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ABSTRACT

Cyanobacterial regulation of gene expression must
contend with a genome organization that lacks ap-
parent functional context, as the majority of cellu-
lar processes and metabolic pathways are encoded
by genes found at disparate locations across the
genome and relatively few transcription factors ex-
ist. In this study, global transcript abundance data
from the model cyanobacterium Synechococcus sp.
PCC 7002 grown under 42 different conditions was
analyzed using Context-Likelihood of Relatedness
(CLR). The resulting network, organized into 11 mod-
ules, provided insight into transcriptional network
topology as well as grouping genes by function
and linking their response to specific environmental
variables. When used in conjunction with genome
sequences, the network allowed identification and
expansion of novel potential targets of both DNA
binding proteins and sRNA regulators. These re-
sults offer a new perspective into the multi-level
regulation that governs cellular adaptations of the
fast-growing physiologically robust cyanobacterium
Synechococcus sp. PCC 7002 to changing environ-
mental variables. It also provides a methodological
high-throughput approach to studying multi-scale
regulatory mechanisms that operate in cyanobacte-
ria. Finally, it provides valuable context for integrat-
ing systems-level data to enhance gene grouping
based on annotated function, especially in organ-
isms where traditional context analyses cannot be
implemented due to lack of operon-based functional
organization.

INTRODUCTION

The cyanobacterial research community was one of the
first scientific groups to enter the genomic era, when, in
1996, Synechocystis sp. PCC 6803 became only the third or-
ganism to be completely sequenced (1). Many subsequent
genome sequences have been derived from other cyanobac-
terial species and have been assembled and deposited in
the NCBI sequence database (http://www.ncbi.nlm.nih.gov/
genomes). However, despite the early and continued activ-
ity across this extremely diverse bacterial phylum, the appli-
cation of systems biology approaches in cyanobacterial re-
search still lags behind other Eubacteria. This is likely due,
at least in part, to the unique genomic and genetic properties
of cyanobacteria, wherein functionally related genes are less
frequently clustered in the genome (2) and the overall num-
ber of operons is significantly reduced (3). These properties
render genome context analysis, which infers functional re-
latedness based on gene co-localization, relatively ineffec-
tive.

The use of regulon analysis to identify functionally re-
lated genes based on their regulation by a common tran-
scription factor is also difficult due to the low number
of transcription factors in cyanobacteria (4) compared to
other bacteria. This may lead to a regulatory system that
is comprised of larger regulons and increases the likelihood
that different pathways are controlled by a single regulator
responding to many different environmental stimuli (5). The
lack of transcription factors also suggests that cyanobac-
teria may utilize alternative controls for gene expression
including post-transcriptional mechanisms. Indeed, several
studies have revealed a large number of small RNA (sRNA)
species in cyanobacteria (6–10) as well as candidate targets
of their regulation, predicted based on homologous base-
pairing (11). Notably, the targets of post-transcriptional

*To whom correspondence should be addressed. Tel: +1 509 371 6966; Fax: +1 509 371 6946; Email: alex.beliaev@pnnl.gov
†These authors contributed equally to this work as the first authors.

C© The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

http://www.ncbi.nlm.nih.gov/genomes


Nucleic Acids Research, 2016, Vol. 44, No. 18 8811

regulation include heat shock and light-induced proteins,
which typically are parts of globally controlled pathways in
other species (12–14).

The role of cyanobacteria as primary producers, a key-
stone function in many aquatic and terrestrial ecosystems,
makes understanding the linkages between genomic con-
tent and regulatory strategies in these species extremely im-
portant. Global transcriptome analysis is an effective high-
throughput means to identify coordinated gene expres-
sion and to infer functional relationships. RNA sequenc-
ing (RNA-seq) is rapidly becoming the standard for global
transcriptome analysis because of its unparalleled resolu-
tion and its ability for de novo transcript identification. The
increasing availability of transcriptional profiles collected
under many different environmental conditions has the po-
tential to yield new insights into the coordination of gene
expression compared to what was previously concluded in
smaller targeted studies. Gene association models based on
co-expression are independent of genomic or operon struc-
ture and can be used to predict gene function (15), identify
regulatory targets (16) or examine the importance and cen-
trality of conserved genes across species (17).

To apply this gene organization methodology to
cyanobacteria, we utilized the wealth of transcriptomic
data available for Synechococcus sp. PCC 7002 (here-
after, Synechococcus 7002), a model unicellular marine
cyanobacterium that was first isolated from mud flats
associated with a fish farm in Puerto Rico (18). As an
inhabitant of marine and freshwater interfacial systems
(e.g. estuaries and tidal zones) (19), the ecophysiological
success of this photoautotroph depends on its ability to
adapt rapidly to drastic shifts in temperature, salinity,
light and nutrient availability. Like other cyanobacteria,
Synechococcus 7002 modulates its cellular responses using
a genomic structure that places related genes at disparate
sites in the genome and with a reduced number of tran-
scription factors that govern the expression of specific
cellular pathways. The available RNA-seq data sets used in
this study, consisting of 42 distinct physiological conditions
(20–23), were examined using the Context Likelihood of
Relatedness program (CLR) (24) to develop a transcript-
based gene association network of Synechococcus 7002.
The resulting network was then grouped into modules
of co-expressed genes. The outcomes of this study aptly
illustrate the broad applicability of a CLR-based approach
for integration of expression data to enhance correlation
of genes, an important step toward the general principles
underlying genomic organization and regulatory landscape
of prokaryotic photoautotrophs.

MATERIALS AND METHODS

Strains, culture conditions and analysis of raw data

Expression data for Synechococcus 7002, representing 42
discrete growth conditions, were either generated from con-
tinuous culture experiments carried out for this study or
sourced from previously reported experiments that exam-
ined growth of the organism under nutrient limitation, vary-
ing irradiance levels, extremes of cell density, temperature
and salinity, as well as co-cultivation with a heterotrophic

