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Abstract. Increased expression and activation of human 
epidermal growth factor receptor (EGFR) and HER-2 have 
been reported in numerous cancers. The aim of this study was 
to determine the sensitivity of a large panel of human ovarian 
cancer cell lines (OCCLs) to treatment with various forms of 
small molecule tyrosine kinase inhibitors (TKIs) and cytotoxic 
drugs. The aim was to see if there was any association between 
the protein expression of various biomarkers including three 
putative ovarian cancer stem cell (CSC) markers (CD24, 
CD44, CD117/c-Kit), P-glycoprotein (P-gp), and HER family 
members and response to treatment with these agents. The 
sensitivity of 10 ovarian tumour cell lines to the treatment with 
various forms of HER TKIs (gefitinib, erlotinib, lapatinib, 
sapitinib, afatinib, canertinib, neratinib), as well as other TKIs 
(dasatinib, imatinib, NVP-AEW541, crizotinib) and cytotoxic 
agents (paclitaxel, cisplatin and doxorubicin), as single agents 
or in combination, was determined by SRB assay. The effect 
on these agents on the cell cycle distribution, and downstream 
signaling molecules and tumour migration were determined 
using flow cytometry, western blotting, and the IncuCyte Clear 
View cell migration assay respectively. Of the HER inhibitors, 
the irreversible pan-TKIs (canertinib, neratinib and afatinib) 
were the most effective TKIs for inhibiting the growth of all 
ovarian cancer cells, and for blocking the phosphorylation of 

EGFR, HER-2, AKT and MAPK in SKOV3 cells. Interestingly, 
while the majority of cancer cells were highly sensitive to 
treatment with dasatinib, they were relatively resistant to treat-
ment with imatinib (i.e., IC50 >10 µM). Of the cytotoxic agents, 
paclitaxel was the most effective for inhibiting the growth 
of OCCLs, and of various combinations of these drugs, only 
treatment with a combination of NVP-AEW541 and paclitaxel 
produced a synergistic or additive anti-proliferative effect 
in all three cell lines examined (i.e., SKOV3, Caov3, ES2). 
Finally, of the TKIs, only treatment with afatinib, neratinib 
and dasatinib were able to reduce the migration of HER-2 
overexpressing SKOV3 cells. We did not find any significant 
association between the expression of putative ovarian CSC 
marker, HER family members, c-MET, ALK, and IGF-IR 
and the response to the irreversible HER TKIs. Our results 
support the need for further investigations of the therapeutic 
potential of these irreversible HER family blockers in ovarian 
cancer, and the therapeutic potential of dasatinib when used in 
combination with the inhibitors of the HER family members 
in ovarian cancer.

Introduction

Ovarian cancer is one of the most aggressive and lethal 
types of gynecological cancer. Worldwide, it was responsible 
for an estimated 152,000 deaths in 2012 (1). At present, the 
standard treatment for patients with ovarian cancer comprises 
of maximum surgical debulking, which is then followed by 
adjuvant chemotherapy, entailing a combination of a platinum 
compound with a taxane (2-4). However, the great majority of 
ovarian cancer cases are diagnosed in patients at an advanced 
stage of the disease and they have a poor response to currently 
available therapeutic interventions. As a result, the 5-year 
survival rates for ovarian cancer patients who are diagnosed at 
stages I/II and III/IV is 90 and 20-40% respectively (2,5). This 
highlights the urgent need for the development of novel and 
more effective therapeutic agents with different mechanisms 
of action, and the identification of biomarkers for use in the 
early detection of such cancers and for the selection of relevant 
patient populations who may benefit from such therapeutic 
interventions (3,6-8).
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Since the early 1980s, aberrant expression and activation 
of human epidermal growth factor receptor (EGFR), which 
is the prototype of the type I growth factor receptor family 
(also known as ErbB/HER family), has been reported in a 
wide range of human cancers (9-11). The EGFR transmits 
the mitogenic action of seven ligands including EGF, TGFα, 
HB-EGF, amphiregulin, BTC, and AREG. The binding of 
ligands to the extracellular domain of the EGFR results in 
the formation of EGFR homo-dimerisation or its heterodi-
merisation with the other three members of the EGFR 
family, which include HER-2 (Neu, c-ErbB-2), HER-3 
(ErbB-3) and HER-4 (ErbB‑4), the autophosphorylation of 
such receptor, and ultimately leading to activation of several 
downstream adaptor/signaling molecules including the ras/
raf/MAPK, PI3K/Akt, PLC-Y and JAK/STAT pathways. 
Such biochemical signaling in turn sets off the cancer hall-
mark which include increased tumour cell proliferation and 
migration and invasion (12-15).

Increased expression and activation of HER family 
members have been reported in a wide range of epithelial 
tumours, including ovarian cancer, and in some ovarian cancer 
studies they have been associated with a poorer prognosis 
(16-19). To date, several monoclonal antibodies and small 
molecule tyrosine kinase inhibitors specific for the HER 
members have been approved for the treatment of patients with 
colorectal, head and neck, breast, stomach, lung and pancreatic 
cancers (11,20). However, none of these inhibitors has yet been 
approved for the treatment of ovarian cancers, and this may 
be due the heterogeneous nature of ovarian cancer and the 
lack of reliable biomarkers for response to such therapeutic 
interventions (21-26). Moreover, in some studies the presence 
of a small subpopulation of tumour cells, called cancer stem 
cells, is thought to be responsible for the poor response and the 
development of resistance to therapeutic interventions (27-29).

