
An ideal therapeutic reagent for ocular disease treat-
ment should be capable of passing the blood–retinal barrier, 
have prolonged retention in the ocular tissues, be selectively 
targeted to the expected sites, and have sustained effective-
ness for long periods of time with a maximum benefit. This 
therapeutic reagent should also be safe with minimum damage 
to the tissue where the reagent is located and without adverse 
reactions and undesirable side effects. Selectivity, effective-
ness, and safety are the three most important characteristics 
for an ideal pharmaceutical agent [1]. Unfortunately, thus far 
there are no such ideal drugs, and the currently available and 
potential drugs for the treatment of diseases need to have the 
dosage optimized to reduce their side effects.

We have been using cerium oxide nanoparticles 
(nanoceria) as therapeutics to treat a variety of ocular diseases 
in animal models. Nanoceria are catalytic antioxidants that 
mimic superoxide dismutase and catalase and as a new 
emerging nanomedicine have great advantages over other 
traditional antioxidants, such as unique physicochemical 
features of the surface structure for regenerative scavenging 
of free radicals that decreases repetitive doses. The tiny 
particle size (3–5 nm in diameter) on the atom-size scale 
enables nanoceria to easily cross cell and nuclear membranes. 

For years, we have used nanoceria as therapeutics to treat 
inherited and light-induced retinal degeneration [2-4] and to 
inhibit and regress neovascularization in a wet age-related 
macular degeneration (AMD) mouse model (vldlr−/−) [5,6]. We 
also showed storage of nanoceria at room temperature for 6 
years does not reduce their effectiveness [7]. And nanoceria 
were shown to regulate the same antioxidative gene network 
as thioredoxin [8]. All these results indicated that nanoceria 
exert their function as a near “ideal” drug and can be used for 
a broad spectrum of diseases. However, data from our labo-
ratory also demonstrated that nanoceria delivered to the rat 
eye by a single intravitreal injection are retained in the retina 
for more than 1 year [9]. Due to the slow elimination and 
clearance of nanoceria from the tissues [10], safety following 
long-term retention in the retinas will be a concern for the 
clinical application of nanoceria.

Although the published data from our laboratory show 
that nanoceria do not affect the retinal structure and function 
[9], there are no data to show whether the long-term presence 
of nanoceria in the eyes causes inflammation. To investigate 
the tolerance of ocular tissues and cells for nanoceria, we 
performed intravitreal injections of nanoceria, with a variety 
of doses, into P30 wild-type (WT) C57BL/6J mice. Assess-
ment of the toxicity of nanoceria was conducted at post injec-
tion (PI) at 7 h and 3, 7, 15, and 30 day. We evaluated the 
retinal structure and function, photoreceptor-specific gene 
expression of mRNA and protein levels, and inflammatory 
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responses, including the alteration of the vascular system and 
cytokine expression.

METHODS

Animals: Wild-type (C57BL/6J) mice were purchased from 
the Jackson Laboratory (Bar Harbor, ME) and used as 
breeders for the colonies. Animal care and handling were 
performed according to the guidance of the ARVO Statement 
for the Use of Animals in Ophthalmic and Vision Research 
(ARVO), and the protocol for this study was approved by the 
Institutional Animal Care and Use Committee (IACUC) of 
the University of Oklahoma Health Sciences Center.

Intravitreal injection: Intravitreal injection was performed 
as previously reported [11,12]. Briefly, WT mice at P30 were 
anesthetized by intraperitoneal injection with ketamine 
(85 mg/kg) and xylazine (14 mg/kg; Henry Schein Animal 
Health, Dublin, OH). A puncture was made in the sclera just 
below the cornea with a 30 gauge needle; a 33 gauge needle 
attached to a Hamilton syringe was then inserted into the 
puncture, and 1 µl of saline or 1 µl of nanoceria in saline at 
the following concentrations, 0.1 mM (17.2 ng), 0.3 mM (51.6 
ng), 1 mM (172 ng), 3 mM (516 ng), and 10 mM (1720 ng), 
were injected into the vitreous. After fully recovering from 
the anesthesia, the mice were returned to their original cages 
and maintained under the standard conditions. Age-matched 
mice were used as uninjected controls.