bacterium Shewanella W3-18 (20–23). Data were derived ei-
ther from studies carried out at the Pacific Northwest Na-
tional Laboratory (PNNL) (20) or from a series of studies
carried out by Ludwig and Bryant at the Pennsylvania State
University and deposited into the Gene Expression Om-
nibus (GEO) database (21–23). Experimental conditions
that have not yet been reported but are included in this study
include carbon-, light- and nitrogen-limited growth of Syne-
chococcus 7002, growth of the organism under a range of
irradiance levels, as well as growth of a high-light/high-O2
adapted strain of Synechococcus 7002 under variable oxy-
gen levels. For these conditions that have not yet been re-
ported the continuous cultivation of Synechococcus 7002,
operated in chemostat or turbidostat modes, was carried
out with A+ medium (25) in a photobioreactor operated at
30◦C with a dilution rate of 0.1 h–1 as described previously
(26). In carbon-, nitrogen- or light-limited chemostats,
steady-state growth was supported at 7.7 mM NaHCO3, 0.9
mM NH4Cl or 140 �E m–2 s–1, respectively. To examine re-
sponse to a range of irradiance levels Synechococcus 7002
was grown in turbidostat mode under six irradiance levels
ranging from 33–760 �mol photons m–2 s–1. Finally, a high-
light and high-O2 adapted strain of Synechococcus 7002 was
grown under either 7.1% or 16.5% dissolved O2. Supple-
mentary Table S1 summarizes the growth conditions used in
this study. RNA from conditions 1–18 (Supplementary Ta-
ble S1) was extracted and processed as described in Beliaev
et al. 2014 (20) while RNA from conditions 19–42 was pro-
cessed as described in Ludwig and Bryant (21). Sequencing
was performed using SOLiD 5500XL protocol (20) (con-
ditions 1–18) or with the SOLiDTM 3 or 3Plus protocol
(21) (conditions 19–42). All raw RNA-seq files were aligned
to the complete genome of Synechococcus sp. PCC 7002
(NCBI Accession # CP000951) and gene expression levels
for all conditions were determined as reads per kilobase per
million reads (RPKM), normalized to the upper quartile
of expressed genes using the Rockhopper program as previ-
ously described (27).

Generation of the full co-expression network, module detec-
tion and functional enrichment

Using expression values for each gene in each condition
(excluding uncharacterized non-coding transcripts such as
sRNAs), a co-expression network was generated with the
CLR method (24,28). To reduce the detection of spurious
links between co-expressed genes, a resampling approach
was used wherein CLR was run 500 times, each time with
38/42 randomly selected conditions and only gene (node)
pairs with an edge Z-score of 4.5 (4.5 standard deviations
above the mean of the mutual information score of a given
gene pair with all other genes) in at least 375 (75%) of the
runs were assigned edges between them in the final con-
sensus network reported here. A Z-score of 4.5 was chosen
based on the lack of structure in networks with lower Z-
scores (Supplementary Figure S1). To determine how many
runs of CLR were required for robust analysis, two sepa-
rate resampling test analyses were carried out, each with
500 runs of CLR, with each analysis having a different ran-
dom seed to insure that each resampling analysis contained
a unique set of randomly sampled conditions for each run.
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We observed that the similarity of the final networks con-
verged at ∼97% after 500 runs and that additional runs did
little to increase convergence. The node-edge structure is
provided as a .sif file (Supplementary Data File), that can
be viewed in Cytoscape (http://www.cytoscape.org/, (29)).

To identify robust modules of co-expressed genes (30),
we used a similar resampling approach to the one used for
generating the consensus network. Using the same 500 net-
works inferred for the consensus network, we detected mod-
ules in each of them with the fastgreedy algorithm (as imple-
mented in the R igraph package). If two genes were included
in the same module in 75% of the networks, that gene pair
was retained. The persistent gene pairs were then included
in a ‘module network’, in which an edge between two genes
meant that they were consistently found in the same module.
Although this network representation had a clear modular
structure (i.e. grouping of genes), there were still a subset of
genes where their module membership was still ambiguous.
To resolve such ambiguities, we used the fastgreedy algo-
rithm again to assign genes to their final modules. We call a
grouping of genes in this network a consensus module, and
each module was required to have a minimum of 12 genes to
be included in our final analysis. The clustering coefficient
of each module was then calculated by averaging the local
clustering coefficient of each node in a given module. A P-
value was also assigned to each module by determining how
often (among 1000 iterations) the clustering co-efficient of
a random set of n genes (where n is equal to the number of
genes in the module) exceeded the clustering co-efficient of
the module as reported in the full network. Visualization of
the network was carried out using Cytoscape (29). Func-
tional enrichment was carried out on genes within modules
using Fisher’s exact test along with a curated Synechococcus
7002 genome annotation file.

Identification of transcription factor binding motifs within
modules

Regulatory motifs were predicted in the intergenic regions
of genes in the same module using the Gibbs recursive sam-
pler (31). Intergenic regions of at least 20 bp in length and
directly upstream of the genes in the co-expression mod-
ules were extracted and subjected to multiple runs of the
Gibbs recursive sampler, using all combinations of the fol-
lowing parameters: prediction of one or two motif models,
the model width specified as 14 or 16 bases (allowed to frag-
ment to 22 or 24 bases, respectively), and the model de-
fined as palindromic or non-palindromic. A maximum of
three sites per intergenic was allowed for all Gibbs runs.
A position-specific background model (32) was employed,
sampling was performed with 20 random seeds and 1000
iterations were used with a plateau period of 200. From
these parameter combinations, the most probable motifs
were identified as those with positive maximum a posteriori
probability (MAP) value; a positive MAP value indicates
that the motif alignment is more likely than the unaligned
random background.

Expanding regulons of DNA binding transcription factors
and non-coding RNAs

Well-characterized DNA binding transcription factors were
analyzed further through generation of their 2nd order net-
work neighborhood. This network neighborhood contains
all genes that have an edge with the regulator as well as
any genes that have an edge with a gene that has an edge
with the regulator. For this more specific analysis a new con-
sensus network was generated with a Z-score cutoff of 3.0
rather than 4.5. Reducing the Z-score in this way allowed
for a larger pool of potential targets of regulators while still
maintaining a strict Z-score cutoff. Well-characterized reg-
ulators with a significant number of their known targets,
as determined by RegPrecise (33), within their 2nd order
neighborhoods were examined further. First, a motif ma-
trix for the binding site of each regulator was generated
through analysis of the promoters of known targets, again
from RegPrecise, using the MEME program (34). Except
in the case of NrtR2 (SYNPCC7002 A2383) known bind-
ing sites were only drawn from Synechococcus 7002 genes.
For NrtR2 there were only three known binding sites so
the consensus binding site was made up of these three sites
plus two additional sites from Cyanothece sp. PCC 7425.
Promoter-containing regions (inclusive of 250 bp upstream
of the ATG start codon) for all genes within the 2nd order
neighborhood were then scanned using the Find Individual
Motif Occurrences program to find matches with the mo-
tif matrix generated by MEME. Genes that (i) were within
the 2nd order neighborhood of the regulator, (ii) contained
the motif for the regulator under analysis in their promoter
with a P-value of < 0.0001 and (iii) had not previously been
named a target of the regulator by the RegPrecise database
were considered putative new targets of the regulator. A
similar analysis was carried out with non-coding transcripts
(sRNAs) identified in the RNA-seq data set. The only dif-
ference was that a Z-score of 2.0 was used and instead of us-
ing motif analysis, the TargetRNA2 (35) program was used
to generate lists of putative targets of sRNAs. These lists of
putative targets were then cross-referenced against the list
of mRNAs having edges with the sRNA under analysis to
identify targets of high possibility.

