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Atrial arrhythmias are being increasingly recognized in inherited arrhythmogenic disorders particularly
in patients with Brugada syndrome and short QT syndrome. Atrial arrhythmias in inherited arrhyth-
mogenic disorders have significant epidemiologic, clinical, and prognostic implications. There has been
progress in the understanding of underlying genetic characteristics and the mechanistic link between
atrial arrhythmias and inherited arrhythmogenic disorders. Appropriate management of these patients is
of paramount importance.
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1. Introduction

The inherited arrhythmogenic disorders include | wave syn-
dromes, consisting of Brugada (BrS) and early repolarization syn-
drome (ERS), long QT syndrome (LQTS), short QT syndrome (SQTS),
and catecholaminergic polymorphic ventricular tachycardia
(CPVT). Atrial arrhythmias including atrial fibrillation (AF), atrial
flutter (AFL), and paroxysmal supraventricular tachycardias
(atrioventricular nodal reentrant tachycardia [AVNRT], atrioven-
tricular reentrant tachycardia [AVRT], and atrial tachycardia [AT])
frequently coexist with inherited arrhythmogenic disorders. Atrial
arrhythmias are being increasingly recognized particularly in
patients with BrS and SQTS [1,2].
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Atrial arrhythmias in inherited arrhythmogenic disorders have
important epidemiologic, clinical, and prognostic implications.
There has been progress in the understanding of underlying
genetic characteristics and the mechanistic link between atrial
arrhythmias and inherited arrhythmogenic disorders. Appropriate
management of these patients is of paramount importance.

2. Prevalence of atrial arrhythmias

The prevalence of atrial arrhythmias in inherited arrhythmo-
genic disorders varies depending on the type of arrhythmia, mode
of detection (12-lead electrocardiogram [ECG], Holter monitoring,
or implantable cardioverter defibrillator [ICD] monitoring), and
clinical presentation of inherited arrhythmogenic disorders, which
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can be manifested, suspected, or concealed (drug-induced type
1 Brugada pattern) (Fig. 1).

Atrial fibrillation is the most common atrial arrhythmia studied
in BrS [3-14]. The prevalence of AF has been reported to be higher
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Fig. 1. Prevalence of atrial arrhythmias in patients with Brugada syndrome and
drug-induced type 1 Brugada pattern. Patients presenting with manifest type 1 or
suspected type 2 or 3 Brugada pattern and atrial arrhythmias are shown with a
straight line. Patients with concealed BrS in which the type 1 Brugada pattern is
unmasked for the first time after administration of class IC agents given for the
termination of AF or after the ajmaline challenge for screening purposes are shown
with a dashed line. AT =atrial tachycardia, AVNRT =atrioventricular nodal reentrant
tachycardia, AVRT =atrioventricular reentrant tachycardia.
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in patients with BrS than in the general population of the same age
[15,16]. Earlier studies reported an approximately 10-50% pre-
valence of spontaneous, clinical AF in patients with BrS. The most
recent studies with larger cohorts reported a prevalence of
approximately 5-10% [13,14]. The prevalence of concealed BrS
after administration of class IC agents administered for the ter-
mination of new-onset AF was reported to be 3.2% overall and 5.8%
in patients with AF alone [10]. The prevalence of spontaneous,
clinical AVNRT, AVRT, and AT among patients with BrS has been
reported to be approximately 7%, 2%, and 3%, respectively [8]. The
prevalence of drug-induced type 1 Brugada pattern among
patients with spontaneous, clinical AVNRT had been studied by
our group and was found to be 27.1% [17] (Fig. 1).

The most common mode of detection of atrial arrhythmias in
the majority of studies was 12-lead ECG and/or Holter monitoring.
The incidence of atrial arrhythmias detected by ICD monitoring
because of inappropriate shocks during long-term follow-up has
been reported to be 4-8.5% [7,18].