Fundoscopy and f luorescein angiography: Micron IV 
fundoscopy (Phoenix Research Labs, Pleasanton, CA) was 
performed, and evaluation of the fundus and neovasculariza-
tion was the same as we previously reported [5]. The mice 
at the PI7 and PI30 day were anesthetized with ketamine 
and xylazine, the eyes were dilated, and the whiskers were 
trimmed. One drop of 2.5% Goniotaire (hypromellose, 
Altaire pharmaceuticals, Inc., Aquebogue, NY) was applied 
to the surface of the cornea. The mouse was placed on the bed 
of the Micron IV system, and the position of the eye and the 
objective of the funduscope were adjusted until the fundus 
was clearly seen. After a fundus image was taken, the mice 
were intraperitoneally injected with 40 µl of 5% AK-Fluor 
(Alcon, Fort Worth, TX). Then additional images were taken 
at 2 min and 4 min after injection using StreamPix software 
and fluorescein isothiocyanate (FITC) filters.

Electroretinography: Full-field electroretinography (ERG) 
was performed on the mice according to the procedure 
reported previously [2]. Briefly, mice at the PI30 day were 
dark adapted overnight, the eyes of the fully anesthetized 
mice were dilated, the whiskers were trimmed, and rod ERG 
was recorded by stimulating with a light flash of 600 cds/m2 
intensity. Cone responses were recorded by stimulating with 

a light flash of an intensity of 1000 cds/m2 five times after 5 
min of adaption to the light intensity of 100 cds/m2.

qRT-PCR and PCR array: Three to eight retinas from each 
group were collected and kept in TRIzol (Invitrogen, Carlsbad, 
CA) at −80 °C. Total RNA isolation, cDNA synthesis, and 
quantitative RT-PCR (qRT-PCR) were performed the same 
as previously reported [2]. Ten nanograms of cDNA was 
used in a 25 µl reaction volume for qRT–PCR. Primers for 
tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and 
macrophage migration inhibitory factor (MIF) were the same 
as previously reported [13]. The primers used for IL-1β were 
the forward primer: 5′-GGG CCT CAA AGG AAA GAA TC 
and the reverse primer: 5′-TAC CAG TTG GGG AAC TCT 
GCA. Calculation of the relative expression level of the target 
genes against the housekeeping gene (GAPDH) was the same 
as we previously reported [2]. Data shown are fold changes. 
PCR array assay using the “mouse common cytokines” array 
plates and retinas at the PI7 day was performed according 
to the instructions from SABiosciences. Data were analyzed 
with the array plate software (SABiosciences) and are shown 
as fold changes in the nanoceria-injected and saline-injected 
mice compared to the uninjected WT mice (CeO2/WT and 
saline/WT) with the p value indicated.

Immunohistochemistry: The immunohistochemistry proce-
dure was the same as we previously published [2,5]. Briefly, 
paraffin sections were dewaxed and hydrated through a 
series of ethanol solutions, and then blocked with 5% bovine 
serum albumin (BSA). The slides were incubated with anti-
rhodopsin antibody (1D4, 1:2,000, generous gift from Dr. 
Robert Molday, University of Columbia, Vancouver, Canada) 
and rabbit anti-M-opsin (1:500, Millipore) for 2 h at room 
temperature. After three washes, secondary antibody of 
Alexa-Flour 488 conjugated anti-mouse or anti-rabbit immu-
noglobulin G (IgG) was applied. The slides were coverslipped 
with mounting medium containing 4',6-diamidino-2-phenyl-
indole (DAPI, Vector Laboratories, Inc., Burlingame, CA). 
Observation and image capture were performed using a 
Nikon Eclipse 800 fluorescence microscope (Tokyo, Japan) 
with proper filters.

Histology and quantitative histology: Eye enucleation, fixa-
tion, sectioning, and staining were the same as previously 
reported [2,5]. Representative retinal images from three to 
eight eyes stained with hematoxylin and eosin (H&E) were 
taken at 0.96 mm from the optic nerve head (ONH) at the 
superior hemisphere using Nikon Eclipse 800 microscopy 
under 20X and 40X objectives. For morphometric and quan-
titative histological analysis of the outer nuclear layer (ONL) 
thickness, blinded to each groups, five images were taken 
under 60X at a distance of every 0.32 mm from each side of 
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the retina section starting from the ONH. The data are shown 
as mean ± standard error of the mean (SEM).