RESULTS

Global analysis of the consensus Co-expression network

The 42 RNA-seq data sets used in this study were either
generated de novo or collected from previous studies exam-
ining acclimation of Synechococcus 7002 to a broad range
of environmental variables (see Supplementary Table S1;
(20–23)). A co-expression network was inferred using CLR
methodology in conjunction with a resampling approach,
which significantly increased the robustness of the infer-
ences. The final consensus network consisted of 1386 genes
(nodes) with 3916 connections (edges) between them cor-
responding to ∼43% of the Synechococcus 7002 genome
(Supplementary Table S2, Supplementary Data File). The
consensus network was used to calculate the degree of each
node (i.e. the number of edges a node has with other nodes),
which can be used as a proxy for the centrality of a gene in
a given pathway as well as its essentiality to the overall sur-

http://www.cytoscape.org/
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vival and fitness of the organism (15,36,37). The degree dis-
tribution of the network fit a power law (correlation = 0.98),
a common feature of scale-free biological networks (Fig-
ure 1A) (38). Genes with the highest degree were involved
in energy metabolism, metabolite transport and translation
(Figure 1B; Supplementary Table S2). The latter were domi-
nated by genes encoding ribosomal proteins associated with
both the large and the small ribosome subunits; many of
these had high degree values driven by their connections
with other genes encoding ribosomal proteins. Genes in-
volved in energy metabolism with high degree values in-
cluded atpACHG and other genes encoding subunits of the
F1/F0 ATP-ase complex. Other energy metabolism genes
encoding the structural components of the photosystem II
(psb) and the phycobilisome antenna complex (cpc) also
had a large number of connections in the network, as did
three genes encoding enzymes of the Carbon–Benson cycle
(pgk, SYNPCC7002 A1585; glpX, SYNPCC7002 A1301;
and tktA, SYNPCC7002 A1022). Transport of molecules
into the cell is obviously crucial for growth and, as a result,
genes with high degree values included iron uptake and car-
bon fixation genes, as well as the MRP-family of Na+/H+

antiporters (SYNPCC7002 A2373-2380), which establish a
sodium gradient necessary for the transport of bicarbon-
ate into the cyanobacterial cell (39,40). In addition to genes
with annotated functions, network topology analysis also
identified a number of completely uncharacterized genes
with high degree values (Supplementary Table S2) likely
pointing to their essentiality for growth and metabolism of
Synechococcus 7002 as well as other cyanobacteria.

The obtained node-edge network can be organized fur-
ther by grouping genes into modules, structured such that
connections within a given module (intra-module edges)
are dense, while connections between two distinct modules
(inter-module edges) are sparse. As a result of this cluster-
ing, we were able to organize 903 genes into 11 distinct mod-
ules that contained between 13 and 231 genes each, repre-
senting ∼28% of the Synechococcus 7002 genome (Figure
2; Supplementary Table S2). Because the edges are highly
concentrated within modules, this means that, on average,
the genes within a given module have a higher concordance
of co-expression across conditions compared to genes in an-
other module. Module density, which was determined quan-
titatively by calculating the clustering coefficient of each
module (Figure 2), was generally inversely related to the
module size. The high clustering coefficient displayed by
Modules 4 (n = 87 genes), 5 (n = 35 genes) and 6 (n = 27
genes), indicates that many genes within this module have
high co-expression values across growth conditions. In con-
trast, Modules 1 (n = 215 genes), 2 (n = 178 genes) and
15 (n = 231 genes), which are much larger, contained less
intra-module edges, indicating lower level of co-expression
between genes within these modules. All modules were also
statistically significant with a P-value < 0.05.

Inferring regulatory patterns through functional enrichment
of network modules

To determine the association of genes with metabolic and
regulatory processes in each module, we carried out func-
tional enrichment analysis using a highly comprehensive

Synechococcus 7002 genome annotation, in which genes
were classified based on a main role, subrole and subsys-
tem category assignment. With the exception of Module 4,
which was comprised mainly of non-coding tRNA genes, all
modules were enriched for multiple functions (Table 1; Sup-
plementary Table S3), indicating the presence of functional
and transcriptomic relatedness within each grouping. Inter-
estingly, modules displaying the highest density also showed
some of the most significantly enriched functions. All en-
richments in reported in Table 1 had a P-value of < 0.05

The vast majority of growth-related, biosynthetic and en-
ergy metabolism genes were found in Module 1 (215 genes).
The latter was highly enriched for translation processes con-
taining 23 out of 31 genes encoding subunits of the large ri-
bosomal subunit and 16 out of 21 genes encoding subunits
of the small ribosomal subunit. With a single exception, no
other ribosomal protein genes were assigned to any other
module. Nucleotide metabolism, pyruvate metabolism and
transcription processes were also enriched within Module 1,
which contained eight purine metabolism genes, including
purAQLHTE, all of the pyruvate dehydrogenase complex
genes, pdhABCD as well as a pyruvate kinase gene pyk and
4/5 RNA polymerase genes rpoAC1C2B. The relative tran-
script abundances of genes in Module 1 were unchanged
across the majority of experimental conditions with the ex-
ception of those treatments associated with Synechococcus
7002 after it has acclimated to high light and high oxy-
gen (Figure 3). An appreciable decrease in transcript abun-
dances across Module 1 was observed when Synechococcus
7002 was cultivated in the absence of key nutrients such as
light, N, P and S; in contrast, broad upregulation of growth-
related genes was seen in cultures acclimated to high irradi-
ance conditions.

The other two large groupings were represented by Mod-
ules 2 (178 genes) and 15 (231 genes); notably, nearly half
of the genes in these modules encoded proteins of un-
known function. In Module 2, the enriched categories in-
cluded genes encoding glycan and polysaccharides biosyn-
thesis pathways as well as cell division and defense sys-
tems (Table 1; Supplementary Table S3). The average tran-
script levels did not display significant responses to any of
the experimental conditions, although a general decrease in
expression was seen during co-cultivation with Shewanella
and lactate and a general increase during changes in cell
density and nitrogen levels. Genes in Module 15 showed
a significant increase in expression during co-cultivation of
Synechococcus 7002 with Shewanella (Figure 3). Strong en-
richment for genes involved in defense against invasion by
phage and restriction modification systems was observed in
this module (Table 1; Supplementary Table S3). In addition,
three CRISPR genes, cas2, cas6 and cas10, as well as sev-
eral toxin-antitoxin gene pairs, were also present in Module
15, and all of them encoded functions involved in microbial
competition and ‘warfare’.