Therefore, in this study, we investigated the sensitivity of 
a large panel of human ovarian cancer cell lines to treatment 
with various forms of EGFR TKIs including reversible EGFR 
specific, and reversible and irreversible pan-ErbB family 
inhibitors. In addition, we determined the effect of other 
inhibitors including dasatinib (v-abl/src/c-Kit TKI), imatinib 
(v-abl/c-Kit/PDGFR TKI), NVP-AEW541 (IGF-1R inhibitor), 
crizotinib (C-met/Alk inhibitor) and cytotoxic agents (pacli-
taxel, cisplatin and doxorubicin) on the growth of the ovarian 
cancer cells, and whether there was any association between 
the expression of various biomarkers such as putative ovarian 
cancer stem cell (CSC) markers (e.g., CD24, CD44, CD117/
c-Kit), P-glycoprotein (P-gp), and HER family members and 
their responses to treatment with these agents.

Materials and methods

Tumour cell lines. Of ten human ovarian tumour cell lines 
examined in this study, SW626, PA1, ES2, Caov3 and Ovcar-3 
were purchased from American Type Culture Collection 
(Manassas, VA, USA) and Skov3, Cov318, A2780, A2780CIS 
and A2780ADR were purchased from the European Collection 
of Cell Culture (Porton Down, UK). Caov3, SKOV3, Cov318, 
PA1 and ES2 were cultured in Dulbecco's modified Eagle's 
medium (DMEM) (Sigma, UK), A2780, A2780CIS, A2780ADR 
and Ovcar-3 in Roswell Park Memorial Institute-1640 medium 

(RPMI-1640) (Sigma), and SW626 cells in Liebovitz's L-15 
medium (L-15). All media were supplemented with 10% fetal 
calf serum (FCS) (Sigma) and the antibiotics penicillin, strep-
tomycin, neomycin. All RPMI and Liebovitz medium were 
also supplemented with glutamine (Sigma). Drug-resistant cell 
lines A2780CIS and A2780ADR were also supplemented with 
cisplatin (1 µM, 2-3 passages) and doxorubicin (100 nM, once 
a week) respectively to maintain their resistant phenotype.

Antibodies, tyrosine kinase inhibitors, and other reagents. 
The IGF-1R TKI NVP-AEW541, the reversible EGFR TKI 
erlotinib (OSI-774), and irreversible pan-HER family blocker 
afatinib (BIBW2992) were kindly provided by Novartis 
(Switzerland), OSI Pharmaceuticals (Farmingdale, NY, 
USA), Boehringer Ingelheim (Austria) respectively. Sapitinib 
(AZD8931), lapatinib (GW-572016 ditosylate), canertinib 
(CI-1033), imatinib, dasatinib and neratinib (HKI-272) were 
purchased from Selleckhem (Suffolk, UK), crizotinib and gefi-
tinib (Tocris, Bristol/Macclesfield, UK). The cytotoxic drugs 
paclitaxel, doxorubicin and cisplatin and the mouse anti-EGFR 
mAb F4 were purchased from Sigma-Aldrich (Dorset, UK). 
The mouse monoclonal antibodies against HER-3 (MAB3481), 
HER-4 (MAB11311), IGF-IR (MAB391), ALK (MAB77491), 
and HGF R/c-MET (MAB3583) were purchased from R&D 
Systems (Oxford, UK) and those against CD24 (55426), CD44 
(555476), CD117/c-Kit (555713) and P-glycoprotein (557001) 
were purchased from Becton-Dickinson Ltd., (Oxford, 
UK) respectively. The primary in-house mouse antibodies 
HM50.67A and HM43.16B were raised against the external 
domain of HER-2 and EGFR respectively (30). The mouse 
anti-IGF-IR and the rabbit anti-pIGF-1R antibodies were 
purchased from Insight Biotechnology (Middlesex, UK). 
The mouse phosphor-Ty-100 and the rabbits anti-phosphor-
EGFR, HER-2, phosphor-HER-2, HER-3, phosphor-HER-3, 
phosphor-HER-4, HER-4, MAPK, phosphor-MAPK, Akt, 
phosphor-Akt, Met, phospho-Met, Stat-3, phosphor-stat-3, 
Stat-5, phospho-stat-5, β-actin, and CD44+ were all purchased 
from Cell Signaling Technology (Hitchin, UK). The anti-
mouse IgG FITC conjugated STAR9B was from Serotec 
Ltd. (Oxford, UK), and the alkaline phosphatase conjugated 
goat anti-mouse IgG and anti-rabbit IgG were from Fisher 
Scientific Ltd. (Loughborough, UK). The donkey anti-rabbit 
IgG IRDye 680RD and goat anti-mouse IgG IRDye 800CW 
were purchased from Li-Cor Ltd. (Cambridge, UK).

Flow cytometry. The cell surface expression of the HER 
family members, IGF-IR, ALK, c-MET, putative CSC and 
P-glycoprotein markers was determined using flow cytometry, 
as described previously (31). Briefly, ~1x106 cells in 1 ml of 
2% FBS medium were incubated in the presence of primary 
mouse antibody or control medium for 1 h by rotation at 4˚C. 
The tumour cells were then washed three times by centrifuga-
tion, and then incubated in the presence of the FITC-conjugated 
rabbit anti-mouse IgG secondary antibody for 1 h by rotation 
at 4˚C. Cells were again washed three times by centrifugation, 
and the cell pellet was finally re-suspended in FACS Flow 
buffer (Becton-Dickinson). A minimum of 10,000 events were 
recorded through excitation with an argon laser at 488 nm 
and data were analysed using the FITC detector (at 525 nm) 
of BD FacsCalibur flow cytometer (Becton-Dickinson), and 
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mean fluorescence intensity values were calculated using 
CellQuest pro software (Becton-Dickinson).

