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USP9X deletion elevates the density of oligodendrocytes within the postnatal
dentate gyrus
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ABSTRACT
Neural stem cells (NSCs) within the adult hippocampal dentate gyrus reside in the subgranular zone
(SGZ). A dynamic network of signaling mechanisms controls the balance between the maintenance
of NSC identity, and their subsequent differentiation into dentate granule neurons. Recently, the
ubiquitin-specific protease 9 X-linked (USP9X) was shown to be important for hippocampal
morphogenesis, as mice lacking this gene exhibited a higher proportion of proliferating NSCs, yet a
decrease in neuronal numbers, within the postnatal dentate gyrus. Here we reveal that Usp9x-
deficiency results in the upregulation of numerous oligodendrocytic and myelin-associated genes
within the postnatal hippocampus. Moreover, cell counts reveal a significant increase in
oligodendrocyte precursor cells and mature oligodendrocytes per unit volume of the mutant
dentate gyrus. Collectively, these findings indicate that USP9X may regulate NSC lineage
determination within the postnatal SGZ.
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NSCs within the adult hippocampus maintain the
capacity to undergo neurogenesis throughout life.1

The continual supply of new neurons arising from the
neurogenic niche of the SGZ is crucial for learning,2

memory,3 and spatial navigation.4 To ensure the stem
cell pool is maintained throughout adulthood, NSCs
predominantly remain in a state of quiescence and
self-renew when they undergo proliferation.5,6 Under
normal conditions in the adult brain, NSCs within the
SGZ predominantly undergo neurogenic differentia-
tion to generate dentate granule neurons.1 However,
these NSCs are multipotent,7 as they retain the ability
to produce astrocytes,8 and can be induced to generate
oligodendrocytes via virally-mediated reprogram-
ming.9,10 Multiple intrinsic and extrinsic signaling
mechanisms act in cohesion to determine the fate of
NSCs within the SGZ and ensure proper hippocampal
neurogenesis. Critically, disruption at any stage of
these processes can have profound consequences on
the development and function of the hippocampus,
leading to cognitive deficits11 and psychiatric disor-
ders.12 Therefore, it is imperative to understand the
underlying mechanisms governing the maintenance of

the NSC pool and their path to neurogenic
differentiation.

The deubiquitylating enzyme USP9X has previ-
ously been shown to play a pivotal role with relation
to NSC biology. USP9X promotes the self-renewal of
embryonic stem cell-derived NSCs in vitro.13 In vivo,
USP9X is highly expressed throughout the developing
central nervous system,14 the postnatal hippocam-
pus,15 and within the adult neurogenic niches.13 The
conditional ablation of Usp9x from NSCs within the
embryonic forebrain (via Emx1-Cre-mediated dele-
tion) results in a number of cortical abnormalities,14

most notably the severe reduction in the size of the
postnatal hippocampus and dentate gyrus, evident as
early as one week after birth.15 We recently analyzed
cellular populations within the postnatal dentate gyrus
of these Usp9x-deficient mice and showed a significant
decrease in the total number of NSCs, neuroblasts and
mature neurons.15 Interestingly, when we examined
the proportion of NSCs that were quiescent versus
those that were proliferating, we found a significantly
higher proportion of proliferating NSCs in the SGZ of
Usp9x-deficient mice, and a concomitant decrease in
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the proportion of quiescent NSCs, compared to con-
trols.15 Together, these findings indicate that Usp9x-
deficiency culminates in abnormal neurogenesis
within the postnatal SGZ, which contributes to, at
least in part, the reduced size of the dentate gyrus.
However, it remains unclear as to why the lack of
Usp9x leads to an increase in the relative proportion
of proliferating NSCs within the SGZ but a reduced
number of neuronal cells in the dentate granule cell
layer. In this paper, we posited that the lack of Usp9x
might result in the premature differentiation of NSCs
toward the astrocytic or oligodendrocytic lineage.

To test the hypothesis that Usp9x-deficiency leads to
precocious differentiation of NSCs into glia, we per-
formed microarray-based transcriptomic profiling on
hippocampi from mice in which Usp9x had been condi-
tionally ablated from neural progenitors within the dor-
sal telencephalon using an Emx1-Cre allele. These mice
will be referred to as Usp9x¡/Y; Emx1-Cre mice from

here onwards, while littermate controls mice will be
referred to as Usp9xloxP/Y mice. Microarray analysis of
postnatal day (P) 14 mutant and control hippocampi
revealed that over 600 genes were differentially regulated
in the mutant hippocampus. Significance of differentially
expressed transcripts were identified at p < 0.05 and a
log2 ratio fold change of <¡0.5 or >0.5. Notably, many
of the genes that were upregulated in the mutant hippo-
campi were related to the oligodendrocytic lineage,
including myelin oligodendrocyte glycoprotein (Mog),16

myelin-associated oligodendrocytic basic protein
(Mobp),17 myelin associated glycoprotein (Mag),18

