribution. Due to
the conjugacy of the Wishart prior of epigenomic precision
�w to the multivariate normal distribution of epigenomic
effect W, the posterior of the epigenomic precision matrix
�w also follows Wishart distribution (28):

�w|W ∼ W((�−1
0 + S)−1, ν0 + K) (14)

where S is the sample variance of W, i.e. S = WTW.
Similarly, we sample �0d from Gamma posterior distribu-

tion:

λ0d |w0d ∼ �(α0 + 0.5, (β0 + (w0d − μw0 )2

2
)−1) (15)

To sample epigenomic effects wd , prior bias w0d, causal
mean �d, causal precision �d for disease d = 1, . . . , D, we
employ a more powerful gradient-based sampling scheme
namely Hamiltonian Monte Carlo (also known as hybrid
Monte Carlo) (HMC) (20,29), exploiting the fact that the
joint posterior of our model is differentiable with respect
to the model parameters �d, �d, wkd, w0d (Supplementary
Text S1). Finally, after discarding t% models accepted be-
fore the burn-in period (default: t = 20%), we obtain the
Bayesian estimates of PPA by averaging the correspond-
ing values computed over the T′ individual models accepted
throughout the T MCMC runs.

Bayesian fold-enrichment tests for epigenomic annotations.
Due to co-linearity among the epigenomic annotations, di-
rectly using wkd to assess the epigenomic enrichment for an-
notation k may be misleading. We propose an heuristic ap-
proach to assess the log fold-enrichment of the full prior
model over the alternative prior with the effect of annota-
tion k for disease d removed (i.e. wd\k, wkd = 0):

fkd = log
∫

p(wd ) p(cd |wd ,ev )
p(cd |wd\k,wkd=0,ev ) dwd (16)

≈ 1
T′

∑T′
t=1 log 1

|Cd |
∑

v∈Cd

p(cvd |w(t)
d )

p(cvd |w(t)
d\k,w

(t)
kd=0)

(17)

where p(cvd |w(t)
d , ev) is the logistic prior based on Eq 1, Cd

is the union of all the 95% credible sets across loci for dis-
ease d: Cd = ⋃

b Cbd . Notably, under the optional constraint
that wkd ≥ 0, fkd is always positive, which directly translates
to fold-enrichment of annotation k conditioned on all the
other annotations k′ �= k. The 95% Bayesian credible inter-
val for fkd are obtained from the T′ MCMC runs. The sig-
nificance of each annotation k is determined based on the
ranking of its lower bound fkd (i.e. the 2.5% quantile of fkd).

Alternatively, we can estimate the fold-enrichment for
each annotation simply based on the ratio of estimated frac-
tion of causal variants in an annotation evk over the fraction
of all of the variants in that annotation

∑
v cvevk/

∑
v cv∑

v evk/V , where
cv is the PPA for SNP v. This is more efficient and accurate
when the underlying causal variants were randomly sam-
pled from the annotations as done in the simulation.

Stochastic gradient updates per locus. Directly updating
model parameters based on the gradients of all GWAS loci
at each MCMC iteration is inefficient and results in poor
HMC acceptance rate. Instead, at each MCMC update, we
randomly sample one locus and update the model param-
eters (which are shared across loci) based on that locus.
We find this approach quite efficient in capturing mean-
ingful causal properties such as causal signals and relevant
epigenomes that are shared across all risk loci. Together,
we outline the overall algorithm of the proposed Bayesian
model in Algorithm S2 (Supplementary Text S1).

GWAS simulation

To assess the power of the proposed fine-mapping model
in identifying causal variants and compare it with exist-
ing methods, we implemented a simulation pipeline adapted
from (18). Briefly, the simulation can be divided into three
stages (i) simulate genotypes based on the haplotypes from
1000 Genome European data (phase 1 version 3) using Hap-
Gen2 (30) (Supplementary Figure S1); (ii) simulate epige-
nomic enrichments and subsequently sample causal vari-
ants accordingly using 100 Roadmap annotations selected
from each of the 19 categories of primary tissue/cell types
(Supplementary Figure S1); (iii) simulate liability pheno-
type plus the random noise to obtain the desired heritability
(fixed at 0.25) and subsequently the GWAS summary statis-
tics in terms p-values and z-scores via ordinary least square
regression. Details are described in Supplementary Text.