Among smaller groupings, Module 5 (35 genes) displayed
one of the highest clustering coefficients and was highly en-
riched for genes involved in iron uptake (31% of genes in
this module were involved in uptake of iron and other com-
pounds) and siderophore biosynthesis (14%) (Table 1; Sup-
plementary Table S3). Consistent with their putative func-
tion, genes in Module 5 were iron-responsive as relative



8814 Nucleic Acids Research, 2016, Vol. 44, No. 18

A

B

Av
er

ag
e 

D
eg

re
e

0
1
2
3
4
5
6
7
8

Figure 1. Network Characteristics. (A) The node degree distribution is shown with degree on the x-axis and number of nodes on the y-axis. The power line
fit is also shown (correlation = 0.98, grey line). Fitting a power law is a common feature of biological networks (38). (B) The average degree (number of
edges a gene has with other genes) of genes comprising each of the main roles used in the annotation is shown on the y-axis with the name of the function
on the x-axis. Genes with zero edges were removed before calculating averages.

transcript abundances in this module were 31- to 35-fold
higher under iron-limiting conditions when compared to
similar experiments examining P, S or N limitations (Figure
3). Furthermore, genes in Module 5 displayed significantly
elevated transcript abundances in steady state chemostat
cultures grown under light-, carbon- or oxygen-limiting
conditions.

Module 6 (27 genes) also showed tight clustering and con-
tained a functionally diverse group of genes, with most en-
coding components of the carbon capture and fixation ma-
chinery in Synechococcus 7002. Among those, the largest
enriched categories were comprised of sodium/hydrogen
antiporters (29%) and CO2 fixation (18%) genes, which en-
coded putative SbtAB and BicA bicarbonate symporters as
well MRP and NapA antiporters. While these two Na+/H+

antiporters can function to confer salt tolerance, their role

here is most likely linked to developing a charge gradi-
ent necessary for a sodium-dependent bicarbonate trans-
port (39,40). Other genes in this module included the
NAD(P)H:quinone oxidoreductase subunits that facilitate
carbon dioxide uptake (ndhD3 and ndhJ), the CO2 hydra-
tion protein (cupA) and the CO2 fixation regulator (ccmR).
Module 6 also contained seven genes of unknown func-
tion and their assignment to Module 6 suggests that they
may also be involved in CO2 acquisition (Supplementary
Table S2). Transcripts for genes in this module increased
their expression up to 30-fold under carbon, light and O2-
limiting conditions (Figure 3) when bicarbonate concentra-
tions were limiting growth. Aside from these changes, how-
ever, transcript levels of genes in Module 6 were largely un-
changed across the rest of the experimental conditions.
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P-value 

1   215 0.345 < 0.001 

2   178 0.174 < 0.001 

3   30 0.213 0.001 

4   87 0.679 < 0.001 

5   35 0.517 < 0.001 

6   27 0.819 < 0.001 

7   49 0.400 < 0.001 

9   14 0.251 0.003 

11   24 0.482 < 0.001 

15   231 0.349 < 0.001 

21   13 0.110 0.012 

Figure 2. Global Expression Map of Synechococcus 7002. Lines (edges) between genes (nodes), represented as circles, indicate co-expression between the
two genes connected. Nodes are colored according to the module to which they were assigned to using the fastgreedy algorithm. A total of 903 genes
(28% of genome) could be assigned to modules. Black nodes have a statistically significant edge with a node in the network but do not belong to a specific
module. Other nodes that were not connected to the main network are not shown. Table in upper left shows module color scheme, size of modules, clustering
coefficients and P-values.

Finally, Module 7 (49 genes) contained another essen-
tial group of genes, those involved in photosynthetic func-
tions, displaying enrichment for genes encoding photo-
systems (31%) and antenna proteins (14%). Specifically,
these included genes encoding subunits of photosystem I
(psaABDFIKL), photosystem II (psbCOU, psbD1, psbD2
and psb27) reaction center components, as well as phyco-
bilisome antenna genes (cpcABCG). The transcript abun-
dances in Module 7 were relatively unchanged across most
of the tested conditions, with the exception of nitrogen-
limitation, heat shock (47◦C) and dark conditions, when the
abundances decreased and lower temperatures (22◦C) where
expression increased (Figure 3).

Network topology analysis reveals metabolic coordination

Even though modules were formed by minimizing edges
between genes in different modules, the remaining intra-
module connections can indicate specific functional inter-
actions between cellular processes or pathways. For exam-
ple, Modules 1 and 4 were both involved in translation pro-

cesses in Synechococcus 7002, being enriched for riboso-
mal protein and tRNA genes, respectively. Because of the
close functional association between tRNAs and riboso-
mal structures, there were a large number of edges connect-
ing genes in Module 4 to those in Module 1 (Supplemen-
tary Figure S2A). The large number of connections between
Modules 4 and 1 were, in fact, almost exclusively limited
to four genes in Module 1 that had connections with genes
in Module 4: an ATPase gene atpC, two ribosomal pro-
tein genes, rplO and rplF and an RNA polymerase gene,
rpoC2. The ribosomal, ATPase and translation genes that
link Modules 1 and 4 are all intimately tied to growth, as
are the tRNA genes of Module 4. Nodes with edges that
link two different modules are examples of bottlenecks, and
such genes are believed to be important in bacterial growth
and replication (15).

Other bottlenecks present in the Synechococcus 7002 net-
work included a single link between Module 6 and Module
1 that passes through two genes, the NAD(P)H gene ndhB
and the RuBisCo chaperone, rbcX (Supplementary Figure
S2B). Although both of these genes are assigned to Mod-
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Table 1. Functional Enrichment of Modules

Module ID Subrole
Percentage in
Module Ratio* Subsystem

Percentage in
Module Ratio*

1 Purine metabolism 3.72 4.24 Pyruvate dehydrogenase 1.86 14.86
Ribosomal proteins: synthesis and modification 18.14 8.16 Ribosome large subunit 10.70 10.68

Ribosome small subunit 7.44 11.32
RNA polymerase RpoABCEZ 1.86 11.88

2 Polysaccharide and lipopolysaccharide metabolism 6.74 5.98 Lipopolysaccharide biosynthesis 1.12 11.96
Polysaccharide biosynthesis 8.43 7.92

5 Cations and iron carrying compounds 31.43 12.24 Iron (III) transport system AfuABC 5.71 60.84
Biosynthesis of siderophore group 14.29 57.04 Iron uptake FhuBCD2 5.71 60.84

Iron uptake FhuBCD3 11.43 73.01

6 CO2 fixation 18.52 53.77
NAD(P)H:quinone oxidoreductase 11.11 14.79
NADH dehydrogenase I 3.70 118.30

Cations and iron carrying compounds 33.33 12.98 Sodium:hydrogen antiport Mrp 29.63 118.30

7 Porphyrin and chlorophyll metabolism 8.16 5.79 Photosystem I main subunits 8.16 43.46
Photosynthesis 30.61 16.57 Photosystem I other common subunits 6.12 48.89

Photosystem II main subunits 6.12 21.73
Photosystem II other common subunits 4.08 10.03
Phycobilisome 2.04 32.59

Photosynthesis – antenna proteins 14.29 19.01 Phycocyanin biosynthesis 8.16 37.25