CNPase (Cnp),18 and claudin-1119 (Cldn11; Fig. 1A, B).
In contrast, a number of factors related to NSC self-
renewal and neurogenesis were significantly downregu-
lated, including Tenascin C (Tnc),20 fatty acid binding
protein 7, brain (Fabp7),21 and hairy and enhancer of
split 522 (Hes5; Fig. 1B). This is consistent with the previ-
ously reported role for USP9X in neural progenitor cell

Figure 1. Lack of Usp9x results in the upregulated mRNA expression levels of oligodendrocyte and myelin associated genes within the hippo-
campus at P14. (A) Signal intensity plot showing the differentially expressed genes for comparison between Usp9xloxP/Y control mice vs.
Usp9x¡/Y; Emx1-Cremutant mice. Only the genes that were statistically (p< 0.05) and magnitudually (log2 ratio fold change<¡0.5 or> 0.5)
differentially expressed were colored. Upregulated genes are illustrated in red and downregulated genes are illustrated in green. All other
genes are shown in gray. The dotted diagonal line shows equal intensity across the experimental conditions while the solid lines correspond to
a log2 ratio fold change of<¡1 or> 1. (B) Summary of the microarray results, showing the gene symbol, gene name, log2 ratio fold change,
and p value of key significantly misregulated genes in the hippocampus of mutant mice at P14. (C) qPCR validation of the microarray results,
demonstrating increased relative levels of oligodendrocyte and myelin associated mRNAs, as well as reduced levels of neurogenic mRNAs, in
the hippocampus of mutant mice at P14. �p< 0.05; ��p< 0.01; ���p< 0.001, t-test.

e1235524-2 S. OISHI ET AL.



self-renewal,13 and the reduction in dentate granule neu-
rons within the postnatal Usp9x¡/Y; Emx1-Cre dentate
gyrus.15 Validation of these microarray data was per-
formed using quantitative polymerase chain reaction
(qPCR) on cDNA generated from mRNA isolated from
independent hippocampal samples from P14 mice. This
analysis confirmed that the relative expression of these
oligodendrocyte-associated genes was significantly ele-
vated in mutant samples compared to controls (Fig. 1C).
Interestingly, expression of caspase 3 (Casp3) was signifi-
cantly reduced (Fig. 1B, C). As this factor is expressed in
apoptotic cells,23 this suggests that the smaller dentate
gyrus phenotype of Usp9x-deficient mice is unlikely to
be related to abnormal cell death. This finding was sup-
ported by immunocytochemical analysis of cleaved cas-
pase 3 expression, which revealed fewer apoptotic cells
in the mutant dentate gyrus in comparison to controls at
P14 (data not shown). It should be noted, however, that
a decrease in cell death may simply be a reflection of the
fact that there are reduced numbers of new-born neu-
rons present in the mutant hippocampus. Finally, the
qPCR analysis also confirmed that the expression of
Tnc, Fabp7, Hes5 and the dentate granule neuron marker
prospero homeobox protein-1 (Prox1)24 was significantly
reduced in the mutant in comparison to the controls
(Fig. 1C). Collectively, these data are consistent with pre-
vious reports into the phenotype of Usp9x-deficient
mice,15 suggesting that in the absence of Usp9x, NSC
self-renewal and neurogenesis are impaired. Moreover,
these data further suggest that Usp9x-deficient NSCs in
the SGZ, which normally produce neurons in vivo,1 may
potentially be biased to produce myelinating oligoden-
drocytes in the absence of this factor.

To investigate whether the elevated expression of
oligodendrocyte-associated genes was reflected at a
cellular level, we next performed immunocytochemi-
cal analyses of P14 Usp9x¡/Y; Emx1-Cre and
Usp9xloxP/Y mice using antibodies against oligodendro-
cyte transcription factor 2 (Olig2), which identifies all
cells within the oligodendrocytic lineage25 and plate-
let-derived growth factor receptor a (PDGFRa),
which, in conjunction with Olig2, labels oligodendro-
cyte precursor cells.26,27 We performed co-immuno-
fluorescence labeling with these 2 antibodies on
hippocampal tissue from P14 mutant and control
brains, followed by confocal microscopy, and counted
cells of the oligodendrocyte lineage (Olig2C), oligo-
dendrocyte precursor cells (Olig2C/PDGFRaC) and
mature oligodendrocytes (Olig2C/PDGFRa¡)