Western blot: Three to five individual eyecups, without 
the lens and cornea, from each group were homogenized, 
centrifuged, and 50 µg of the soluble protein were loaded on 
a 10% sodium dodecyl sulfate–polyacrylamide gel electro-
phoresis (SDS–PAGE) gel. The proteins were detected with 
the following primary antibodies: mouse anti-IL-1β (1:1,000, 
Millipore), rabbit anti-IL-6 (Proteintech, 1:1000), anti-TNF-α 
(1:1,000, Millipore) and anti-MIF (1:1000, Santa Cruz), mouse 
anti-rhodopsin (1D4, 1:4,000), rabbit anti-M-opsin (1:1,000, 
Millipore), goat anti-S-opsin (1:1,000, Santa Cruz), and 
rabbit anti-caspase 3 (1:1,000, Cell Signaling Technology). 
After stripping, the same membranes were probed with rabbit 
anti-actin-HRP (Horseradish peroxidase conjugate; 1:1,000, 
Cell Signaling Technology) or rabbit anti-GAPDH (1:2,500, 
Abcam). Development of bands, image capture, and the densi-
tometric analysis of the bands were the same as we previously 
reported [5].

Statistical analysis: The unpaired Student t test for two group 
comparison or one-way ANOVA with the Bonferroni post 
hoc test for multiple comparisons was used to analyze the 
difference between groups. A p value of less than 0.05 was 
considered statistically significant and was indicated in each 
figure.

RESULTS

In vivo observation of the overall appearance and movement 
of the eyeballs demonstrated that the injected eyes were 
normal sized without redness, with a clear cornea, normal 
iris response to light, and normal eyeball movement. These 
findings indicated that there were no ocular abnormalities in 
the injected eyes.

Retinal morphology and ONL thickness: To evaluate the 
overall morphological changes in the retinas and any loss of 
photoreceptors, we performed histological and quantitative 
histological analysis on the H&E-stained retinal sections at 
the PI7 h and the PI3, PI7, PI15, and PI30 day. As shown in 
Figure 1, distinct and normal retinal layers were apparent. 
The eyes injected with various concentrations of nanoceria 
have 12–13 nuclear rows in the ONL of the retina which is 
the same number as in the uninjected controls, indicating that 
there is no alteration of the retinal structure in the injected 
eyes at any of the time points examined. Morphometric 
analysis of the ONL thickness across the entire retinas of each 
group demonstrated that no statistically significant difference 
in the ONL thickness was seen among the groups at all time 
points we tested. This finding demonstrated that nanoceria 
retention in the retina does not result in any damage to the 

normal tissue or to the photoreceptor cells. In addition, we 
did not see any retinal detachment at any of the time points.

Expression of photoreceptor-specific genes and caspase 3: 
To assess retinal health, western blots were performed at 
the PI7 h (Figure 2) and the PI30 day (Appendix 1) to test 
photoreceptor-specific gene expression. The data showed 
that the protein levels of rhodopsin, M-opsin, and S-opsin 
were similar to those of the uninjected and the saline-injected 
controls. We also performed immunohistochemistry on the 
paraffin sections of the eyes to evaluate the localization and 
distribution of these proteins in the retinas. The data showed 
that rhodopsin, M-opsin, and S-opsin were properly localized 
in the photoreceptor cells in all groups. We also tested caspase 
3 expression levels with western blot and demonstrated that 
the expression of caspase 3 within the group was similar 
(Figure 2B). These data indicated that nanoceria, even when 
present at high dosage, do not cause photoreceptor injury or 
mislocalization of these proteins.

Evaluation of retinal function: Full-field ERG was performed 
at PI30 day to assess retinal function by evaluating the 
responses of rods and cones to light stimulation. The ERG 
data showed that there were no statistically significant 
changes in the ERG amplitudes among the different groups at 
each time point tested (Figure 3), indicating that retention of 
nanoceria in the eye does not affect normal retinal function.