Growth response studies. The effect of the various agents 
on the growth of human ovarian cancer cell lines was deter-
mined using the sulforhodamine B (SRB) colourimetric assay 
(Sigma-Aldrich), as described previously (31). Briefly, tumour 
cells were seeded at a density of 5,000 cells per well in 100 µl 
of growth medium supplemented with 2% FBS in a 96-well 
plate. Following 4-h incubation at 37˚C, 100 µl aliquots of 
doubling dilutions of the drugs or control medium (i.e., without 
drug) were added to triplicate wells. Cells in the 96-well plates 
were then incubated at 37˚C until cells in the wells containing 
the control medium were almost confluent. Tumour cells were 
then fixed with 10% trichloroacetic acid (TCA) for 1 h and 
were gently washed with tap water, air-dried for ~24 h, and 
then stained with 0.04% sulforhodamine B (SRB) in 1% acetic 
acid for further 1 h. Each plate was then washed with 1% acetic 
acid, air dried overnight and the SRB stain was solubilized by 
adding 100 µl of 10 mM Tris-base per well. The absorbance 
of each well was measured at 565 nm using the Epoch plate 
reader (Thermo Fisher, UK). To determine the initial number 
of cells prior to treatment, an extra plate of cells was set up 
and processed under the same condition after 4-h incubation 
at 37˚C without the drugs. Growth as percentage of growth 
of control was determined through the following formula: 
% Growth = B-A/C-A x 100, where A = A565 nm before 
treatment, B = A565 nm after treatment with drugs, and C = 
A565 nm after medium (32). The IC50 value of each agent was 
determined using Gen5 software (BioTek, UK).

Determination of combination index. The effect of two agents, 
when used in combination, on the growth of ovarian cells was 
determined, using the combination index (CI) as described 
previously (32). Briefly, the drugs for each combination were 
mixed at 8X their IC50 value followed by 8 doubling dilu-
tions (32). Data analysis was then performed using CalcuSyn 
software (Biosoft, UK). The combination index values <0.9 
indicates synergistic effect, while CI values between 0.90-1.10 
indicates an additive effect and CI values >1.1 denotes antago-
nistic effect.

Western blot analysis. Tumour cells were grown to near conflu-
ency in 6-well culture plates containing 5 ml of 10% FBS 
growth medium. Cells were washed once with 5 ml of 0.5% 
FCS/medium and then incubated in 5 ml of fresh 0.5% medium 
containing no drug (control), a TKI, or a cytotoxic drug for 
24 h at 37˚C, prior to treatment with the HER ligand heregulin 
(20 nM) (R&D Systems) for 15 min at 37˚C. Tumour cells were 
then lysed in 400 µl of lysis buffer (Invitrogen, Paisley, UK) 
containing the cocktail protease inhibitor (Sigma-Aldrich). 
Cell lysates were heated to 75˚C for 10 min, then 30 µl of 
protein samples (30 µg) were separated on 4-12% Bis-Tris 
gels (Invitrogen) and transferred onto polyvinylidene difluo-
ride (PVDF) membranes using the XCell II Mini-Cell Blot 
Module kit (Invitrogen). PVDF membranes were probed with 
antibodies using SNAP i.d systems (Millipore, Watford, UK). 
Signal for all were detected using either the Western Breeze 
chemiluminescence kit (alkaline-phosphatase conjugated 
secondary antibody, Invitrogen) and visualized by the G-box 

imaging system (Syngene, Cambridge UK) or a fluorescence 
conjugated secondary antibody (Li-Cor Ltd) and visualized 
by the accompanying software, LI-COR Image Studio.

Cell cycle distribution analysis. The effect of various agents 
on the cell cycle distribution of ovarian cancer cell lines was 
determined using flow cytometry as described previously 
(32). Approximately 2.5x105 cells were seeded into 25 cm2 
culture flasks containing 10 ml of 2% FBS growth medium 
plus no drug (control medium) or an agent. Once the cells 
containing medium only were almost confluent in the control 
flasks, the cells were harvested and pooled together with the 
cell supernatant, and washed three times with cold PBS. The 
final cell pellet was re-suspended in 200 µl of cold PBS, and 
permeabilised by the addition of cold 70% ethanol overnight 
at 4˚C. The tumour cells were then washed once with PBS and 
incubated with 0.5 ml of PI/RNAse mix (Becton-Dickinson) 
for ~35 min at room temperature. The PI-stained tumour cells 
were then excited at 488 nm using the FL-3 detector (620 nM) 
of a BD FACsCalibur flow cytometer (Becton‑Dickinson), and 
analysed using CellQuest Pro software (Becton‑Dickinson).

Migration assay. The cell migration assay was conducted 
using the IncuCyte Clear View 96-well cell migration plate 
according to the manufacturer's instructions (Essen Bioscience 
Ltd., Hertfordshire, UK). Briefly, ~1x103 tumour cells plus the 
treatment in total volume of 60 µl 0.5% FBS medium were 
added into Clear View 96-well insert. Each cell plate was 
then left to settle at the room temperature for 15 min followed 
by incubation for a further 30 min at 37˚C. Then 200 µl of 
medium containing 10% FBS (chemoattractant) was added to 
the lower chamber. The cell plate was then placed onto the 
IncuCyte Zoom® instrument and were left for 15 min at 37˚C 
to settle. After careful removal of any condensation on the 
lid or bottom of the reservoir, each plate was returned into 
IncuCyte Zoom instrument with a 10x objective using the 
IncuCyte™ chemotaxis system. Chamber wells were analysed 
every 3 h using the IncuCyte chemotaxis software.