The clinical presentation of the ] wave syndrome is of paramount
importance in determining the true prevalence of atrial arrhyth-
mias. The majority of studies have reported on the prevalence of
atrial arrhythmias in BrS cohorts. These patients usually present
with symptoms (palpitations, syncope, or cardiac arrest) along with
manifested type 1 or suspected type 2 or 3 Brugada pattern and
develop type 1 Brugada pattern after the drug challenge test. In
contrast, in patients with concealed BrS, type 1 Brugada pattern is
unmasked for the first time after administration of class IC agents
for the termination of AF [10,13,14]. Another group of patients with
concealed BrS presenting with clinical, spontaneous AVNRT or AT/
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Fig. 2. 12-lead electrocardiogram at baseline and after the ajmaline challenge. The patient was an 18-year-old female adolescent who presented with a 2-year history of
paroxysmal supraventricular tachycardia. The electrophysiological study reveals slow/fast atrioventricular nodal reentrant tachycardia. She underwent successful slow
pathway ablation. Genetic analysis revealed a missense mutation in KCNE2 (p.Thr8Ala). The ajmaline challenge results in prolongation of the PR interval (202 ms), QRS
duration (114 ms) with a QRS axis of 8°, and type 1 Brugada pattern in V; and V5. ICS=intercostal space.
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Fig. 3. A Rhythm strip during palpitation. The patient is a 48-year-old man who presented with a 1-year history of palpitations. Several 12-lead electrocardiograms (ECGs)
demonstrate atrial fibrillation with fast ventricular rate. He has a structurally normal heart. His final diagnosis is lone atrial fibrillation. B/C 12-lead ECGs at baseline with V;-V,
recorded at the 4th and 3rd intercostal spaces (ICS), respectively. D/E 12-lead ECGs after the ajmaline challenge with V;-V; recorded at the 4th and 3rd intercostal spaces,
respectively. The ajmaline challenge results in prolongation of the PR interval (196 ms), QRS duration (132 ms) with a QRS axis of 28°, and type 1 Brugada pattern in V; and V-.

AF and without any signs of Brugada pattern on baseline 12-lead
ECG, develop type 1 Brugada pattern with the administration of
ajmaline for screening purposes (Figs. 2 and 3).

In terms of ERS, the strongest relationship exists among
patients with Wolff-Parkinson-White syndrome (WPWS) [19-25].
The prevalence of inferolateral early repolarization (ER) pattern
has been reported to be approximately 40-50% in patients with
WPWS prior to and after catheter ablation [22,23]. Following
catheter ablation, the ER pattern persists in 25% of patients, dis-
appears in 18% of patients, and newly appears in 10-15% of
patients. ER was always observed in leads with positive deflection
of the initial part of the delta wave [22]. The inferolateral ER
pattern in the general population is not associated with increased
risk of AF [26]. In contrast, the prevalence of type 2 Brugada pat-
tern has been demonstrated to be significantly higher in patients
with lone AF than in control subjects [27].

The prevalence of AF and/or AFL has been reported to be
approximately 11-16% among patients with SQTS [28,29]. The
incidence of AF among family members with SQTS ranges from 26
to 70% [2,30]. AF was more common in patients with type 2 SQTS
(63% versus 21%, p=0.012) than in those with other types [30].

The prevalence of AF and/or AFL has been reported to be
approximately 1.7% among patients with LQTS [31]. AF was more
common in type 1 (2.4%) than in patients with type 2 LQTS (none).
The incidence of atrial arrhythmias (AF and/or AT) detected by ICD
monitoring in patients with LQTS during long-term follow-up has
been reported to be 33% [32].

There are anecdotal reports of AF in patients with CPVT [33,34].
In the largest cohort of patients with CPVT, the prevalence of
clinical AF and/or AFL has been reported to be 38% [35].

3. Epidemiologic implications of atrial arrhythmias

The prevalence of diagnosed AF in the general population is
closer to 2% [16]. This prevalence increases with age, from < 0.5%
at 40-50 years, to 5-15% at 80 years. In one recent study, the
prevalence of concealed BrS among patients presenting with new-
onset AF was found to be 5.8% [10]. All patients had lone AF. If
these results could be extrapolated to the entire population, we
estimate that nearly 20,000 new cases of AF would be found per
year among 1,000,000 persons. Lone AF comprises 5-10% of all AF
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cases. If the reported prevalence of concealed BrS in patients with
new-onset lone AF is confirmed by further studies, the prevalence
of concealed BrS may reach approximately 1500 new cases per
year among 1,000,000 persons.

The prevalence of drug-induced type 1 Brugada pattern among
patients with clinical AVNRT was found to be 27.1% by our group [17].
This high prevalence has important implications in terms of the
epidemiology of BrS. The prevalence of paroxysmal supraventricular
tachycardia (PSVT) (AVNRT and AVRT) in the general population in
the US has been reported to be approximately 2.25/1000 persons
[36]. If these results are extrapolated to the entire US population, we
estimate nearly 140,000 new cases of PSVT per year. AVNRT com-
prises 60% of all PSVT cases. If a high prevalence of drug-induced type
1 Brugada pattern in patients with spontaneous AVNRT is confirmed
by further studies, the prevalence of drug-induced type 1 Brugada
pattern may reach approximately 21,000 new cases per year.