15 Toxin-antitoxin systems 6.93 2.35 Toxin-antitoxin system 16 0.87 13.83
Restriction-modification systems 3.90 5.41 Toxin-antitoxin system 18 0.87 13.83

Toxin-antitoxin system 8 0.87 13.83
Type II restriction-modification systems 0.87 9.22
Type III restriction-modification system pAQ5 0.87 13.83
Type IV restriction system LlaI 0.87 13.83

*Ratio refers to the percentage of genes in a given category in the module/the percentage of genes in the same category in the genome as a whole.

ule 1, Module 6 is strongly enriched for carbon acquisition
processes. As the RuBisCo complex is associated with both
carbon metabolism and growth, it is expected that it would
form a link between the growth and replication genes in
Module 1 and the carbon acquisition genes in Module 6. In-
deed, the rbcX gene has an edge with the ndhB, which in turn
has an edge with ndhF3 in Module 6. On the other side, rbcX
has an edge with the carboxysome structural protein gene
ccmM in Module 1. The observation that ndhB is also found
linking Module 6 and Module 1 is of interest as previous
studies have shown that, in addition to its role in respiration,
NdhB is intimately involved in CO2 uptake in cyanobacte-
rial species (41–43). Finally, the dependence of cyanobacte-
rial growth on light acquisition was highlighted by two bot-
tlenecks linking Module 1 and Module 7 (Supplementary
Figure S2C) – one of the bottlenecks passed through a pho-
tosystem II gene (psbB) while the other passed through a
gene for the alpha subunit of allophycocyanin (apcA). The
psbB gene in Module 1 was connected with three Module
7 genes, psbC, psbD1 and psbD2, all encoding proteins of
photosystem II. Similarly, the apcA gene (also of Module
1) has eleven edges with Module 7 genes. The structure of
this network clearly shows the central importance of bottle-
neck genes, which connect distinct, but functionally related,
processes in Synechococcus 7002.

Delineating transcriptional subnetworks through condition-
specific responses

The highly compartmentalized co-expression network was
also exploited as an organizational and data mining tool to
examine the response of Synechococcus 7002 to specific con-
ditions. When examining the entire data set (Supplemen-
tary Table S1), a large number of differentially expressed

genes were identified when comparing carbon-limited (CL)
to nitrogen-limited (NL) chemostat cultures, with a total
of 437 genes displaying >2-fold change in transcript lev-
els (q-value < 0.05). A subnetwork reconstruction, using
only these genes and the structure of the full network iden-
tified, was then carried out. Modularization of this sub-
network identified seven modules, which separated cleanly
based on the relative expression levels of the genes compris-
ing them (Figure 4). Genes displaying decreased transcript
abundances under NL were organized into five discrete clus-
ters, which were enriched in iron regulation and oxidative
phosphorylation, as well as defense and invasion functions
(Supplementary Table S4). Genes showing increased ex-
pression under NL were grouped into the final two modules
and were enriched in formate utilization and nitrate uptake
functions (Supplementary Table S4).

It is important to note that modularization of Syne-
chococcus 7002 genes showing differential expression under
NL versus CL conditions was able to group only 32% of
these genes into modules (141/437). Despite this, a greater
number of functional roles were enriched with modulariza-
tion compared to when the entire data set was grouped into
only two large groups comprised of genes showing increased
(169 genes) or decreased (268 genes) expression (Supple-
mentary Table S5). In addition, some functional roles were
identified only after modularization of regulated genes (ox-
idative phosphorylation, nitrate uptake, defense systems).
These observations suggest that modularization as a tool to
better analyze specific conditions is best used in conjunc-
tion with more traditional categorization of genes (such as
by increased or decreased expression) rather than as a strict
replacement. Moreover, because edges within the full net-
work are structured to be condition independent, this ap-
proach could be applied to the analysis of environmental
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Figure 3. Response of Modules to Growth Conditions. Conditions are shown at the bottom of the heat map and the modules on the right. Dendogram
depicts clustering of conditions. Module response was determined by taking the log2 value of the median of the expression level of all genes in the module
under each condition normalized to the mean of the medians across all conditions.

conditions that were not used in the construction of the full
network presented here, demonstrating the extensive utility
of gene co-expression networks built from RNA-seq data.

Modularization and network neighborhood structure analy-
ses enhance regulon predictions

Grouping of genes into modules is carried out based on the
co-expression similarity. Because of this, genes in the same
module are likely to be enriched for genes co-regulated by
the same DNA-binding transcription factors. To examine
this further, the intergenic regions within each module were
examined using the Gibbs sampler (31) for common bind-
ing motifs, with significant motifs being found in Modules
5 and 6 (Figure 5). As expected, the intergenic regions up-
stream of genes in Module 5 were strongly enriched for pu-
tative ferric uptake regulator (Fur) binding sites, whose ac-
tivity is regulated by Fe2+ (44,45). A total of 12 Fur binding
sites were detected in Module 5 (Table 2, Figure 5A), and of
these, 5 were previously predicted in RegPrecise, including
the putative iron transporters (futC, fecB), the iron respon-
sive regulator (pchR) and the siderophore receptor (schT).
In addition to these five, we detected putative Fur binding

sites in the intergenic regions of a bacterioferritin-like gene
and two genes of unknown function (SYNPCC7002 A1857
and SYNPCC7002 A2659), which have not been previously
associated with the Fur regulon.

Similarly, analysis of the intergenic regions in Module
6 resulted in the identification of putative motifs for the
carbon concentrating mechanism regulator (CcmR; Figure
5B). A total of 15 putative CcmR binding sites were de-
tected upstream of seven different genes (Table 2), which
included ccmR itself, sbtA/sbtB bicarbonate transporter
genes, as well as the bicarbonate porin porB gene (40). Of
the five genes predicted to have CcmR binding sites accord-
ing to RegPrecise (33), all were detected in Module 6 and
we detected CcmR-like sites in the intergenic regions up-
stream of all five. In addition to the known members of
the CcmR regulon (40), several other genes within Mod-
ule 6 were predicted to contain CcmR-binding sites within
their putative promoter regions. These encoded uncharac-
terized proteins, including the periplasmic protein SYN-
PCC7002 G0009 located near the porB bicarbonate trans-
porter (SYNPCC7002 G0011).

Results from previous studies (24), as well as those de-
scribed above, show that regulators and their targets are of-
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Module 
ID 

Color 
# of 

Genes 
Enriched Function 

1 13 Phycobilisome 
2 30 Cations and iron carrying compounds 
3 27 Oxidative phosphorylation 
4 33 Restriction-modification systems 
5 18 Polysaccharide and lipopolysaccharide metabolism 
6 13 Tryptophan metabolism 
7 7 Nitrogen metabolism 

Figure 4. Network Analysis of Carbon and Nitrogen Regulated Genes. Identified subnetworks of genes change in expression by at least 2-fold when
comparing carbon-limited (CL) conditions to nitrogen-limited (NL) conditions. Colors indicate genes categorized into new modules based on the edge-
node structure of the subnetwork. Table indicates color and number of genes in each module, a representative enriched function is also shown. Genes that
exhibited decreased or increased expression under NL conditions compared to CL conditions are indicated by circles and triangles, respectively.