PAGE 5 OF 13 Nucleic Acids Research, 2016, Vol. 44, No. 18 e144

Gene ontology enrichment analysis

We obtained the latest gene annotations from Ensembl
database (version 80) programmatically via biomaRt pack-
age (31), which resulted in 10,801 gene ontology (GO) terms
in biological processes (BP). To assign SNPs to genes, we
performed lift-over to map the SNPs from hg19 to hg38 us-
ing rtracklayer (32) and assigned each SNP to a gene if it
is located within 35 kb up and 10 kb downstream of that
gene. The resulting Ensemble gene identifiers were matched
with those genes in each GO-BP category. We then per-
formed hypergeometric tests on each GO-BP term for all
of potential in-cis target genes of the SNPs in each trait
and adjusted for multiple testings using Benjamini-Hocherg
family-wise Type I error correction method (33). For the 9
immune traits, the enrichment signals are strong so we set
the cutoff at FDR < 0.005; for Schizophrenia, we set FDR
< 0.2.

RiVIERA software

RiVIERA is available as an open-source R package with
documented functions and walk-through examples de-
scribed in the vignette. Most functions were implemented in
C++ by integrating Rcpp and RcppArmadillo libraries (34).
These libraries enabled us to apply RiVIERA to large ma-
trices very efficiently with complied code and having much
lesser memory overhead than a naı̈ve R implementation.
RiVIERA is available at Github (https://yueli-compbio.
github.io/RiVIERA-beta).

RESULTS

RiVIERA model overview

The fundamental hypothesis of our model is that non-
coding disease associations are driven by disruption of regu-
latory elements of common activity patterns (e.g. motifs of
sequence-specific regulators), thus leading to gene expres-
sion changes and ultimately phenotypic changes at the cel-
lular or organism level between case and control individu-
als. Our RiVIERA Bayesian model aims to infer the proba-
bility that a given variant v is a driver for disease d by mod-
eling the corresponding GWAS association statistic for that
variant using a vector of genome-wide epigenomic anno-
tations (ev). Given a set of B risk loci, the inputs to RiV-
IERA are GWAS summary statistics in terms of p-values
and a set of discrete or continuous epigenomic annotations
(Figure 1A). In this study, we used binary signals to ease
interpretation of the functional enrichments. We train RiV-
IERA by repeatedly sampling one locus at each iteration to
efficiently learn the intrinsic (i.e. locus-independent) causal
signals. Figure 1B depicts RiVIERA as probabilistic graph-
ical model (35). The observed variable of our model is the
GWAS association values (in terms of p-values) avd for each
variant v in each disease d. We assume that avd follows a Beta
distribution with unknown mean and dispersion parame-
ters. The effect of each annotation on each trait is learned
as global annotation-by-disease weight matrix w, which fol-
lows a D-dimensional multivariate normal distribution with
zero mean and D × D disease-disease covariance �w. The
prior probability �vd that a variant v is causal in disease d

is essentially a linear combination of the weighted genomic
annotations ev, which reflects the disease-associated active
histone marks and DNA accessibility in the 127 cell types
(Materials and methods). The outputs of the model (Figure
1C) are (a) posterior probability of association (PPA) cvd
that variant v is causal in disease d; (b) the Bayesian fold-
enrichment estimates fkd based on the ratio between the full
prior model with all annotations over the null prior model
with all annotations except for annotation k.

Method comparison using GWAS simulation

The goal of the simulation is to evaluate the model’s power
to predict (i) causal variants in each locus; () the relevant an-
notations that determine which variants are causal. To this
end, we simulated GWAS summary statistics based on 1000
Genome European data (Phase 1 release 3) (Supplementary
Figure S1) and 100 representative epigenomic annotations
(Supplementary Figure S1) (Materials and methods). We
performed a series of power analyses over 500 simulation
runs.