Statistical analysis. Linear regression was used to analyse the 
relationship between the expression of the HER family recep-
tors in response to treatment with afatinib, erlotinib, crizotinib, 
NVP-AEW541 and cytotoxic drugs. A one-way analysis of 
variance (ANOVA) test was used to compare mean values 
between more than two groups. Data are presented as mean ± 
SD. P<0.05 was considered statistically significant.

Results

Growth factor receptors and putative cancer stem cell marker 
expression in ovarian cancer cells. The cell surface expres-
sion of HER-family members (EGFR/HER-1, HER-2/neu, 
HER-3 and HER-4) was determined by FACS analysis. Of 
the 10 ovarian cell lines examined, SW626, ES2, SKOV3, and 
Caov3 were moderately positive for the EGFR with the mean 
fluorescence intensity (MFI) values of 10, 15, 15 and 40, and 
respectively (Table I). Of the seven HER-2 positive cancer 
cell lines, HER-2 overexpression was only detected in SKOV3 
cells (MFI=574) (Table I). SKOV3 cells were also found to be 
positive for the expression of IGF-IR and c-MET. In contrast, 
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all ovarian tumour cell lines had undetectable levels of both 
HER-3 and HER-4. The highest level of IGF-IR, ALK and 
c-MET were present in A2780CIS (MFI=13), Cov318 (MFI=11), 
and Cov318 (MFI=24) (Table I). Of the putative cancer stem 
cell markers, 5 cell lines were CD24-positive, with the highest 
level of CD24 expression in SKOV3 cells (MFI=440), and 
6 cells lines were CD44-positive with the highest level of 
CD44 in ES2 (MFI=1,105). Finally, none of the ovarian cancer 
cell lines had overexpression of P-glycoprotein and all were 
found to be CD117/c-Kit-negative (Table I).

The irreversible pan-HER inhibitors were more effective than 
the reversible EGFR inhibitors at inhibiting the growth of 
ovarian cancer cells. Of the TKIs, the two reversible EGFR 
TKI gefitinib and erlotinib inhibited the growth of 6 and all 
10 ovarian cancer cell lines with IC50 values ranging from 
1.82 nM (Caov3) to 5.5 µM (A2780), and 152 nM (Caov3) 
to 9.6 µM (A2780ADR) respectively (Table I). The reversible 
dual EGFR/HER-2 lapatinib inhibited the growth of 9 cancer 
cell lines, with IC50 values ranging from 1.42 nM (SKOV3) 
to 5.28 µM (A2780). At cutoff value of 10 µM, the reversible 
EGFR/HER-2/HER-3 TKI sapitinib was less effective than 
the irreversible pan-HER family blockers (i.e., canertinib, 
neratinib and afatinib) at inhibiting the growth of ovarian 
cancer cells, and its IC50 values were >10  µM for three 
ovarian cancer cell lines ES2, Cov318 and Ovcar-3 (Table 
II and Fig. 1A). Canertinib, neratinib and afatinib were the 
best cytotoxic HER TKIs and they inhibited the growth of all 
ovarian cancer cells with IC50 values ranging from 57.6 nM 
(Caov3) to 3.55 µM (SW626), 1.38 nM (Cov318) to 927 nM 
(SW626), and 83 nM (Caov3) to 1.4 µM (ES2) respectively 
(Table II and Fig. 1A). At nM concentration, the IGF-IR TKI 
NVP-AEW541 was only effective at inhibiting the growth 
in vitro of PA1 cells (IC50=79.3 nM). The ALK/c-MET inhib-
itor crizotinib inhibited the growth of all ovarian cancer cell 
lines with IC50 values ranging from 162 nM (PA1) to 2.7 µM 
(A2780ADR). Interestingly, the majority of ovarian cancer cells 
were highly sensitive to treatment with dasatinib with IC50 
values of <26 nM, but all were relatively resistant to treatment 
with imatinib (i.e., IC50 value >10 µM, Table II and Fig. 1B). 
Of the three cytotoxic drugs used in this study, paclitaxel 
was the most effective agent at inhibiting the proliferation 
of ovarian cancer cell lines [IC50 range: 102 pM (Caov3) to 
278 nM (Ovcar-3)], followed by doxorubicin. Interestingly, the 
great majority of ovarian cancer cells were relatively resistant 
to treatment with cisplatin and had an IC50 >20 µM (Table II 
and Fig. 1B).