Analysis of proinflammatory cytokines: Infection induces 
innate and acute inflammation or chronic inflammatory 
responses, which involve activation and migration of various 
immune cells (macrophages, microglia, and neutrophils) to 
the site of inflammation and persistent release of proinflam-
matory cytokines [14,15]. To test the effects of nanoceria 
retention in the retina on the expression of proinflammatory 
cytokine genes, PCR array assays were performed using the 
“mouse common cytokines” array plates and the retinas from 
the uninjected, saline-injected, and 1 mM nanoceria-injected 
eyes at the PI7 day. A total of 89 genes were surveyed, and 
only 11 were upregulated (Bmp1, Bmp6, Fgf10, Il1a, Il1f5, 
Il1f9, Tnfrsf11b, Tnfsf9) or downregulated (Bmp2, Ctf1, Inhba; 
Table 1). However, these genes were also similarly upregu-
lated or downregulated following saline injection, suggesting 
that the increases in the expression of these genes were most 
likely caused by the injury resulting from the injection proce-
dure itself or from the saline in which the nanoceria were 
suspended. To determine whether any acute inflammatory 
responses were triggered by nanoceria, the expression of the 
mRNAs of the proinflammatory cytokines, TNF-α, IL-1β, 
IL-6, and MIF, was analyzed with qRT-PCR at an early time 
point (PI7 h). Compared to the higher levels of expression 
in the lipopolysaccharide (LPS)-induced inf lammatory 
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Figure 1. Nanoceria do not cause changes in retinal structure or morphology. A: Microscopic images were taken at 0.96 mm from the ONH 
from the superior side of the retinas using hematoxylin and eosin (H&E)-stained sections and are representative of three to eight eyes per 
group. B: Morphometric analysis of the ONL thickness across the entire retinas of each group. Each slide was measured at five points 
superiorly and inferiorly under 60X, and the average of the same point from three to eight eyes per group is shown. C: Quantitative histology 
of the average of 30–80 measurements per group demonstrated that no significant differences occurred among the groups. RPE, retinal 
pigment epithelium; OS, outer segment; ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer. Scale bar = 100 µm.
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cytokines, none of the concentrations of nanoceria induced 
alterations in the expression of these cytokines compared to 
the uninjected controls (Figure 4A-D). Western blot assay 
at the PI7 h (Figure 4E-H) and the PI30 day (Appendix 2) 
demonstrated that the protein levels of TNF-α, IL-1β, IL-6, 
and MIF were similar among the groups injected with various 
concentrations of nanoceria versus the uninjected mice with 
no statistically significant differences seen.

Assessment of the vascular system: Acute and chronic 
inflammation causes increased vascular permeability and 
neovascularization [14]. To observe whether nanoceria in the 
eyes cause any abnormalities in the fundus appearance and 
organization of the retinal vascular system, we performed 
fundoscopy and fluorescein angiography using the eyes at the 
PI7 day and the PI30 day. Figure 5 shows that the patterns of 
the blood veins were similar among all the groups, and the 
fundus in all the eyes, either uninjected or injected, exhibited 

a normal appearance without noticeable flecks or spots. Fluo-
rescein angiographic observation showed a well-organized 
vasculature without abnormal blood vessels and leakage in 
the uninjected mice, compared to the typical neovasculariza-
tion in a wet AMD mouse model, the very low density lipo-
protein receptor knockout (vldlr−/−) mouse, in which numerous 
hyper-fluorescence spots were seen and fluorescein leakage 
increased with time (the far right panel). In all mice injected 
with either saline or various doses of nanoceria, a clear and 
neat, uniform vascular structure and pattern were seen at 
these time points.

Inflammatory cell infiltration: Inflammation also causes 
cellular infiltration into the vitreous. To investigate this, we 
performed histological analysis on the H&E-stained slides at 
five time points, with 0.5 µg of LPS in 1 µl of saline-injected 
eyes as a positive control [16]. Compared to the LPS-induced 
massive anterior segment and vitreous infiltration, we did 

Figure 2. Nanoceria do not alter the amount or distribution of phototransduction proteins and caspase 3 level. A: Immunohistochemistry 
using paraffin sections at PI7 h showed that rhodopsin (red) and M-opsin (green) are properly localized in the outer segments of the retinas. 
n = 3–6 eyes per group. Scale bar = 100 µm. B: Western blots were performed at PI7 h to assess the protein levels of rhodopsin, M-opsin 
and S-opsin, and caspase 3. Densitometric analysis of the bands is shown as the mean ± standard error of the mean (SEM), and there are no 
statistically significant differences among the groups. n = 3–6 eyes per group.
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not find any cells inside the vitreous of the eyes injected with 
nanoceria or saline (Figure 6).

DISCUSSION

Nanomaterials have attracted much attention over the past two 
decades. Because of their small sizes (usually less than 100 
nm), surface structures, and unique physicochemical features, 
nanomaterials easily pass through membranes and are taken 
up into cells [17]. We and our colleagues have published a 
series of papers demonstrating the antioxidant properties 
of nanoceria in scavenging reactive oxygen species (ROS) 
and nitric oxide species (NOS), the enhancement of cellular 
survival, and the inhibition of apoptosis in numerous tissues 
and cells in vivo and in vitro [18,19]. In the eye, we showed 
that a single intravitreal injection of nanoceria produced 
sustained therapeutic effects in several mouse models of 
ocular diseases [2-6]. These results indicate the potential 
clinical benefit of nanoceria. It has been reported that 
intravitreal injection of many drugs (and biologic products) 
at a high dose usually produces ocular inflammation [20]. 
Although data from our laboratory showed that nanoceria at 
1 mM did not alter the retinal structure and function in albino 
rats [9], obtaining acceptance of nanoceria as a therapeutic 
agent remains challenging [21], especially as the safety of the 
long-term retention of nanoceria at a maximum dose in the 
eye is largely unknown.