First, we examined how well the posterior probabilities
were calibrated by taking the credible SNPs that contribute
to 95% posterior mass inferred by each method (Supple-
mentary Figure S2). As expected, when our model assump-
tion of single-causal variant per locus holds, we observe that
our model is well calibrated (Supplementary Figure S2),
where the 95% credible SNPs indeed correspond to approx-
imately 95% of the causal variants. When there are more
than one causal variants per locus, the 95% credible SNPs
include on average 50% the true causal SNPs (Supplemen-
tary Figure S2)

Because the number of variants within the credible set dif-
fers depending on the concentration of the posterior prob-
abilities inferred by each method, we sought to control
that bias by evaluating the proportion of identified causal
variants as a function of the absolute number of selected
variants. When the assumption of one-causal-variant-per-
locus holds, we observed comparable or better performance
of RiVIERA compared to existing methods (Figure 2).
As expected, when the assumption is violated, our current
model is second to PAINTOR, which is able to infer mul-
tiple causal variants per locus (Supplementary Figure S3).
We also examined the correlation between the functional
enrichments estimated by each method and the underly-
ing epigenomic enrichments that were used to simulate the
causal variants. The performance of the four methods are
comparable with the proposed model achieving a slightly
better correlation (Supplementary Figure S4).

Applications to immune and psychiatric disorders

To demonstrate RiVIERA in a real-world application, we
used it to investigate 10 complex diseases including nine
immune diseases with summary statistics obtained from
ImmunoBase (15) and Schizophrenia from Psychiatric Ge-
nomic Consortium (PGC) (21) (Table 1). We used 848 epige-
nomic annotations from ENCODE/Roadmap consortium
(Materials and methods) to build a functional prior for
each trait to aid fine-mapping and conduct cell-type spe-
cific epigenomic enrichment analyses (7). We first applied

https://yueli-compbio.github.io/RiVIERA-beta


e144 Nucleic Acids Research, 2016, Vol. 44, No. 18 PAGE 6 OF 13

Figure 1. RiVIERA model overview. (A) Inputs to RiVIERA are GWAS summary statistics and epigenomic annotations for B risk loci. At a given iteration,
the model samples one locus and tries to learn the intrinsic causal signals implicated in the corresponding GWAS summary data and epigenomic profiles.
Highlighted variant is the causal variant based on the simulated data. (B) The probabilistic graphical model representation of RiVIERA (35). Variables for
which distribution is defined are in circle. Epigenomic profiles are treated as observed values with no circle. The variable in shaded circle are observed (i.e.
GWAS association avd and variables in unshaded circle are unobserved. The variables in red are observed and variables in blue are the variables of interest
(i.e. causal indicator). The two colored plates represent K annotations (red) and V variants (blue). We model the GWAS association avd of variant v in
terms of P-value sampled from Beta distribution with unknown precision �d and mean �d, which respectively follow an uninformative prior and a Beta
distribution with hyperparameters �0, �0. The latent variable cvd indicates whether variant v is causal in disease d. On top of it, we dedicate an empirical
prior as a linear combination of the epigenomic profile evk weighted by the epigenomic influence wkd, which follows multivariate normal with zero mean
and a D × D inverse covariance or precision matrix �−1

w , where D is the number of traits that are being modeled. The linear bias w0d expresses the prior
belief of the causal fraction �0 (default: 0.01). (C) Outputs from the model are posterior probabilities of association (PPA) for each variant in each locus,
the 95% credible set containing the minimal number of SNPs whose PPA sum to 0.95 or greater, and the Bayesian estimates of the fold-enrichment of each
annotation.

Figure 2. Model performance on simulated datasets. Proportion of causal
variants were identified by each method as a function of increasing number
of top variants selected.

RiVIERA to the 10 traits separately to examine individual
causal signals and then demonstrated RiVIERA’s capabil-
ity to operate on the nine immune traits and the improved
detection power compared to the single-trait model.