Treatment with TKIs increases the population of ovarian 
cancer cells in sub-G1 and G2/M phase. We examined the effect 
of treatment with various agents on the cell cycle distribution 
of ovarian cancer cells. As shown by flow cytometry, SKOV3 
cells have the highest level of HER-2 expression, low levels 
of EGFR, IGF-IR and c-MET expression, and overexpress the 
two putative ovarian cancer stem cell markers (Table I). As a 
result, SKOV3 cells were selected for comparing the effect of 
various forms of inhibitors (i.e., reversible EGFR, irreversible 
pan-HER inhibitor, IGF-IR TKI, C-MET-TKI) with cytotoxic 
drugs on cell cycle distribution. Treatment of SKOV3 cells 
with both the cytotoxic drugs paclitaxel and doxorubicin 
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Figure 1. (A) Effect of doubling dilutions of HER TKIs and (B) other TKIs and cytotoxic agents on growth of human ovarian cancer cells. Tumour cells were 
grown in growth medium (2% FBS) with inhibitors or medium alone until control cells (only medium) were confluent. The proliferation of cancer cells was 
calculated as percentage of control cell growth, as described in Materials and methods. Each point is a representation of the mean ± SD.
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increased the proportion of apoptotic/dead cells in sub-G1 
phase (i.e., from 2 to 31 and 16%) and this was accompanied by 
a significant increase in the proportion of cells in G2-M phase 
(i.e., from 8 to 28 and 54%) and a slight increase in S phase 
of the cell cycle (i.e., from 7 to 13 and 12%) respectively 
(Table  III). Treatment of SKOV3 cells with various TKIs 
(erlotinib, afatinib, crizotinib, NVP-AEW541) also increased 
the proportion of cells in sub-G1 phase, but this was accompa-
nied by a reduction in the proportion of cells in S phase of the 
cell cycle (Table III).

Growth response of human ovarian tumour cells to treatment 
with NVP-AEW541 in combination with afatinib, erlotinib, 
crizotinib and paclitaxel. In some studies, IGF-IR cross-talk 
with HER family members was associated with resistance 
to treatment with the HER inhibitors (please see Discussion 
e.g.,  refs. 58-60). As a result, we next examined the effect of 
IGF-IR TKI in combination with other agents on the growth of 
three human ovarian cancer cell lines. When NVP-AEW541 
was combined with the reversible EGFR TKI erlotinib, there 
was an antagonistic response in all three ovarian cancer 
cell lines (SKOV3, Caov3 and ES2). When combined with 
afatinib there was a synergistic effect only in the HER-2 over-

expressing SKOV3 cells (Table IV). Next, we examined the 
effect of NVP-AEW541 in combination with crizotinib and 
this combination resulted in the synergistic growth inhibition 
of both SKOV3 and Caov3 cells, but it was antagonistic in ES2 
cells. Finally, when NVP-AEW541 was used in combination 

Table II. IC50 values for various types of HER TKIs (A), and other TKIs and cytotoxic agents (B) in human ovarian cancer cell 
lines.

A, IC50 values for various types of HER TKIs

Cell lines	 Gefitinib	 Erlotinib	 Lapatinib	 Sapitinib	 Canertinib	 Neratinib	 Afatinib

ES2	 >10 µM	 5.6 µM	 2.9 µM	 >10 µM	 1.4 µM	 125 nM	 1.4 µM
PA1	 5.3 nM	 420 nM	 2.2µM	 4.4 µM	 1.1 µM	 458 nM	 555 nM
SKOV3	 2.3 µM	 2.4 µM	 1.4 nM	 584 nM	 449 nM	 23 nM	 1.4 µM
CAOV3	 1.8 nM	 152 nM	 53.6 nM	 24.3 nM	 57.6 nM	 28 nM	 83 nM
COV318	 >10 µM	 7.5 µM	 4.6  µM	 >10 µM	 2.6 µM	 1.4 nM	 451 nM
SW626	 3.3 µM	 1.3 µM	 3.4 µM	 2.3 µM	 3.6 µM	 927 nM	 445 nM
OVCAR3	 >10 µM	 2.3 µM	 >10 µM	 >10 µM	 2.6 µM	 1.3 nM	 165 nM
A2780	 5.5 µM	 2.4 µM	 5.3 µM	 1.7 µM	 1.2 µM	 373 nM	 365 nM
A2780ADR	 >10 µM	 9.6 µM	 3.4 µM	 3.1 µM	 735 nM	 1.4 µM	 1.3 µM
A2780CIS	 5.3 µM	 3.7 µM	 4.8 µM	 2. 4 µM	 1.4 µM	 176 nM	 340 nM

B, IC50 values for  other TKIs and cytotoxic agents

Cell lines	 NVP-AEW541	 Crizotinib	 Imatinib	 Dasatinib	 Doxorubicin	 Paclitaxel	 Cisplatin

ES2	 3.5 µM	 2.3 µM	 >10 µM	 1.6 µM	 554 nM	 13.9 nM	 >20 µM
PA1	 79.3 nM	 162 nM	 >10 µM	 3.3 nM	 169 nM	 164 pM	  1.5 µM
SKOV3	 2.5 µM	 2.3 µM	 >10 µM	 145 pM	 207 nM	 38.7 nM	 >20 µM
CAOV3	 2.1 µM	 340 nM	 >10 µM	 4.7 nM	 1.6 µM	 102 pM	 16.4 µM
COV318	 1.6 µM	 1.4 µM	 >10 µM	 2.7 nM	 255 nM	 116 nM	 >20 µM
SW626	 4.1 µM	 2.6 µM	 >10 µM	 471 pM	 2.2 µM	 28.9 nM	 >20 µM
OVCAR3	 2.5 µM	 906 nM	 >10 µM	 26.7 nM	 1.2 µM	 278 nM	 16.5 µM
A2780	 4.9 µM	 333 nM	 >10 µM	 3.3 µM	 154 nM	 440 nM	 13.3 µM
A2780ADR	 6.5 µM	 2.7 µM	 >10 µM	 3.0 nM	 2.4 µM	 114 nM	 >20 µM
A2780CIS	 2.3 µM	 808 nM	 >10 µM	 3.3 µM	 43.3 nM	 754 pM	 >20 µM

Table III. Effect of afatinib, erlotinib, crizotinib, NVP-AEW541 
and cytotoxic agents on the cell cycle distribution of ovarian 
SKOV3 cancer cell line.