(Fig. 2A-H). As oligodendrocytes differentiating from
NSCs within the SGZ migrate into the hilus of the
dentate gyrus,9 we counted both the total number of
immuno-positive cells within the hilus, as well as nor-
malizing cell counts relative to the volume of the
respective hilar regions. This analysis revealed that the
total number of cells within the oligodendrocytic line-
age, including oligodendrocyte precursor cells and
mature oligodendrocytes, was reduced in Usp9x-defi-
cient mice in comparison to controls (Fig. 2I). This is
consistent with the markedly reduced size of the den-
tate gyrus within Usp9x¡/Y; Emx1-Cre mice at P14
(Fig. 2A, E).15 Interestingly, however, normalized
counts relative to the volume of the hilar region
revealed that there were significantly elevated numbers
of Olig2C cells per mm3 in P14 Usp9x¡/Y; Emx1-Cre
mice in comparison to Usp9xloxP/Y controls, a finding
reflected in the relative increase of oligodendrocyte
precursor cells and mature oligodendrocytes per unit
volume (Fig. 2J). Furthermore, although the absence
of Usp9x leads to a higher density of oligodendrocytic
cells in the dentate gyrus, there seems to be no effect
on the ability of oligodendrocyte precursor cells to dif-
ferentiate and mature. A similar analysis of astrocytes
was performed using co-labeling of astrocytic markers
glial fibrillary acidic protein (GFAP) and s100 cal-
cium-binding protein b (s100b; Fig. 3A-H).28 We
found that the total number of astrocytes in the
mutant was reduced in Usp9x-deficient mice in com-
parison to controls (Fig. 3I). However, there was no
significant change in the number of astrocytes per
unit volume of the mutant hilar region in comparison
to wild-type controls at P14 (Fig. 3J). When consid-
ered in light of the elevated proportion of proliferating
NSCs and the reduced number of neuronal cells in the
dentate gyrus of P14 Usp9X-deficient mice,15 these
findings indicate that the absence of Usp9x may result
in the abnormal production of oligodendrocytic cells
instead of neurons within the postnatal hippocampus.

NSCs residing within the SGZ of the postnatal and
adult dentate gyrus do not normally produce oligo-
dendrocytes, instead these cells predominantly gener-
ate Prox1-expressing dentate granule neurons,1,16 as
well as a small proportion of astrocytes.8 However, the
SGZ NSCs can be directed to differentiate into oligo-
dendrocytes, both in vitro and in vivo.9,10 Indeed, a
recent report revealed that retrovirally-driven expres-
sion of key oligodendrocytic genes, including Olig2,
Sox10 and Ascl1, within the dentate gyrus of adult
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mice was sufficient to induce the differentiation of
hippocampal NSCs into oligodendrocyte precursor
cells and myelinating mature oligodendrocytes.10 How
could the loss of Usp9x culminate in oligodendrogene-
sis? At this stage this is unclear, however previous
reports of interactions between USP9X and members
of the Notch signaling pathway,29 coupled with the
reduced expression of Notch pathway members

revealed here (Hes5, Fabp7 and Tnc) suggests that a
primary role for USP9X, in the context of NSCs, is the
maintenance of their identity and self-renewal capac-
ity. Identification of why the loss of Usp9x potentially
biases NSCs toward oligodendrocytic differentiation
will require a more comprehensive analysis of the
USP9X interactome, coupled with proteomic analysis
of NSCs lacking this enzyme. The importance of such

Figure 2. Increased density of oligodendrocytes in the dentate gyrus of Usp9x¡/Y; Emx1-Cre mice. Co-immunofluorescence labeling and
confocal microscopy was performed on hippocampal sections of Usp9xloxP/Y (A–D) and Usp9x¡/Y; Emx1-Cre (E–H) at P14. Cell nuclei were
labeled with DAPI (A, E). Oligodendrocyte precursors were defined as cells expressing both Olig2 (red in (B)and F) and PDGFRa (green
in C and G). Mature oligodendrocytes were defined as cells that only expressed Olig2. The merged panels are shown in (D, H). The insets
reveal a higher magnification view of the boxed region showing oligodendrocyte precursor cells (arrowheads) and mature oligodendro-
cytes (double arrowheads). Quantification of labeled cells was performed within the hilar region of the dentate gyrus. Total numbers of
Olig2C oligodendrocytes, including Olig2C/PDGRFaC precursors and Olig2C/PDGRFa¡ mature oligodendrocytes in the mutant mice
were significantly reduced compared to controls (I). Normalized cell counts relative to the volume of the hilar region revealed a signifi-
cant increase in oligodendrocytic cells per mm3 within the mutant compared to controls, including elevated numbers of oligodendro-
cyte precursors and mature oligodendrocytes (J). �p < 0.05, t-test. Scale bar in (A): (A-H) – 150 mm; (A’): (A’-H’) ¡10 mm.