RiVIERA detected meaningful tissue-specific enhancers in
test GWAS traits

We first sought to confirm the validity of the model through
its ability to identify meaningful cell-types or tissues for
each trait. To this end, we selected the top 5% (i.e. the top 43)
of the 848 annotations for each disease based on the corre-
sponding Bayesian estimates of the lower bounds of the 95%
credible interval (Supplementary Table S1; Materials and
methods). We then performed hypergeometric tests on en-
richments of each of the 19 categories grouped by Roadmap
consortium based on the cell types and tissues (7). Indeed,
we observed a significant enrichment for Blood & T-cell for
all nine immune disorders but not for Schizophrenia, which
exhibits exclusive epigenomic enrichments in the Brain cat-
egory (Hypergeometric adjusted P-values < 0.05) (Figure
3A). Additionally, we also observed modest enrichments
for B-cell and Thymus tissue in the nine immune traits. We
then examined the enrichment status for the eight epige-
nomic marks. Indeed, enhancer marks namely H3me4me1
and/or H3K27ac are most significantly enriched among all
eight marks (q-values < 0.05). In addition, H3K4me3 as-
sociated with promoter is also enriched in most immune
traits. Interestingly, we also observed a modest enrichment
of H3K9me3 in Schizophrenia but not in the immune traits.
We further ascertained the enrichment results by re-running
RiVIERA on the permuted data matrix and observed di-
minishment of the meaningful enrichment observed above
(Supplementary Figure S5).
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Figure 3. Predicted tissue-specific epigenomic enrichments in the 10 GWAS traits. (A). Hypergeometric enrichment for each of the 19 primary tissue
categories using the top 5% or 43 annotations out of the 848 annotations in total for each trait based on the lower bound of the 95% credible interval of
the Bayesian fold-enrichment estimates by our RiVIERA; model; (B) enrichments for the eight epigenomic marks among the top 43 annotations for each
trait. Y-axis is the logarithmic q-values, which are the corrected P-values from the hypergeometric tests for multiple testing across traits and tissue groups
or marks by Benjamini–Hochberg method (33). On both plots, horizontal dashed bars indicate standard statistical threshold of FDR < 0.05.

SNPs in the credible set exhibit promising regulatory poten-
tials

The variants in the credible set are more enriched for func-
tional elements. Inspired by the promising tissue-specific en-
hancer enrichment results obtained above, we refined our
RiVIERA model by re-training it on the top 5% (or 43)
annotations on each trait using the same GWAS data. For
each locus in each trait, we then constructed 95% credible
set (Supplementary Table S2; Materials and methods). On
average, we were able to construct a rather small credible set
ranging from 4 to 25 SNPs per locus for the 10 traits (Table
1). As a comparison, we extracted the same number of SNPs
with the most significant GWAS P-values from each locus.
For ease of reference, we named our SNPs in the credible
set as ‘credible SNP’ and the GWAS counterpart as ‘GWAS
SNP’. Compared to GWAS SNPs, the credible SNPs exhibit
substantially higher averaged placental conservation scores
(phastCons46way obtained from UCSC database) across
most traits (Figure 4 CONS).

Moreover, the credible SNPs were significantly enriched
for expression quantitative trait loci (eQTL) that are in
the regulatory regions. Specifically, we obtained in total
806 847 GTEx whole-blood eQTL-SNPs (version 6) (36)
and retained 122 549 and 23 973 eQTL-SNPs that overlap
with transcription factor binding sites derived from 1772
TF recognition motifs (37) and digital genomic footprints
(DGF) at 6-bp resolution derived from DNaseI data in
CD cells using method described in (38), respectively as

well as 6743 eQTL-SNPs that overlapped with both the
TFBS and DGF regions. We then performed hypergeomet-
ric tests to assess the significance of overlap between the
credible/GWAS SNPs and the regulatory-eQTL SNPs. In-
deed, our credible SNPs exhibit much higher enrichments
for those eQTL-SNPs, suggesting their regulatory poten-
tials elucidated based on the enhancer activities by our pro-
posed RiVIERA model (Figure 4; Supplementary Table
S3).

Gene-centric analysis revealed enrichment for meaningful bi-
ological processes

Genes adjacent to the SNPs in credible sets are signifi-
cantly enriched for disease-specific biological processes. In
particular, we observed significant enrichments of many
immune-related processes for the in-cis genes for which
the SNPs in the credible set are within 35 kb upstream
or 10 kb downstream (Figure 5; Supplementary Table
S4; Materials and methods). For instance, regulation of
T cell homeostatic proliferation, regulation of interferon-
gamma-mediated signaling pathway, and regulation of type
I interferon-mediated signal pathways are among the most
significantly enriched GO terms in five or six out of the nine
immune traits. In contrast, the enrichments for Schizophre-
nia are dominated by GO terms involving synaptic pro-
cesses and neuronal differentiation/development. The en-
richment results are mostly consistent between the credible
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Figure 4. Functional enrichments of credible SNPs. The top left panel displays the averaged phastCons46way conservation scores for variants in the 95%
credible set (cred snp) and the same number of SNPs chosen based on GWAS P-values (gwas snp). The three other panels illustrate hypergeometric
enrichments in terms of the -log10q-values corrected for multiple testing over the 10 traits of the selected variants for GTEx whole blood eQTL located
within transcription factor binding sites based on sequence motif (TFBS) (eQTL + TFBS) and genomic digital footprint (DGF) (eQLT + DGF) and eQTL
in both TFBS and DGF (eQTL+TFBS+DGF).