Treatment	 Sub-G0	 G0-G1	 S	 G2-M

Medium	   2	 82	   7	   8
Erlotinib	 15	 64	   5	 12
Afatinib	 20	 60	   5	 11
Crizotinib	 34	   8	   3	 18
NVP-AEW541	   9	 58	   7	 22
Paclitaxel	 32	 12	 13	 28
Doxorubicin	 16	 14	 12	 54

Each population is expressed as a percentage of gated cells.
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paclitaxel, this resulted in the synergistic or additive growth 
inhibition of all three ovarian cancer cells (Table IV).

Correlation analysis of the HER family members, IGF-1R, 
ALK and c-Met and sensitivity to tyrosine kinase inhibitors 
and cytotoxic drugs. Linear regression analysis was carried out 
for determining the association between expression of growth 
factor receptors and sensitivity to the tyrosine kinase inhibi-
tors as well as the cytotoxic drugs. There was no significant 
association between the expression of EGFR, HER-2, IGF-IR, 
c-MET, ALK and putative CSC markers and the response 
to treatment with the irreversible HER TKIs, dasatinib, 

NVP-AEW541, and crizotinib. However, a significant associa-
tion was found between the co-expression of CD24/HER-2, 
HER2/CD24/CD44, and EGFR/HER2/CD24 and response to 
treatment with gefitinib and lapatinib, and the co-expression 
of EGFR/HER2/CD24 and response to sapitinib (Table V). 
In addition, the co-expression of CD44 with EGFR, HER2, 
CD24, EGFR/CD24, HER2/CD24, EGFR/HER2, or EGFR/
HER2/CD24 was associated with better response to treatment 
with paclitaxel.

Treatment with the irreversible HER TKI afatinib is highly 
effective in reducing the phosphorylation of HER1-4, AKT, 

Table IV. Mean combination index values of NVP-AEW541 when combined with afatinib, erlotinib, crizotinib and paclitaxel in 
human ovarian cancer cell lines.a

	 Mean combination index (effect)
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Cell line	 NVP-AEW541 + afatinib	  NVP-AEW541 + erlotinib	  NVP-AEW541 + crizotinib	 NVP-AEW541 + paclitaxel

SKOV3	 0.88 (slight synergism)	 1.64 (antagonism)	 0.10 (strong synergism)	 0.96 (nearly additive)
CAOV3	 1.3 (moderate antagonism)	 1.83 (antagonism)	 0.20 (strong synergism)	 0.30 (strong synergism)
ES2	 1.87 (moderate antagonism)	 5.54 (strong antagonism)	 2.5 (strong antagonism)	 0.89 (slight synergism)

aThe degree of antagonism or synergism was calculated by Calcusyn software. Each value is the mean of three independent experiments.

Figure 2. (A) Effect of various forms of HER TKIs on the basal level of phosphorylated HER family members and downstream cell signaling molecules in 
SKOV3 cells analysed on LI-COR Odyssey Scanner as described in Materials and methods. (B) Effect of afatinib, erlotinib, NVP-AEW541 crizotinib, pacli-
taxel, doxorubicin and cisplatin on the basal level and HRG-induced phosphorylation of HER family, IGF-1R, Met, and downstream cell signaling molecules, 
and on the expression level of CD44, in SKOV3 cells.
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MAPK and CD44 expression in ovarian cancer cells. Next, 
we investigated the effect of various forms of the HER inhibi-
tors on the basal phosphorylation of the HER family members 
and the downstream cell signaling molecules in SKOV3 cells. 
With the exceptions of treatment with gefitinib and sapitinib, 
all other HER TKIs induced complete inhibition of phos-
phorylated EGFR, HER-2 and AKT and MAPK (Fig. 2A). 
We also compared the effect of afatinib, erlotinib with those 
of NVP-AEW541, crizotinib and three cytotoxic drugs on 
heregulin-induced cell signaling. Of these, only afatinib was 
an effective agent in inhibiting both the constitutive phos-
phorylation and heregulin-induced phosphorylation of HER 
family members, c-MET, IGF-IR as well as MAPK and AKT 
(Fig. 2B). Moreover, treatment with both afatinib and erlotinib 
were accompanied by a reduction in the expression of CD44 
in such cells (Fig. 2B).

Treatment with afatinib, neratinib and dasatinib inhibited the 
migration of SKOV3 cells. Finally, we investigated the migra-
tion of SKOV3 cells and whether treatment with various TKIs 
had any effect on the migration ability of these cells. Of these, 
only treatment with afatinib (p=0.027), neratinib (p=0.011) 
and dasatinib (p=0.004) produced a significant reduction in 
migration of SKOV3 cells (Fig. 3). Interestingly, treatment 
with sapitinib was accompanied by an increase in the migra-
tion of SKOV3 cells (Fig. 3).