e1235524-4 S. OISHI ET AL.



future studies is emphasized by the fact that aberrant
USP9X expression has been associated with a number
of human neurological disorders that exhibit abnor-
malities in hippocampal function, including X-linked
intellectual disability,30 epilepsy,31 and Parkinson’s
disease.32

Although our findings implicate USP9X in the inhi-
bition of oligodendrocytic differentiation of NSCs
within the SGZ, there are caveats to this interpretation
of the data. Firstly, although we noted a correlation
between Usp9x-deficiency and the production of

oligodendrocytes, the data presented here does not
confirm that the absence of USP9X in NSCs directly
leads to their differentiation into oligodendrocytes. To
address this, lineage tracing experiments using the
Usp9x conditional allele crossed with an inducible
NSC-specific Cre driver (e.g. Nestin Cre ERT2),33 cou-
pled with ethynyl deoxyuridine (EdU) labeling to
identify proliferating cells, could be used to directly
demonstrate if Usp9x-deficient cells generate oligo-
dendrocytes within the postnatal dentate gyrus hilus.
Moreover, proliferating oligodendrocyte precursor

Figure 3. Astrocytic cell density did not change in the dentate gyrus of Usp9x¡/Y; Emx1-Cre mice. Co-immunofluorescence labeling and
confocal microscopy was performed on hippocampal sections of Usp9xloxP/Y (A–D) and Usp9x¡/Y; Emx1-Cre (E–H) at P14. Cell nuclei were
labeled with DAPI (A, E). Astrocytes were defined as cells expressing both s100b (red in B and F) and GFAP (green in C and G). The
merged panels are shown in (D, H). The insets reveal a higher magnification view of the boxed region showing astrocytes (arrowheads).
Quantification of labeled cells was performed within the hilar region of the dentate gyrus. There were significantly fewer total numbers
of GFAPC/s100bC astrocytes in the mutant mice compared to controls (I). Normalized cell counts relative to the volume of the hilar
region revealed no significant changes in astrocytes per mm3 within the mutant compared to controls (J). (ns) Not significant,
��p < 0.001, t-test. Scale bar in (A): (A-H) – 150 mm; (A’): (A’-H’) ¡10 mm.
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cells are also found distributed throughout non-neu-
rogenic areas of the hippocampus.34 Thus, although
we counted cells only within the hilar region of the
dentate gyrus, it is similarly unclear as to whether the
generation of oligodendrocytes in the Usp9x-deficient
hippocampus was a result of NSCs in the SGZ abnor-
mally differentiating toward the oligodendrocytic line-
age instead of a neurogenic path, or whether the lack
of Usp9x influenced the proliferation of these ran-
domly distributed oligodendrocyte precursors
throughout the hippocampus. Again, the use of an
inducible NSC-specific Cre driver in future studies
will clarify this question. Overall, given the expression
of USP9X by NSCs within the adult neurogenic
niches, as well as the reported role for this enzyme in
maintaining NSC self-renewal in vitro,13 our findings
support the hypothesis that USP9X plays an impor-
tant role in regulating NSC biology within the postna-
tal dentate gyrus.

Methods

Animal breeding

Mice were bred as we described previously.15 Male mice
lacking the Usp9x allele inherited the Emx1-Cre allele
(referred to as Usp9x¡/Y; Emx1-Cre), while Cre-negative
males were used as controls (referred to as Usp9xloxP/Y).
All mouse breeding was performed under the ethical
clearance approved by Griffith University Animal Ethics
Committee. All experiments were performed in accor-
dance with the Australian Code of Practice for the Care
and Use of Animals for Scientific Purposes, and were
carried out in accordance with The University of
Queensland Institutional Biosafety committee.