genes and the genes derived from the same number of SNPs
chosen based on the GWAS P-values (GWAS-genes).

Intriguingly, we observed a highly significant enrichment
for keratinization (GO:0031424) and epidermis (e.g. skin)
development (GO:0008544) exclusively for Psoriasis. In par-
ticular, 17 genes among the 241 credible genes belong to
keratinization and epidermis development, which contain
in total 49 and 121 genes, respectively (q < 9 × 10−18, q
< 2 × 10−10). Indeed, Psoriasis is mainly characterized as
a chronic skin disease with epidermal hyper-proliferation
(39,40). In contrast, there are only six out of 157 GWAS-
genes are defined in each of two GO categories (q < 0.001).

To further ascertain the RiVIERA fine-mapping results,
we created a visualization scheme for each of the 469
risk loci across 10 traits examined (Supplementary Figure
S6). Figure 6 displays two example loci for Type 1 dia-
betes (chr17: 37383069-38239012) and Schizophrenia (chr7:
104598324-105062839). The upper panel displays the RiV-
IERA model prior, the genetic signals from GWAS −log
P-values, and RiVIERA PPA. Red colored and diamond
shape points are GTEx whole-blood eQTL SNP and top
SNPs included into 60% credible set (we used 60% to not
clutter the plot with the remaining SNPs in the 95% credible
set that exhibit low PPA). Intuitively, SNPs with high PPA
exhibit both prominent genetic and epigenetic signals. Thus,
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Figure 5. Gene ontology enrichments across the 10 traits. Rows are the GO biological processes and columns are the 10 traits. Color intensities in each
cell reflect the significance level in terms of -log10P-value. Asterisks indicate q-values above significant cutoff after correcting for multiple testings (FDR
< 0.2). GO names that match the pattern ‘synap|neuro|nerve‘ are colored blue to highlight their exclusive association with ‘Schizophrenia’ (also in blue).
Notably, GO terms ‘keratinization‘ and ‘epidermis development’ (highlighted in the red box) are exclusively enriched for Psoriasis. Diseases were ordered
based on hierarchical clustering based on the Pearson correlation of their GO enrichment scores.

to infer causal variants, RiVIERA efficiently took into ac-
count not only the GWAS signals derived from the genetic
data but also the prior signals mainly driven by the weighted
epigenomic profiles. The middle panel illustrates the cumu-
lative density for each epigenomic profiles weighted by the
tissue-specific enrichment estimates.

Consistent with the overall enrichment results (Figure 3),
we observed prominent enrichments for the enhancer re-
gions predominantly in blood T cells for all of the nine
immune traits and brain tissue for Schizophrenia. The
bottom tracks display the external functional information
(i.e. not in the training data) including conservation score,
genes, transcription factor binding sites based on motif
matches that may further aid variant selection for down-
stream experimental validation (please refer to Supplemen-
tary Table S2 for detailed information). We also visualized

the signals within the of Psoriasis-associated risk region
ch1:152536784–152785170, which harbors genes involved
in keratinization and epidermis development as mentioned
above. Interestingly, as an exception of most other immune-
susceptible loci, the underlying epigenomic profiles exhibit
prominent signals not only in blood T-cell but also in ep-
ithelia enhancer regions (Supplementary Figure S6). How-
ever, the associated SNPs exhibit rather weak genetic signal
perhaps due to lower allele frequencies.