The toxicity of nanoceria has been assessed in a variety 
of cells and tissues, including the human neuroblastoma cell 
line (IMR32) [22], human lung cells [23,24], cultured human 
lung cancer cells [25], wild-type rats [26], human gastric 
cancer cells [27], and human hepatoma SMMC-7721 cells 
[28]. Interestingly, the data showed that nanosized CeO2 

are more toxic than microparticles [22]. A similar report 
indicated that accumulation of nanoceria-caused toxicity 
is correlated with increased exposure time [29], and in a 
dose- and time-dependent manner that resulted from lipid 
peroxidation and cell membrane damage [25], DNA damage 
and apoptosis [23], inflammation [26], oxidative stress, and 
activation of the mitogen-activated protein kinase (MAPK) 
pathways [28]. In contrast to these reports, data documenting 
the protective functions of nanoceria have been reported by 
many research groups, and in a variety of cells and tissues 
with varied doses. Data showed that nanoceria decrease by 
70% ischemia-induced 3-nitrotyrosine (indicator of protein 
damage) in a mouse model of cerebral ischemia [30], protect 
human tumor monocytes (U937 cells) against TNF-α and 
cycloheximide-induced alteration of calcium signals, ROS 
production, and apoptosis [31], and prevent apoptosis in 
primary cortical brain cultures [32]. Nanoceria attenuated the 
systemic inflammatory response associated with peritonitis 
and significantly improved survival rates [33], and selectively 
protected normal human cells, but not cancer cells, from 
ultraviolet (UV) radiation [34]. In another report, treatment 
with nanoceria (100 µg/ml) for 48 h did not cause growth 
or morphological changes in human lens epithelial cells, but 
exposure to a lower dosage (10 µg/ml) for a longer period of 
time (72 h) can harm cells [35]. Published data from our group 
and associated colleagues showed that pretreatment with 
varying concentrations of nanoceria protects normal cells 
from radiation-induced damage [36,37]. Similarly, nanoceria 
prevented tumor growth and invasion [38] and showed antian-
giogenic properties [39], neuroprotection [19], cardioprotec-
tion [18], and anti-inflammatory activity [40,41] in multiple 
tissues or organs. Most importantly, our formulated nanoceria 
have been reported to be distributed in multiple organs and 

Figure 3. Electroretinographic evaluation of retinal function. Rod and cone electroretinogram (ERG) performance (see detailed information 
in Methods) at the PI30 day demonstrated that the amplitudes from all nanoceria-injected groups are comparable to those of the uninjected 
mice. Data shown are mean ± standard error of the mean (SEM), and there are no statistically significant differences among the groups. n 
= 3–6 animals.
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Figure 4. Nanoceria do not change the mRNA or protein levels of inflammatory cytokines. A-D: Quantitative real-time PCR (qRT-PCR) 
analysis of the mRNA levels of acute and chronic inflammatory cytokines (tumor necrosis factor (TNF-α; A), interleukin 1β (IL-1β; B), 
IL-6 (C), and macrophage migration inhibitory factor (MIF; D) at the PI7 h. Injection of lipopolysaccharides (LPS) was used as a positive 
control. Uninjected and saline -injected wild-type (WT) mice served as the negative uninjected and the injected controls, respectively. No 
statistically significant differences in gene expression were seen among the groups of uninjected, saline-injected, and any of the nanoceria-
injected groups. n = 3–8 eyes per group, **p<0.005, ***p<0.0001. E-H: Western blot assay to evaluate the protein levels of TNF-α (F), IL-1β 
(G), IL-6, and MIF (H) at PI7 h. Compared to the uninjected WT mice, the LPS-injected mice have two to four fold higher (n = 3–5 eyes 
per group, *p<0.05, ***p<0.0001) expression of these cytokines (E). However, none of the nanoceria- and saline-injected groups showed 
changes in the protein levels of these genes, and no statistically significant differences were seen among the groups. n = 3–5 eyes per group.
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Figure 5. Nanoceria do not cause vascular permeability or leakage. Fundoscopic and fluorescein angiographic images taken at the PI7 day 
and the PI30 day show that the eyes from the vldlr−/− mice exhibit an abnormal appearance of the fundus and have typical neovasculariza-
tion and vascular leakage. None of the nanoceria- and saline-injected groups showed neovascularization or leakage and were similar to the 
uninjected mice. A representative image from each group is shown. n = 4–6 eyes per group.