4. Clinical characteristics

The initiation of AF is more likely to occur during night time in
patients with BrS [9]. Studies wherein an association between AF
and BrS has been evaluated have involved mostly male patients.
Therefore, the involvement of a sex predilection for the develop-
ment of AF in patients with BrS is not clear [1]. Clinical AFL has
been anecdotally reported either in young patients ( <20 years
old) as an isolated arrhythmia, or coexisting with AF in adults, or
as a part of atrial myopathy and progressive cardiac conduction
disorder in patients with BrS [37-45].

Our group recently showed that patients with AVNRT and drug-
induced type 1 Brugada pattern were predominantly women
(88.5% versus 62.9%, p=0.015) and had higher prevalence of chest
pain (38.5% versus 18.6%, p=0.042) and migraine headaches
(38.4% versus 14.2%, p=0.008) than patients without concealed
BrS. Drug-induced initiation and/or worsening of duration and/or
frequency of palpitations (along with documented AVNRT) were
observed more frequently in patients with concealed BrS than in
patients without concealed BrS (15.4% versus 1.4%, p=0.006) [17].

AF can be the first mode of presentation in SQTS particularly in
patients with lone AF [2]. Sinus node dysfunction coexisting with
AF can be observed particularly in patients with type 2 SQTS [30].
Sinus node dysfunction can be a clinical manifestation in patients
with CPVT either as a part of a primary genetic defect or atrial
myopathy coexisting with AF and/or AFL [46].

5. Genetics of atrial arrhythmias

In BrS, a decrease in cardiac sodium (Iy,) or calcium (Ic,) channel
current or augmentation of any one of a number of outward cardiac
potassium channel currents, including Iy, Ixs, and I, can cause pre-
ferential abbreviation of the right ventricular epicardial action poten-
tial secondary to all-or-none repolarization of the action potential at
the end of phase 1 [47]. The substrate responsible for the development
of ventricular arrhythmias also may contribute to arrhythmogenesis in
the atria of the heart [1]. Two cardiac potassium channel currents, I,
and I, are known to be major repolarizing currents in the human
atrium. Na, 15 has been demonstrated as the predominant channel
followed by Na,1.1, Na,1.3, and Na,1.6 in humal atrial cells [48].

Loss-of-function mutations in the Iy, channel o-subunit
(SCN5A) is the most common (~20%) etiology of BrS [49].
Recently, SCN10A, a neuronal sodium channel gene encoding
Na, 1.8 has been identified as a major susceptibility gene (~16%)
for BrS [50]. In addition, loss-of-function mutations in the I,
channel - and f-subunits cause BrS in a significant number of
patients (~10%) [51].

Loss-of-function mutations in the Iy, channel o- and (-
subunits (SCN5A, SCN1B, SCN2B, and SCN3B) and Ic,; channel a-
and P-subunits (CACNA1C and CACNB2) have been identified in
patients with both BrS and AF [9,12,52-55]. A missense mutation
(S422L) in the cardiac Karp channel (KCNJ8) has been identified as
the cause of ERS associated with AF [56,57].

The role of SCN5A mutations in the development of AF in patients
with BrS remains unclear. Two studies showed that the prevalence of
AF is not different in patients with BrS with or without SCN5A
mutation [9,12]. The presence of SCN5A mutations have been asso-
ciated with lower number of premature atrial contractions on Holter
monitoring, longer intra-atrial conduction time, and structural remo-
deling (higher left atrial volume index) but not with AF episodes [11].
A reduced number of potentially triggering premature atrial contrac-
tions in the presence of a more extensive substrate in SCN5A mutation
carriers hypothetically account for AF not being more prevalent in
patients with SCN5A mutations than in those without them [12,58].

Common and rare SCN10A variants may contribute to AF sus-
ceptibility [59,60]. SCN10A mutations (R14L and R1268Q) cause a
loss of function of Nav1.5 current, which is expected to reduce
excitability and lead to the development of the arrhythmogenic
substrate responsible for BrS and AF. A common variant in SCN10A
(A1073) is associated with increased susceptibility to AF [60].