Multi-trait causal inference improved functional enrichments
in most immune traits

Exploiting epigenomic correlation between highly related
immune diseases improved functional enrichments in sev-
eral traits. We performed multi-trait causal inference over
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Figure 6. Visualization of fine-mapping results. Top track: the upper panel display the RiVIERA prior, genetic signals of GWAS −log10P-values, and
RiVIERA PPA; the middle track illustrates the cumulative density of weighted epigenomic profiles colored based on the epigenomic group; the bottom
tracks shows the conservation, gene annotations (Gencode 19), transcription factor binding sites (TFBS), and SNP positions. The red colored and bigger
diamond plots indicate whole-blood GTEx eQTL SNPs and SNPs included into the 60% credible set, respectively. For illustration purpose, only one risk
locus for Type 1 diabetes and one for Schizophrenia are shown above. The full display of 469 risk loci were in Supplementary Figure S6.

all of the nine autoimmune traits by jointly applying our
RiVIERA to 364 risk loci concatenated together from the
nine immune traits using 174 epigenomic annotations which
was a union of unique annotations from the top 43 anno-
tations for each individual trait. We focused only on the
nine immune GWAS (i.e. leaving out Schizophrenia) be-
cause they commonly utilized the same genotyping plat-
form namely ImmunoChip. The multi-trait GWAS sum-
mary statistics triggered RiVIERA to infer the disease
covariance matrix and sample disease-specific epigenomic
weights from the joint posterior with modified zero-mean
multivariate normal prior that takes into account the sam-
pled disease covariance (Materials and methods). As a re-
sults, RiVIERA sampled correlated epigenomic weights be-
tween traits more frequently compared to the single-trait
model.

We constructed the 95% credible sets for each trait us-
ing the disease-specific PPA derived from the joint model
and assessed the functional enrichments as above (Supple-
mentary Table S6). Notably, the cross-trait model exploited
174 annotations as apposed to 43 annotations used by the
single-trait model. To examine whether the improved en-
richments were due to the increased number of annotations,
we re-ran a single-trait model for each of the nine traits sep-
arately each using the 174 annotations. Compared to the
95% credible set constructed based on the single-trait causal
inference using the top 43 annotations, we observed smaller
95% credible sets for eight out of the nine immune traits

(Table 1), suggesting that the mulit-trait joint inference fur-
ther improved the model confidence in some of the highly
related traits.

More importantly, we observed a much more improved
enrichments for the GTEx whole-blood eQTL SNPs located
within open chromatin regions or digital genomic footprints
in most of the immune traits (Figure 7; Supplementary Ta-
ble S5). Thus, the joint inference further improved the reg-
ulatory potential through following the Hamiltonian tra-
jectory that is more consistent with the epigenomic corre-
lation pattern between the related immune traits. We also
repeated the GO enrichment analysis on the 95% credi-
ble set and found that the enriched GO terms were mostly
immune-specific biological processes and consistent with
the above single-trait analyses (Supplementary Figure S7;
Supplementary Table S7).

DISCUSSION

Understanding the genetic basis of complex traits hinges
upon powerful integrative methods to map genotypes to
phenotypes (41). Fine-mapping causal variants has been
a highly active and fruitful research in the past several
years (9,18,42–44). However, most existing methods typi-
cally operate solely on genetic data by estimating each SNP
of being causal conditioned on the lead index SNPs in
the same LD block, which are typically approximated by
the 1000 Genome data (9,15,45,46). With the recent avail-
ability of large-scale functional genomic data provide by
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Figure 7. Enrichments for eQLT using credible SNPs constructed from
multi-trait joint inference. Credible SNPs for each trait were constructed
based on PPA inferred by the joint RiVIERA model over the 9 immune
traits using 174 annotations, which are the union of the top 43 annotations
detected from each trait individually. We then assessed the hypergeomet-
ric enrichments of the 95% credible sets for the GTEx whole-blood eQTL
that are within DNA hypersensitive sites as defined by the genomic digital
footprint data (38). We compared these enrichment scores derived from
the multi-trait model (cred snp mt) to the enrichments derived from the
single-trait models either running on 43 annotations (cred snp st43) or on
the 174 annotations (cred snp st174). The latter was included to control
for the improvements due to the increased number of annotations (from
43 to 174).