Figure 6. Nanoceria do not produce a cellular inflammatory response in the eye. Histological images were taken at the superior side of the eye 
under 20X from each group. A: Lipopolysaccharide (LPS)-injected eyes produced massive cellular infiltration (arrowhead) in the vitreous 
at 12 h after injection whereas no cellular infiltration was seen in the vitreous of the uninjected and saline-injected eyes. B: No cellular 
infiltration was seen in the eyes injected with saline, the eyes injected with various doses of nanoceria, or the uninjected eyes. Representatives 
from each group and only the PI7 h and the PI3 and PI30 day are shown. n = 3–6 eyes per group. Scale bar = 100 µm.
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tissues of CD1 mice via various means of administration and 
do not cause overt toxicity or pathology, and no significant 
immune response was detected [10]. We think the differences 
observed in beneficial versus negative effects of nanoceria by 
various laboratories are primarily due to differences in the 
formulations, particle sizes, surface charges, concentrations, 
distribution and location of nanoceria inside the cells, the age 
of the animals at treatment, or the experimental conditions 
in general.

Currently, treatment of eye diseases caused by endog-
enous intraocular changes involves delivery of therapeutic 
agents (proteins, DNAs, and cells) into the back of the eye by 
subretinal or intravitreal injections that by themselves may 
cause infection and inflammation. In this paper, we experi-
mentally demonstrated that nanoceria, at all doses used, are 
well tolerated by the ocular cells and do not induce detectable 
damage to the retinal health as determined with qRT-PCR, 
western blots, histology, and ERG. There were no changes 
in the levels of photoreceptor-specific proteins, distribution 
of visual pigments, retinal morphology, and response to the 
light. These results demonstrated that nanoceria exert their 
protective function without negative effects on retinal cells.

As nanoceria do not cause structural and functional 
alterations in the retina, we were especially interested in 
determining whether the retention of nanoceria in the eye 
was associated with increased expression of inflammatory 
cytokines. Foreign materials in the eye usually cause acute 
or chronic inflammatory responses [14], such as elevated 
cytokine gene expression within several hours or several 
days after the onset of inflammation. This is followed by 
cellular infiltration, immune cell activation, and migration to 
the sites of inflammation [14]. In this study, we performed a 
PCR array of the common mouse cytokines to assay 89 cyto-
kines at the PI7 day. Of these cytokines, only 11 were either 
upregulated or downregulated by the nanoceria treatment, but 
they were similarly affected by saline injection alone (Table 
1). Inflammation-associated cytokines, including TNF-α, 
IL-1β, IL-6, etc., are mainly produced by macrophages and 
monocytes at inflammatory sites [15] in response to acute 
and chronic inf lammation. MIF, a multifunctional and 
ubiquitously expressed protein, is an upstream regulator of 
inflammatory-immune processes and is expressed at the site 
of inflammation where MIF primarily modulates macrophage 
and T cell function for host defense. qRT-PCR and western 
blots of IL-6, IL-1β, TNF-α, and MIF at PI7 h demonstrated 
that, compared to the high expression levels of these genes 
in the LPS-induced positive controls, there was no eleva-
tion of these proteins compared to the untreated group. Our 
previous study demonstrated that the retention of nanoceria 

in the retina for months after a single intravitreal injection did 
not alter the retinal structure and function [9]. Our current 
study suggests that there is no cytotoxicity of nanoceria to 
the retinal tissues and provides further, and direct, evidence 
that nanoceria could be a special therapeutic agent for the 
treatment of ocular diseases.

APPENDIX 1.

Nanoceria do not change the levels of photoreceptor-specific 
proteins. Western blot assessment at PI30 day demonstrated 
that there are no significant differences on the amount of 
rhodopsin and S-opsin among groups. n=3–5 eyes per group. 
To access the data, click or select the words “Appendix 1.”

APPENDIX 2.

Nanoceria do not change the protein levels of inflammatory 
cytokines. Western blot assay at PI30 day demonstrated that 
no significant differences on the protein levels of TNF-α and 
MIF were seen. n=3–5 eyes per group. To access the data, 
click or select the words “Appendix 2.”
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