Genetic mutations, particularly, loss-of-function mutations
and/or deletions in Iy, channel o-subunit (SCN5A), have been
identified in patients with both BrS and AFL [37-45].

Genetic screening in the group of patients studied (n=17) with
both AVNRT and drug-induced type 1 Brugada pattern identified
19 mutations or rare variants in 13 different genes in 13 of 17
patients (yield=76.5%). Ten of these 13 genotype-positive patients
(76.9%) harbored genetic variants known or suspected to cause a
loss of function of cardiac sodium channel current (In,) (SCN5A,
SCN10A, SCN1B, GPD1L, PKP2, and HEY2) [17].

In SQTS, gain-of-function mutations in potassium channels (I,
[KCNH2], Ixs [KCNQ1], and Ix; [KCNJ2]) and loss-of-function
mutations in Ic,; channel o- and B-subunits (CACNA1C, CACNB2,
and CACNA2D1) cause shortening of the action potential duration
and QT interval [55,61,62].

In CPVT, loss-of-function mutations in the gene encoding the
sarcoplasmic reticulum calcium release channel (RyR2), or in
genes encoding the RyR2-binding proteins, such as cardiac calse-
questrin (CASQ2), triadin, and calmodulin, cause dysregulation in
intracellular calcium handling [46].

6. Mechanistic link between atrial arrhythmias and inherited
arrhythmogenic disorders

Atrial arrhythmias can be maintained by reentry (AF, AFL, and
AVNRT) and/or rapid focal ectopic firing (AF) [63]. AF requires
triggers (most commonly pulmonary veins) for the initiation of
reentrant circuits and a vulnerable substrate that enables reen-
trant circuits to remain in the atria. Both triggers and the atrial
substrate are modulated by electrical, structural/anatomical
remodeling, and the autonomic nervous system.

Prolonged intra-atrial conduction time determined by surface
ECG (P-wave duration and PR interval) or intra-cardiac electrograms
(time interval from the stimulus at the high right atrium to atrial
deflection at the distal coronary sinus) has been demonstrated in
patients with BrS with or without AF [11,12]. Signal-averaged ECG
has been used to assess the vulnerability to AF [64]. The filtered P-
wave duration is prolonged in patients with BrS. Atrial structural
remodeling (increased left atrial volume index) assessed by trans-
thoracic echocardiography has been also demonstrated in these
patients [11].
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The onset of AF is often preceded by fluctuations in autonomic
tone, consistent with most AF cases occurring at night in patients
with BrS [9]. Vagal stimulation reduces atrial conduction velocities
and shortens the effective refractory period facilitating the
induction of AF. Previous studies demonstrated the expression of
SCN5A and SCN10A in intracardiac ganglia [65,66]. Therefore,
genetic variants SCN5A and/or SCN10A may generate an imbalance
in the intracardiac ganglia activity and increase vagal tone.

Genetic variants impairing the Iy, channel function along with
structural remodeling promote AF by prolonging refractoriness and
slowing conduction velocity. Reduced levels of Iy, are known to
depress In,-dependent parameters such as excitability and conduction
leading to heterogeneous prolongation of refractoriness, thus facil-
itating the development of unidirectional block and reentry, giving rise
to AF, AFL, and AVNRT. Loss of function of Iy, is also known to cause an
outward shift in the balance of currents in the right ventricular epi-
cardium. This shift can accentuate the epicardial action potential
notch, thus giving rise to repolarization and depolarization abnorm-
alities that result in the BrS phenotype, including the development of
phase-2 reentry and polymorphic ventricular tachycardia [67].

Most forms of AVNRT are created by reentry between two (or
more) atrial connections to the AV node. The fast AV nodal pathway
(shortest conduction time) is formed by transitional cells crossing
the tendon of Todaro superiorly. Two slow AV nodal pathways are
formed by the rightward and leftward inferior extensions of the AV
node [68]. Atrial tissue surrounding Koch'’s triangle is involved in all
types of AVNRT. Optical mapping data obtained from isolated rabbit
and adult mongrel dog AV nodal preparations suggested that AV
nodal pathways are located outside the compact AV node, and atrial
and transitional cells are involved in the reentrant circuit of AVNRT
[69]. In light of these findings, we hypothesize that a loss of function
of Iy, secondary to a mutation in sodium channel related genes (e.g.,
SCN5A, SCN1B, SCN10A) may cause reduced excitability, thus
leading to block in one of the AV nodal pathways and the devel-
opment of reentrant re-excitation.