Discussion

Ovarian cancer is one of the most lethal types of gynecological 
cancer. A significant proportion of ovarian cancer patients are 
diagnosed at the advanced stage of the disease and have a poor 
response to current chemotherapeutic interventions (2,33,34). 
It is therefore considered essential to not only to develop more 
effective and less toxic therapeutic agents for the management 
of such patients, but also to identify more reliable biomarkers 
for earlier diagnosis, predicting the response, and guiding the 
treatment (2,3,6,8,16,35,36). As noted earlier, the aberrant 
activation of the cell signaling pathways by the epidermal 

growth factor receptor members have been reported in a wide 
range of human cancers including ovarian cancer, and this has 
been associated with a poorer prognosis in many such patients 
(37,38). To date, several anti-EGFR and anti-HER-2 mono-
clonal antibodies and various forms of small molecule TKIs, 
with specificity for one more member of the HER family, 
have been approved for the treatment of patients with a wide 
range of epithelial cancers (11,17,18,39). However, none has 
yet been approved for the treatment of patients with ovarian 
cancer (7,22-24,40-47). Some of the contributing factors may 
include the heterogeneous nature of ovarian cancer, the pres-
ence of alternative pathways for tumour cell proliferation, the 
absence of reliable predictive biomarkers for the selection of a 
more specific population of ovarian cancer patients who may 
benefit from such therapeutic interventions, and the presence 
of chemoresistant cancer stem cells (48-51).

In this study, for the first time to our knowledge, we exam-
ined the growth response of 10 human ovarian cancer cell lines 
to treatment with various forms of the EGFR TKIs including 
reversible EGFR specific, reversible dual EGFR/HER-2 TKI 
and reversible and irreversible pan-HER family inhibitors, as 
wells as other TKIs and cytotoxic drugs. We also examined 
whether there was any association between the expression 
of HER family members, putative ovarian cancer stem cell 
markers or P-glycoprotein and response to these agents. Of the 
HER inhibitors tested, we found that treatment with the 3 irre-
versible pan-HER family TKIs (i.e., canertinib, neratinib and 
afatinib) were more effective than treatment with the EGFR 
specific TKIs gefitinib and erlotinib, the dual EGFR/HER-2 
TKI lapatinib or the reversible pan EGFR/HER-2/HER-3 TKI 
sapitinib, by inhibiting the growth of all ovarian cancer cell 
lines at concentrations <3.5 µM (Table II and Fig. 1A). Unlike 
small molecule EGFR TKIs, anti-EGFR antibody cetuximab, 
which has been approved for the treatment of patients with 
colorectal and head and neck cancers, blocks EGFR signaling 
by inhibiting the binding of ligands to the external domain of 
the EGFR (20). In another study, Bull Phelps and colleagues 
examined the effect of gefitinib and cetuximab on the growth 
in vitro of 9 ovarian cancer cell lines. They found gefitinib 

Figure 3. The effect of erlotinib, lapatinib, sapitinib, afatinib, neratinib, crizotinib, NVP-AEW541 and dasatinib on SKOV3 cell migration determined using the 
IncuCyte Clear View 96-well IncuCyte Chemotaxis system. Chamber wells were analysed every 3 hours using the IncuCyte chemotaxis software.
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to inhibit the growth of these nine ovarian cancer cell lines 
with IC50 values ranging from 6.72 to 32.27 µM. In contrast, 
they could not calculate the IC50 value for cetuximab as it was 
greater than the highest dose tested (1,700 µM) (52). In another 
study, Glaysher and colleagues examined the growth response 
of primary ovarian cell cultures to treatment with gefitinib and 
erlotinib and found only 2 out of 9 and 1 out of 9 had strong 
single agent activity respectively (53). In this study, while the 
irreversible pan-HER-family inhibitors had more anti-prolifer-
ative effect than the other forms of the EGFR TKIs, the pattern 
of growth inhibition of the ovarian cancer cell lines by the three 
irreversible pan-HER TKI were not identical (Table II and 
Fig. 1A). We also examined the effect of the HER inhibitors on 
the constitutive phosphorylation of the HER family members 
and downstream cell signaling molecules in SKOV3 cells and 
found that only treatment with the three irreversible pan-HER 
TKIs resulted in complete inhibition of autophosphorylated 
EGFR, HER-2, AKT and MAPK (Fig. 2A). In addition, of 
the HER-inhibitors studied, only treatment with neratinib and 
afatinib resulted in a significant reduction in the migration of 
the HER-2 overexpressing SKOV3 cells (Fig. 3). Interestingly, 
we did not find any significant association between the expres-
sion level of one or more members of the HER family and 
growth response to these inhibitors (Table V).

In some studies, the co-expression of other growth factor 
receptors and over-activation of downstream cell signaling 
molecules have been associated with resistance of tumour 
cells to treatment with the HER inhibitors and cytotoxic 
drugs (30,33,54-59). As a result, we next examined the expres-
sion level of IGF-IR, c-MET, ALK in these cancer cell lines 
and their predictive value for response to treatment with the 
corresponding TKIs, the HER-inhibitors, dasatinib and cyto-
toxic drugs. While some of the cell lines expressed low level 
of IGF-IR, ALK and c-MET, we did not find any significant 
association between the expression level of these biomarkers 
and response to treatment with the TKIs and cytotoxic drugs 
(Tables I and V). Next, we investigated the effect of the 
IGF-IR TKI in combination with the irreversible pan-HER 
family blocker afatinib, the irreversible EGFR TKI erlotinib, 
crizotinib or paclitaxel on the growth of three ovarian cancer 
cells. We found that the combination of NVP-AEW541 with 
erlotinib was antagonistic in all three ovarian cancer cells. In 
contrast, treatment with a combination of NVP-AEW541 with 
afatinib or crizotinib resulted in synergistic growth inhibition 
of the HER-2 overexpressing and EGFR/IGF-IR/C-Met posi-
tive SKOV3 but the same combinations were antagonistic in 
the EGFR+/IGF-IR+/HER-2-/c-MET- ES2 cells (Table  IV). 
In other studies while treatment with a combination of the 
IGF-IR TKI with the HER inhibitors resulted in synergistic 
or additive cytotoxic effects in a panel of colorectal and 
pancreatic cancer cells, the same combination was found to 
be antagonistic in a sub-set of such tumour cell lines (31,60) 
This highlights the complexity and heterogeneous nature of 
cross-talk between the IGF-IR and the HER family members 
and c-MET by different ovarian cancer cells. Interestingly, 
only treatment with a combination of NVP-AEW541 and 
paclitaxel resulted in the synergistic growth inhibition of 
all three ovarian cancer cells (Table III). In another study, 
Beltran and colleagues investigated the antitumour activity of 
the fully human anti-IGF-IR antibody ganitumab with pacli-