Microarray

Four Usp9x¡/Y; Emx1-Cre and 4 Usp9xloxP/Y animals
were used for microarray analyses. RNA was isolated
from dissected hippocampus using an RNase kit (Qia-
gen). Prior to microarray, the integrity of the RNA
was verified on an Agilent Bioanalyzer RNA Nano
6000. The Affymetrix Mouse Gene 2.0 ST microarray
was performed at the Ramaciotti Center for Geno-
mics, The University of New South Wales, Australia.
Data was processed, quantile normalized and differen-
tially expressed transcripts were identified at p < 0.05
and log2 ratio fold change of <¡0.5 or >0.5 using R/
BioConductor limma package,35 at the QFAB

Bioinformatics, The University of Queensland, Aus-
tralia. False discovery rate (FDR) correction was per-
formed on the p-values.36

Quantitative polymerase chain reaction

Quantitative polymerase chain reaction (qPCR) was
performed on hippocampal tissue from P14 animals
(6 Usp9x¡/Y; Emx1-Cre and 4 Usp9xloxP/Y) using stan-
dard protocol as we described previously.15 Gene
expression was calculated using ¡DD Ct-method rela-
tive to the housekeeping gene glyceraldehyde 3-phos-
phate dehydrogenase (Gapdh). All the samples were
tested in triplicate, and each experiment was repeated
a technical triplicate. Primer sequences used were:

Mog_Forward:50GACCTGCAGGAGGATC
GTAG30

Mog_Reverse:
50ACCAAGAAGAGGCAGCAATG30

Mobp_Forward:
50AATGAGAGCAAGACAAGCGG30

Mobp_Reverse:
50TCCTTGGCCATTTTCTGACT30

Mag_Forward:
50CGGGTTGGATTTTACCACAC30

Mag_Reverse: 50CTGCCTTCAACCTGTCTGTG30

Cldn11_Forward:
50GCTGGGGTGCTCCTTATTCT30

Cldn11_Reverse:
50CAACCTGCGTACAGCGAGTA30

Cnp_Forward:
50GTTCTGAGACCCTCCGAAAA30

Cnp_Reverse: 50CCTTGGGTTCATCTCCAGAA30

Casp3_Forward: 50TGCTGGTGGGATCAAAGC30

Casp3_Reverse:
50TGAATCCACTGAGGTTTTGTTG30

Tnc_Forward:
50AGTCCAGGACAGACGGAAAC30

Tnc_Reverse: 50AAAACCATCAGTACCACGGC30

Fabp7_Forward:
50 CGGACAATGCACATTCAAG30

Fabp7_Reverse:
50TCTTTGCCATCCCACTTCTG30

Hes5_Forward: 50CCAGGAAAACCGACTG30

Hes5_Reverse: 50AACTCCTGCTCCAGCAGCA30

Prox1_Forward:
50GGCATTGAAAAACTCCCGTA30

Prox1_Reverse:
50GCTATACCGAGCCCTCAACA30
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Gapdh_Forward: 50

GCACAGTCAAGGCCGAGAAT30

Gapdh_Reverse: 50

GCCTTCTCCATGGTGGTGAA30

Immunocytochemistry labeling and image analysis

Preparation of tissue sections and immunocytochemi-
cal labeling was performed as described.15 Briefly, P14
brains were embedded in noble agar and sectioned on
a coronal plane at 50 mm using a vibratome. Primary
antibodies used include: Olig2 (polyclonal rabbit,
1:400, EMD Millipore), PDGFRa (polyclonal goat,
1:100, R&D Systems), cleaved caspase 3 (polyclonal
rabbit, 1:200, Cell Signaling) and GFAP (monoclonal
mouse, 1:400, EMD Millipore). Corresponding
secondaries antibodies included donkey 488, Cy3, 555
(Jackson), and s100b (rabbit conjugated AlexaFluor
647) before being counter-stained with 40, 6-diami-
dino-2-phenylindole (DAPI). All image acquisition
and analysis was performed as previously described.15

For all analyses we had 6 rostro-caudal sequential hip-
pocampal sections, with each section containing the
left and right hippocampi, per animal to image and
count. Cell counts for Olig2C/PDGFRa¡ cells, Olig2C/
PDGFRaC, and GFAPC/S100bC cells were performed
within the hilar region of the hippocampal dentate
gyrus in a 10 mm z-stack, which consisted of 10 conse-
cutive 1 mm-thick optical sections. The hilus was
defined by the area below the SGZ and between the
superior and inferior blades of the dentate gyrus. The
normalized cell counts were calculated by dividing the
number of cells by the volume of the respective hilar
region. Student’s t-tests were used to compare all
quantification datasets, where we used n D 3 animals
per genotype at the age of P14. Statistical significance
was established at a p-value of < 0.05. Error bars rep-
resent standard error of the mean (SEM). Data analy-
sis was performed blind to the genotype of the sample.

Abbreviations
GFAP glial fibrillary acidic protein
NSC neural stem cell
Olig2 oligodendrocyte transcription factor 2
PDGFRa platelet-derived growth factor a
qPCR quantitative polymerase chain reactions
s100b s100 calcium-binding protein b

SGZ subgranular zone
USP9X ubiquitin-specific protease 9 X-linked
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