A 

B 

Fur-like Gibbs Analysis Motif RegPrecise Fur Motif 

CcmR-like Gibbs Analysis Motif RegPrecise CcmR Motif 

Figure 5. Binding Site Motifs Identified in Promoter Regions. Examination of the promoter regions of genes in modules revealed a Fur-like binding site in
(A) Module 5 and a CcmR-like binding site in (B) Module 6. Nucleotide numbering is shown in the x-axis and bit scores on the y-axis. Height of nucleotides
indicates enrichment at that position. The motif derived through Gibbs analysis for each module is shown on the left and the corresponding motif defined
in RegPrecise for either Fur or CcmR is shown on the right.
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Table 2. Gibbs Analysis of Modules 5 and 6

Fur Binding Sites in Module 5

Motif
Motif Start
Site*

Motif Stop
Site** Upstream Gene*** Downstream Gene Probability

Motif Identified in
RegPrecise+

1 902085 902103 futC A0871; Iron transport ybeB A0872; Translation 0.97 Yes
2 1946476 1946494 A1857; Transport A1858; Unknown 0.81 No
3 2613428 2613446 dprA A2506; DNA uptake futA1 A2507; Iron transporter 0.78 No
4++ 2792428 2792446 A2659; Unknown A2660; Multicopper oxidase 0.97 No
5++ 2793956 2793974 bfd A2661; Iron homeostasis bfr A2663; Iron homeostasis 0.95 No
6 7367 7385 G0007; Iron Homeostasis G0008; Unknown 0.77 No
7 102222 102240 tonB G0090; Transport fecB G0091; Iron homeostasis 0.90 Yes
8 112330 112348 G0099; AraC Regulator G0100; Transport 0.62 Yes
9 119454 119472 pchR G0104; Iron homeostasis G0105; Unknown 0.96 Yes
10 157500 157518 exbB G0137; Transport schT G0138; Iron homeostasis 0.59 Yes
11 157651 157669 exbB G0137; Transport schT G0138; Iron homeostasis 0.69 Yes
12 157686 157704 exbB G0137; Transport schT G0138; Iron homeostasis 0.97 Yes

CcmR Binding Sites in Module 6

Motif Motif Start
Site

Motif Stop Site Upstream Gene Downstream Gene Probability Motif Identified in
RegPrecise

1 178199 178220 A0170; Unknown ccmR A0171; Regulator 0.99 Yes
2 178231 178252 A0170; Unknown ccmR A0171; Regulator 0.99 Yes
3 502490 502511 sbtA A0470; Transport A0471; Unknown 0.98 Yes
4 503129 503150 sbtA A0470; Transport A0471; Unknown 1 Yes
5 503544 503565 A0471; Unknown sbtB A0472; Unknown 0.8 Yes
6 503576 503597 A0471; Unknown sbtB A0472; Unknown 0.94 Yes
7 503615 503636 A0471; Unknown sbtB A0472; Unknown 0.59 Yes
8 2370407 2370428 A2287; Unknown A2288; Unknown 0.98 No
9 2370439 2370460 A2287; Unknown A2288; Unknown 0.99 No
10 2452657 2452678 mltA A2370; Metabolism bicA A2371; Transport 1 Yes
11 2452707 2452728 mltA A2370; Metabolism bicA A2371; Transport 1 Yes
12 11474 11495 G0009; Unknown G0010; Unknown 0.97 No
13 11506 11527 G0009; Unknown G0010; Unknown 0.85 No
14 14517 14538 porB G0011; Transport pacL G0012; Transport 0.83 Yes
15 14549 14570 porB G0011; Transport pacL G0012; Transport 0.77 Yes

*Genomic location of the motif start site is shown.
**Genomic location of the motif stop site is shown.
***Gene names are indicated along with locus tags (‘SYNPCC7002 ’ has been removed for ease of viewing) and functional roles.
+Genes in bold are those with motif sites identified in this study that had not previously been associated with the regulator under analysis.
++At the time of analysis these motifs were within intergenic regions, they now overlap slightly with annotated ORFs.

ten associated with each other in a co-expression network.
To expand the regulons of well-characterized transcription
factors, we next used regulator topology to detect new pu-
tative targets of four well-characterized transcriptional reg-
ulators in Synechococcus 7002: ccmR (controlling carbon
uptake), ntcB (controlling nitrogen assimilation), sufR (con-
trolling iron-sulfur biogenesis) and nrtR2 (controlling genes
responsible for NAD biosynthesis). We collected the 2nd
order network neighborhood of these four transcriptional
regulators, extracted from our CLR-derived global network
and examined genes within this neighborhood to identify
those that also had sequences in their upstream regions (de-
fined as 250 bp upstream of the ATG start codon) that
match the binding motif for the given regulator. To increase
the chances of finding genes with sites for a given regulator,
we lowered the Z-score from 4.5 to 3.0 before making the
2nd order network neighborhood of each regulator. In this
way, several new putative targets were found for this subset
of regulators in Synechococcus 7002.

The 2nd order network neighborhood of ccmR contained
74 genes, including all of those previously identified as part
of the CcmR regulon (33), as well three new target genes
that contained a putative CcmR binding site in the up-
stream region (Figure 6A, Supplementary Table S6). One of
them, SYNPCC7002 A0626, encodes an ABC-type trans-
porter, similar to many of the other genes controlled by
CcmR involved with the transport of carbon sources into
the cell. We also compared the gene composition in each

of the subnetworks surrounding the four regulators to the
gene composition of the modules in the full network (Fig-
ure 2, Supplementary Table S2). For most of the subnet-
works there was significant overlap with the genes in par-
ticular modules, suggesting that genes of some of the most
enriched functions in each module are controlled by a single
regulator. The subnetwork surrounding CcmR contained
all genes of Module 6, a module that also contains CcmR
itself and was strongly enriched for the carbon transport
mechanisms that CcmR regulates. The network neighbor-
hood of the ntcB regulator contained 453 genes, including
two that were previously predicted to be in the NtcB regulon
(33) and 16 additional genes that contain an NtcB-binding
site in the upstream region but have not been previously re-
ported as members of the NtcB regulon (Figure 6B, Sup-
plementary Table S6). This subnetwork was also contained
many genes in Modules 2 (comprised of genes involved in
glycan metabolism) as well as Modules 11 and 21 (every
gene of Module 21 was found in this subnetwork). Both
of these latter two modules contain genes involved with
amino acid metabolism. Similarly, neighborhoods of sufR
and nrtR2 (33) contained previously predicted as well as un-
known members of their respective regulons that contained
putative DNA binding sites in their upstream regions (Fig-
ure 6C, D and Supplementary Table S6). While every one
of these predictions may not be true targets of their regula-
tors, this approach provides specific hypotheses for further
analysis and regulon expansion for known DNA-binding
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A B 

