Skip to main content
. 2016 Oct 13;11(10):e0162790. doi: 10.1371/journal.pone.0162790

Fig 4. Experimentally measured and numerically computed current response of the tethered membrane.

Fig 4

(a) and (b) provide the measured and computed phase and current response of the spacer surface. Note Cm → ∞ and Gm = 0 as the membrane is not present. (c) to (f) provide the experimentally measured and numerically computed current response I(t) for 1%, 10%, and 100% tethered DphPC membranes. In (c) the drive potential Vs(t) is defined by a 1 ms linearly increasing potential with a slope of 10 V/s, 40 V/s, 70 V/s, and 90 V/s followed by a 1 ms linearly decreasing potential with identical slope. In (d) Vs(t) is a 5 ms linearly increasing potential with slope of 50 V/s, 200 V/s, 300 V/s, and 450 V/s followed by a 5 ms linearly decreasing potential with identical slope. In (e) Vs(t) is defined by a 8 ms linearly increasing potential with a slope of 100 V/s followed by a 8 ms decreasing potential with identical slope. In (f) Vs(t) is a step of 50 mV, 100 mV, 150 mV, and 200 mV. All numerical results are computed using the fractional order macroscopic model provided in the S1 Text.