Action potential duration shortening in patients with SQTS
leads to transmural dispersion of action potentials and subse-
quently spiral wave reentry resulting in AF [70]. Prolonged atrial
action potential durations as demonstrated by monophasic action
potentials in humans with LQTS can cause polymorphic AT
potentially as a result of atrial early after depolarizations. These
arrhythmias have been reported to be a specific arrhythmia of
LQTS reminiscent of an atrial form of “torsades de pointes” [71].

The loss of CASQ2 causes abnormal sarcoplasmic reticulum
Ca2+ release and selective interstitial fibrosis in the atrial pace-
maker complex, which disrupts sinoatrial node pacemaking but
enhances latent pacemaker activity, creates conduction abnorm-
alities, and increases susceptibility to AF. These functional and
extensive structural alterations could contribute to sinoatrial node
dysfunction as well as AF in patients with CPVT [72].

7. Prognostic implications of atrial arrhythmias

Several clinical and electrocardiographic/electrophysiological
variables have been demonstrated to predict a worse outcome in
patients with BrS, including aborted sudden death, presence of
syncopal episodes in patients with a spontaneous type 1 Brugada
pattern at baseline, fragmented QRS, and short ( <200 ms) ven-
tricular effective refractory period [73,74]. Spontaneous AF in
patients with BrS has been reported to be associated with syncope,
documented ventricular fibrillation, aborted sudden death, and
appropriate ICD shocks. This may represent a more advanced
electrophysiological and structural remodeling in atrial as well as
ventricular tissue [9,11]. Whether documentation of spontaneous

AF in patients with BrS is an independent risk factor for a worse
outcome remains unknown.

The prognostic value of spontaneous, clinical atrial arrhyth-
mias, particularly AF and/or AFL, in patients with SQTS, LQTS, and
CPVT is currently unknown.

8. Management of atrial arrhythmias

The management of atrial arrhythmias in the condition of BrS
might be challenging for the following reasons. First, many anti-
arrhythmic agents with sodium channel blocking properties might
expose the patients to the development of ventricular arrhythmias
[75,76], and second, patients with BrS might experience inap-
propriate ICD shocks because of atrial arrhythmias in approximately
5-10% of patients during an average 7-year follow-up period [18,77].

The use of AV node blocking agents (verapamil, diltiazem, and
propranolol) for heart rate control and class IC anti-arrhythmic
agents (propafenone and flecainide) in patients with paroxysmal
and/or persistent AF is known to exacerbate the Brugada pheno-
type [75,76]. The safety of amiodarone and sotalol is currently
unknown. Quinidine sulfate, a class IA anti-arrhythmic agent with
strong vagolytic and I;, channel blocking properties is known to be
a safe and effective treatment for patients with BrS and AF [14].

Pulmonary vein isolation (without any additional lesions) by
radiofrequency energy or cyroablation can be performed safely and
effectively in patients with BrS and drug-resistant AF with or
without inappropriate ICD shocks [78,79]. Catheter ablation should
be considered as a first choice of therapy for patients with AFL.

Current treatment options for paroxysmal supraventricular tachy-
cardias include AV node blocking agents (verapamil, diltiazem, pro-
pranolol, and metoprolol), class IC anti-arrhythmic agents (propafe-
none and flecainide), and catheter ablation. The identification of fre-
quent coexistence of clinical, spontaneous AVNRT and drug-induced
type 1 Brugada pattern calls for greater vigilance in the use of certain
anti-arrhythmic agents that are known to exacerbate the Brugada
phenotype (verapamil, diltiazem, propranolol, and class IC agents),
avoidance of Brugada pattern-inducing non-cardiac drugs (certain
selective serotonin reuptake inhibitors, tricyclic antidepressants, and
antipsychotic and antiepileptic agents), and possible need for standard
preventive measures such as use of antipyretics during fever [75,76].

Quinidine sulfate is known to be a safe and effective treatment
for patients with SQTS and AF [28]. Inappropriate ICD shocks due
to T-wave oversensing and/or AF are common in patients with
STQS. Careful ICD programming and use of quinidine sulfate in
those cases are recommended [28].

There is an anecdotal report of dramatic suppression of AF by
mexiletine as a relatively selective blocker of late Na current in a
patient with type 1 LQTS [80].

Pulmonary vein isolation can be performed safely and effec-
tively in patients with CPVT and AF with or without inappropriate
ICD shocks [33,34].
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