C D 

Figure 6. Second-Order Network Neighborhoods of Individual Regulators. Figures (A–D) depict the 2nd order network neighborhoods associated with
transcriptional regulator genes, shown as red circles; (A) ccmR (SYNPCC7002 A0171), (B) ntcB (SYNPCC7002 A1632), (C) sufR (SYNPCC7002 A1815)
and (D) nrtR2 (SYNPCC7002 A2383). Green circles denote connected genes previously recognized as belonging to the indicated regulon and containing
a binding site as determined by RegPrecise, while large blue circles denote genes that are not reported as targets of the regulator in RegPrecise and contain
a binding site of the given regulator as determined by Find Individual Motif Occurrences.

proteins. Finally, while the sufR subnetwork did not show
strong enrichment for any particular module, the nrtR2 sub-
network contained a large number of genes in Module 7,
containing 29/49 of the genes in this module which is en-
riched for genes involved in photosynthesis.

Topology of regulatory interactions suggests a multilayered
strategy to gene regulation

The relatively low number of transcription factors in Syne-
chococcus 7002 may indicate different regulatory strate-
gies that involve multi-regulator interactions with the RNA
polymerase to control gene expression (4). To gain insight
into the mechanistic aspects of transcriptional regulation
in cyanobacteria, we examined the 2nd order network of
each regulator that was connected to at least one gene, a re-
quirement that only 26% (12/46) of the known regulators
in Synechococcus 7002 satisfied. When compared to the full
network, in which ∼43% of all genes were assigned edges,
this number was significantly lower, indicating that regula-

tors are less likely to have edges compared to the average
gene. Regulators were also less likely to be organized into
modules, with only 15% (7/46) of regulators assigned to a
module. This is in contrast to the global network, where
28% of genes could be assigned to modules. Analysis of re-
sulting regulator subnetworks revealed that a majority of
regulators have edges with multiple genes (Figure 7A). Fur-
thermore, two genes controlled by a single regulator may
not have an edge between them, as is the case with an
Xre-family regulator (SYNPCC7002 A2358), which con-
trols two separate groups of genes (Figure 7B). The lack of
edges between targets of the same transcription factor sug-
gests that these genes are putatively involved in separate cel-
lular processes or are responding to different environmen-
tal stimuli. Furthermore, edges linking regulators, such as
those found between the two AraC-family regulators (SYN-
PCC7002 G0007 and SYNPCC7002 G0099) suggests po-
tential co-expression mechanisms (Figure 7C) or that reg-
ulators may control additional regulators. Finally, we also
identified instances in which the same gene displayed edges
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Figure 7. Network Topology of Regulators. (A) Subnetwork of transcriptional regulators (green) that contained an edge with at least one gene (red) and
their 2nd order network neighborhood. (B) Inset shows a regulator that spans two distinct groups of genes. (C) Inset shows regulators controlling other
regulators and non-regulators responding to the input from more than one regulator.

with multiple regulators as exemplified by tonB (SYN-
PCC7002 G0090), which had an edge with both SYN-
PCC7002 G0099 and pchR (SYNPCC7002 G0104) (Figure
7C).

The relative lack of classical DNA-binding regulators
in Synechococcus 7002 also suggests the presence of other
mechanisms controlling gene expression, such as regulatory
sRNAs. Using samples in which the short RNA transcripts
were not depleted during isolation (conditions 1–18; Sup-
plementary Table S1), we identified a total of 346 short
RNA transcripts that were expressed either within inter-
genic regions or opposite protein coding regions. The iden-
tified short transcripts were used to reconstruct a new net-
work, in which edges between sRNA and mRNA may indi-
cate the putative targets of a given sRNA regulator (Figure
8). We next used the TargetRNA2 program (46) to generate
lists of putative targets for the sRNAs in our data set. Tar-
getRNA2 takes an input sRNA in fasta format and returns
a list of possible targets based on several criteria. These in-
clude conserved regions of the sRNA as well as exposed
regions of the sRNA in a predicted folded structure. Such
regions are more likely to participate in binding with pu-
tative targets. Folding structure of the possible mRNA tar-
gets is also considered. Finally, the binding energy of sev-
eral possible regions of interactions is calculated and the
mRNA transcripts with the most energetically favorable in-

teractions with the input sRNA are listed as possible targets.
For a given sRNA in our Synechococcus 7002 data set, this
list of putative targets was then cross-referenced against the
list of mRNAs having edges with the sRNA. Several sRNAs
that had edges with mRNAs in our network were also pre-
dicted by TargetRNA2 to be putative targets of the sRNA.
sRNA 303, a 111-nucleotide transcript expressed from at
1866513–1866623, had edges with 189 mRNA genes, and
TargetRNA2 provided 61 possible targets for this sRNA.
The intersection of these two lists identified four high-
quality targets for sRNA 303: the tRNA modifier, mnmE
(SYNPCC7002 A1170), DNA polymerase 1 (polA: SYN-
PCC7002 A1280), SYNPCC7002 A1877, a bacteriophage
related gene and SYNPCC7002 A2158, an endonuclease
toxin. sRNA 332, a 160-nucleotide transcript at 2008442–
2008601, had edges with 205 mRNA genes and was linked
to 23 potential targets and the intersection of these two
lists identified two high-quality targets of sRNA 332, SYN-
PCC7002 A0706, a monophosphatase family protein and
SYNPCC7002 A0721, a hypothetical protein. This ap-
proach highlights how regulator-target pairings can extend
to post-transcriptional mechanisms, and indeed, other stud-
ies have also successfully linked sRNAs and their targets us-
ing gene co-expression networks (47,48).
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Figure 8. Small RNAs of Synechococcus 7002. A network of sRNAs and mRNAs is shown. Red nodes are sRNAs and green nodes are mRNAs. The
network shown was built from a higher Z-value (3.5) then that used for mRNA-sRNA target prediction.

DISCUSSION

Compared to some well-studied heterotrophic microorgan-
isms like Escherichia coli or Bacillus subtilis, cyanobacte-
ria are still relatively understudied. Furthermore, because
cyanobacteria are photoautotrophs and respond to impor-
tant environmental signals including light, inorganic car-
bon (CO2 and bicarbonate), as well as other nutrients that
are not sensed by most heterotrophs, their regulatory net-
works are likely to differ significantly from those that have
been previously characterized. The Synechococcus 7002
genome encodes about 3200 proteins, but a large percentage
(35%) of the predicted proteins are of unknown function.
Moreover, families of paralogous genes are fairly common
in cyanobacterial genomes, and the functions of many of
the paralogous gene products are still unknown, although
this is slowly changing. For example, the 2-oxoglutarate de-
carboxylase that functions in the TCA cycle in cyanobacte-
ria was originally annotated as acetolactate synthase (49),
and a divergent paralog (ChlF) of a core subunit of Pho-
tosystem II (PsbA) was recently shown to encode a light-
dependent oxidoreductase that converts chlorophyll a (or
chlorophyllide a) into chlorophyll f (or chlorophyllide f)

(50). Cyanobacteria contain many light-responsive phy-
tochromes and cyanobacteriochromes (51–54), but the reg-
ulatory networks associated with these light-sensing pro-
teins are known in only a few cases (52,55). Nostoc puncti-
forme has 21 different photoreceptors that account for more
than 40 different chromophore-binding, light-sensing do-
mains (54), yet the functions of most of these proteins re-
main unknown.