ENCODE/Roadmap consortia, there is an urgent need to
incorporate these valuable information in a principled way
as a form of Bayesian prior. In this article, we describe
a novel Bayesian fine-mapping method RiVIERA to re-
prioritize GWAS summary statistics based on their epige-
nomic contexts. The main contribution of RiVIERA is the
ability to systematically construct from a targeted set of sus-
ceptible loci a Bayesian credible set of SNPs, which exhibit
plausible tissue-specific regulatory properties implicated in
the large epigenomic data compendium either in a single
trait or across multiple traits.

One benefit of using the raw epigenomic annotations
rather than using the inferred signals such as ChromHMM
(7) or GenoSkyline (47) states derived from the annota-
tions is that it eases the interpretation of the actual relevant
epigenomic marks in the relevant tissue types and facilitates
downstream experimental efforts to assay the specific marks
in the disease-specific cell types. However, the correlation
of the epigenomic marks will make difficult estimating the
underlying functional enrichments. Moreover, we choose
to model the summary statistics rather than genotypes be-
cause it is not always possible to obtain individual-level
phenotype-genotype data particularly for large-scale meta-
analysis. Thus, effective methods based on summary statis-
tics may benefit wider research communities than meth-
ods that solely operate on individual-level genotype data

(18,19,23). Moreover, our model requires only p-values be-
cause it uses Beta distribution to model the likelihood. In
contrast, fgwas requires both the z-scores and the standard
error from the linear regression used in the GWAS to esti-
mate the Wakefield approximate Bayes factors. While some
recent GWAS summary statistics include those informa-
tion, there are many do not have z-scores and/or standard
error of the linear model but only P-values (e.g. the Im-
munoChip data we used in our studies for the nine immune
traits). When the standard error is not available in a given
GWAS summary statistics, fgwas needs to be estimate it
from the minor allele frequency of a reference panel such
as 1000 Genome, which may not be accurate depending
the study cohorts. Additionally, modeling P-values via Beta
density function only has more relaxing model assumption
than modeling z-scores via normal density although both
methods are highly effective in practice.

Overall, SNPs included into the credible set exhibit both
significant GWAS signal and high prior. In some cases,
however, SNPs that were added to the credible set in each lo-
cus do not exhibit significant GWAS p-values (Supplemen-
tary Tables S2 and S6). This generally occurs when the ge-
netic signals in those loci are weak relative to the SNPs in
other loci for the same trait, and the model functional prior
eventually dominates the SNP prioritization. Thus, we rec-
ommend considering these variants cautiously when design-
ing downstream experiments.

One important assumption of our model is that there is
one causal variant per locus, which is reflected by the nor-
malization of variants within each locus so that they sum
to 1 in order to obtain PPA and construct 95% credible sets
(23). When this assumption holds, the posterior probabil-
ities are well calibrated (Supplementary Figure S2). How-
ever, as demonstrated in our simulation, when this assump-
tion is violated, the PPA is not well calibrated (Supplemen-
tary Figures S2 and S3). Other existing method such as
PAINTOR (18) and CAVIAR (48) employ multivariate nor-
mal distribution to model all of the variants within a lo-
cus using LD reference panel estimated from 1000 Genome
data as the covariance matrix, which allows inferring more
than one causal variants per locus. While CAVIER used
only summary statistics, PAINTOR is able to employ func-
tional annotations to aid fine-mapping. Both methods re-
quire computing the likelihood density across a combinato-
rial set of causal configurations and therefore still needs to
assume at most an arbitrarily small number of causal vari-
ants, typically below 10 causal SNPs per locus.

As future works, we will explore potential ways to enable
efficient inference of more than one causal variants per lo-
cus. Furthermore, we will also explore the potential gain
of incorporating trans-ethnic data, which was effectively
demonstrated by the trans-ethnic version of the PAINTOR
model (49). Moreover, in addition to modeling the epige-
nomic correlation between traits, variant prioritization may
further benefit by jointly inferring the comorbidity at the
individual SNP level (19), gene level (50), and/or pathway
level (17). Together, we believe that RiVIERA will serve
as a valuable tool complementary to the existing meth-
ods in identifying novel risk variants through tissue-specific
epigenome-aware fine-mapping as well as aiding the selec-
tion of the appropriate cell types and epigenomic marks for
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more focused investigations of the disruptions of chromatin
states by the disease-specific causal variants.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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