taxel or carboplatin in a panel of ovarian cancer cell lines and 
found that treatment with a combination of ganitumab with 
paclitaxel or carboplatin resulted in synergistic and additive 
growth inhibition of these cancer cell lines (61). Therefore, 
further investigations are warranted on the therapeutic 
potential of the IGF-IR inhibitor in combination paclitaxel in 
ovarian cancer.

In several malignancies including ovarian cancer, the 
presence of a rare population of cancer stem cells have been 
suggested as the cause of tumour progression, metastasis and 
resistance to chemotherapy (50,62-66). As there is currently no 
specific ovarian cancer stem cell marker, we next investigated 
the expression level and predictive value of three putative 
cancer stem cell markers (CD24, CD44, CD117/c-Kit) for the 
response to treatment with various TKIs and cytotoxic agents 
in our panel of ovarian cancer cells. We found five and seven 
ovarian cancer cell lines to be CD24- and CD44-positive, 
respectively (Table I). In some studies, CD44 expression has 
been associated with epithelial to mesenchymal transition 
and shorter disease-free and overall survival in patients with 
ovarian cancer (67,68). In this study, we found that treatment 
of SKOV3 cells with both afatinib and erlotinib was accom-
panied by the downregulation of CD44 (Fig. 2B). In another 
study, Su and colleagues found that downregulation of CD24 
in SKOV3 cells was accompanied by a significant reduction 
in cell viability and induction of apoptosis in SKOV3 cells 
(69). More recently, Burgos-Ojeda and colleagues showed that 
CD24+ ovarian cancer cells are enriched with cancer initiating 
cells and play an important role in tumour initiation and metas-
tasis (70). However, while there was overexpression of CD44 
and CD24 in several of the ovarian cancer cell lines used in 
this study, none of them were CD117/c-Kit-positive or had 
overexpression of P-glycoprotein (Table I). Moreover, while 
there was not a significant association between the expression 
of CD44 or CD24 and the response to treatment with TKIs and 
cytotoxic drugs, a significant association was found between 
the co-expression of HER-2/CD24, HER2/CD24/CD44 and 
EGFR/CD24/CD44 the response to treatment with gefitinib 
and lapatinib, and the co-expression of EGFR/HER2/CD24 
and EGFR/HER2/CD44 and the response to treatment with 
sapitinib. Of the three cytotoxic drugs, we found that pacli-
taxel was the most effective drug for inhibiting the growth of 
ovarian tumour cell lines with concentrations ranging from 
pico molar concentrations and none >440 nM. Interestingly, the 
co-expression of CD44/CD24 with EGFR, HER-2 or EGFR/
HER-2 were all associated with response to paclitaxel but not 
doxorubicin or cisplatin (Table V). These results support the 
need for further investigation on the predictive value of these 
biomarkers for response to treatment with paclitaxel in ovarian 
cancer patients.

Finally, the downstream signaling protein Src is a known 
key signaling pathway inducer of several membrane bound 
activated receptors, including EGFR. The result of a clinical 
trial with the SRC-family kinase inhibitor dasatinib suggested 
that it has minimal activity as a single agent in the treatment 
of patients with recurrent or persistent epithelial ovarian 
carcinoma (71). However, in several preclinical studies treat-
ment with dasatinib in combination with a chemotherapeutic 
resulted in synergistic growth inhibition of some of the ovarian 
cancer cell lines (72-75). We found that dasatinib was the most 
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potent TKI in this study. While dasatinib inhibited the growth 
of all ovarian cancer cell lines in our study and it was the most 
effective TKI for inhibiting SKOV3 cell migration, there was a 
4-log-fold difference in its IC50 value ranging from 145 pM in 
SKOV3 cells to 3.3 µM in A2780CIS cells (Table II and Figs. 1B 
and 3). This highlights the importance of the identification of 
reliable predictive biomarkers for directing dasatinib therapy, 
in particular further studies on its therapeutic potential when 
used in combination with the irreversible HER inhibitors or 
other chemotherapeutic agents, in ovarian cancer.

In conclusion, our results show that of the HER TKIs, the 
irreversible pan-HER TKIs were more effective at inhibiting 
the growth of ovarian cancer cells, blocking cell signalling 
through HER family members and reducing the migration 
of ovarian cancer cells. Moreover, of all the TKIs and the 
three cytotoxic drugs used in our study, we found that the 
great majority of ovarian cancer cells were most sensitive to 
treatment with the Src/V-abl/C-kit inhibitor dasatinib and 
paclitaxel respectively. The variation in growth suppression 
of various EGFR TKIs across the panel of human ovarian 
tumour cell lines also highlights the important role of tumour 
heterogeneity. Our results support the need for further investi-
gations of the therapeutic potential of irreversible HER family 
blockers in ovarian cancer, and the therapeutic potential of 
dasatinib when used in combination with the inhibitors of the 
HER family members.
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