The large number of predicted proteins with unidenti-
fied functions, as well as differences in the types of envi-
ronmental signals sensed, places some limitations on the
conclusions that can be drawn from global network stud-
ies such as those reported here. Furthermore, it is likely
that some of the numerous hypothetical proteins might be
required to control the complex interactions that occur in
bacterial communities, but detailed studies on this subject
have only very recently begun for cyanobacteria. Recent ex-
amples of co-cultivation studies include Synechococcus sp.
PCC 7002 and Shewanella oneidensis (20), Prochlorococcus
sp. NATL2A and Alteromonas macleodii MIT1002 (56) and
Thermosynechococcus sp. and Meiothermus sp. (Bernstein,
et al., unpublished results). Network analyses will become
more meaningful as functions are assigned to additional
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proteins. In spite of these limitations, the analyses reported
here shed new light on global regulatory networks in Syne-
chococcus 7002 that can probably be extended in at least
some cases to other cyanobacteria. In addition, networks
such as these not only allow for an examination of central
processes and expansion of known regulons, as shown in
this study, but they can be a powerful way to globally orga-
nize genes that are functionally related but physically sepa-
rated in the genome. This can lead to better functional an-
notation of unknown genes, a processes termed ‘guilt-by-
association’ (57–61), and can be a powerful tool to anno-
tate genes in species, such as cyanobacteria, where genomic
context is lacking and hypothetical proteins are numerous.

Computational analysis of biological systems has been
historically driven by comparative approaches that use se-
quence homology and genome context to draw functional
inferences. However, in many biological systems, includ-
ing cyanobacteria, sequence context-based methodology is
not easy to apply due to unique genomic organization,
complex regulatory landscape and other fundamental dif-
ferences between cyanobacteria and other species such as
those described above (3,4). To circumvent these challenges,
we examined a compendium of global gene expression data
to specifically probe linkages of functionally related pro-
cesses and the regulatory aspects of Synechococcus 7002 bi-
ology by network analysis through grouping genes based
on co-expression. The resulting 1386-gene network recon-
struction was further organized into 11 modules, which
were highly enriched in specific functions that represent key
metabolic and cellular pathways. The densest modules, or
portions of modules, were enriched for genes involved in
growth and replication (photosynthesis, central metabolism
and translation), indicating a tightly coordinated response
for these genes across all conditions. Less dense modules
(e.g. polysaccharide metabolism, defense systems) generally
showed less coordination and lack of a uniform response
to specific conditions. The structure of specific modules,
or portions of modules associated with different functional
categories likely reflects a specific regulatory strategy em-
ployed by Synechococcus 7002, whereby pathways involved
in resource acquisition are tightly linked to changing nu-
trient levels, diel cycling and alterations in carbon concen-
trations. Module organization also allows for the grouping
of sets of genes whose expression is controlled by a single
regulator. This allows for the possibility of identifying new
targets of regulators based on their position in the network
with respect to known targets of a regulator. In the case of
Module 5 we identified several genes whose promoters con-
tained binding sites for the Fur protein, including genes that
had not yet been identified as members of the Fur regulon
by RegPrecise. Recently, a study examining the effects of a
fur deletion in Synechococcus 7002 was published (62) and
33/35 (94%) of the genes in Module 5 showed differential
regulation in a fur mutant compared to a wild-type strain,
including several of the genes that we identified as Fur reg-
ulated but were not yet reported in RegPrecise. Similarly, in
the case of Module 6 we show that several of the genes are
likely regulated by CcmR. A case study was also recently
published examining the regulon of this protein (63) and
showed that 26/27 of the genes in Module 6 show differ-
ential expression in a ccmR mutant compared to a wild-

type strain. The identification of new targets of regulators
that were then confirmed through generation of knockouts
speaks to the biological relevance of the network presented
here and shows how it can be used to gain information on
regulator-target pairing.

Cyanobacteria have fewer DNA-binding regulators com-
pared to other prokaryotes (4). To apply our network to the
study of cyanobacterial regulators we examined the topol-
ogy of genes in their local neighborhood. This analysis iden-
tified two related observations about the topology of regu-
lators: (i) they are less likely to have edges with other genes
and (ii) are less likely to be organized into modules. There
are likely several reasons for this observation, but it may
be related to the relatively small number of regulators in
Synechococcus 7002 and other cyanobacteria. It is possi-
ble that with a small number of regulators, many may re-
spond to more than one environmental condition or stimuli.
Response(s) to multiple inputs may result in associations
between a single regulator and mRNAs of many different
processes, making identification of specific regulatory path-
ways difficult. If a regulator responds to multiple inputs, it
may also act in multiple pathways, allowing for tight tran-
scriptional control with fewer DNA binding proteins. The
topological analysis shown here already suggests that DNA
binding regulators can span groups of genes responsible for
different processes (Figure 7). The observation that regula-
tors have fewer edges compared to other genes may also be
because the RNA expression level of DNA-binding regula-
tors is often very static, with the presence or absence of a
small molecule effector, rather than regulator abundance at
the mRNA level, leading to increased or decreased function
of the regulator. This would reduce the chances of a regula-
tor sharing an edge with its target.

As was done above with the examination of carbon- and
nitrogen-limiting conditions, the linkages and grouping of
genes represented here can also be applied to experimen-
tal conditions that have not yet been studied or have not
been specifically incorporated into this network. This re-
flects the translational nature of this work and its applica-
tion to cyanobacteria in general, a powerful approach con-
sidering that cyanobacteria are often the primary producers
of several types of terrestrial and aquatic microbial commu-
nities. Analysis of such communities in regards to coordi-
nation of process between species is also a problem of link-
ing related genes across physical space as different species
occupy different spatial locations in the community. When
applied to these microbial communities, the co-expression
network approach presented here becomes a powerful way
to link genes located in different species that are transcrip-
tionally, and thus perhaps functionally, related. Such ap-
proaches can help decipher complex community interac-
tions and lead to greater understanding of principles guid-
ing community behavior.

ACCESSION NUMBERS

The data sets that have not yet been published that sup-
port the results of this article are available in the Gene
Expression Omnibus repository, with accession numbers
GSE72691 and GSE72880.
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