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Rare variants have been shown to be significant contributors to complex disease risk. By 

definition, these variants have very low minor allele frequencies and traditional single-marker 

methods for statistical analysis are underpowered for typical sequencing study sample sizes. 

Multi-marker burden-type approaches attempt to identify aggregation of rare variants across case-

control status by analyzing relatively small partitions of the genome, such as genes. However, it is 

generally the case that the aggregative measure would be a mixture of causal and neutral variants, 

and these omnibus tests do not directly provide any indication of which rare variants may be 

driving a given association. Recently, Bayesian variable selection approaches have been proposed 

to identify rare variant associations from a large set of rare variants under consideration. While 

these approaches have been shown to be powerful at detecting associations at the rare variant level, 

there are often computational limitations on the total quantity of rare variants under consideration 

and compromises are necessary for large-scale application. Here, we propose a computationally 

efficient alternative formulation of this method using a probit regression approach specifically 

capable of simultaneously analyzing hundreds to thousands of rare variants. We evaluate our 

approach to detect causal variation on simulated data and examine sensitivity and specificity in 

instances of high rare variant dimensionality as well as apply it to pathway-level rare variant 

analysis results from a prostate cancer risk case-control sequencing study. Finally, we discuss 

potential extensions and future directions of this work.
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Introduction

With advancements in next-generation sequencing technologies, there has been a 

reinvigorated interest in the roles that rare variants (RVs) play in the genetic etiology of 

complex diseases [Cirulli and Goldstein 2010]. Due to low minor allele frequencies (MAFs), 

traditional single-variant risk association analysis methods on RVs suffer from low statistical 

power for even relatively large sample sizes, and specialized strategies are necessary to 

identify RV associations. This has led to the development of multi-marker aggregation 

strategies that are predicated on the notion that causal RVs may cluster in biologically 

relevant functional domains, such as genes [Bansal, et al. 2010]. There are a growing 

number of multi-marker omnibus methods available for RV association analysis that 

evaluate a priori defined target regions of interest (ROI) to localize clustering of causal RVs. 

These include various burden-based collapsing methods [Dering, et al. 2011], as well as 

variance component tests such as the C-alpha test [Neale, et al. 2011] and sequence kernel 

association test (SKAT) [Lee, et al. 2012; Wu, et al. 2011].

A notable caveat for these omnibus tests is that they do not provide any inference at the 

marker level as to which RVs may be driving a given multi-marker association. An 

alternative strategy is to simultaneously assess all of the RVs under consideration and apply 

some form of variable selection. One approach to identifying these RVs is to apply Bayesian 

variable selection procedures (for review, see [O'Hara and Sillanpaa 2009]). Use of these 

methods in marker association studies have the potential to be more powerful than other 
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model selection procedures [Quintana and Conti 2013; Wilson, et al. 2010], and additionally 

provide relevant posterior quantities of interest for variable inclusion. Recently, Bayesian 

model uncertainty (BMU) strategies have been proposed for RV association analysis in case-

control studies, referred to as the Bayesian risk index (BRI) [Quintana, et al. 2011]. The BRI 

method utilizes an aggregation and collapsing risk index parameterization of the selected 

RVs in a logistic regression framework, which we hereafter refer to as L-BRI. The authors' 

simulation results not only indicate increased power over traditional omnibus approaches for 

global association, but powerful detection of individual RVs driving an association signal 

through the derivation of marginal Bayes Factors (BFs).

A drawback of selecting the logit link function for the generalized linear model is that no 

closed-form solutions exist for the full conditional densities of the model parameters. 

Moreover, the Metropolis-Hastings (MH) algorithm for sampling from the model space in L-

BRI applies a single-component proposal procedure to the variable inclusion vector. This 

can result in a computationally intensive algorithm requiring many hours to run to fully 

explore the model space for higher RV counts, reserving practical applications to smaller 

regions of the genome. Recent findings from large-scale sequencing studies indicate that, 

from a population-based perspective, RV sites can be quite common [Nelson, et al. 2012]. 

Consequently, sufficient sample size and sequence content could yield a computationally 

burdensome quantity of RVs for the L-BRI method. An illustrative example of potentially 

high RV dimensionality is a targeted sequencing study of the DISC1 locus investigating 

association with psychiatric traits [Thomson, et al. 2013], which identified over 2000 

validated RVs (MAF < 1%) across the region of interest. Moreover, most sequencing studies 

are under-powered for gene-based analyses, prompting multi-genic analyses that aggregate 

rare variants across related genes in a given pathway[Wu and Zhi 2013]. Targeted analysis of 

multiple genes within a gene set could yield similarly extreme quantities of RVs. These 

applications may not be tenable for the L-BRI or similar approaches without application of 

strict exclusion criteria that could inadvertently filter out causal variation.

An alternative strategy to handling high dimensional rare variant analysis would be to apply 

Bayesian variable selection in a post-hoc fashion to identify potential causal variation 

driving an association finding from frequentist testing. One reformulation of the BRI 

approach would be to instead utilize the probit link function for the generalized linear model 

in combination with alternative MH algorithms that permit effective exploration of the 

model space. A key advantage of the Bayesian probit regression model is that closed forms 

of the full conditional distributions exist for appropriately selected conjugate priors using 

data augmentation techniques [Tanner and Wing 1987], resulting in efficient Gibbs 

sampling. The use of probit regression with Bayesian variable selection methods for high-

dimensional modeling has been demonstrated to be quite powerful in the analysis of gene 

expression [Baragatti 2011; Lee, et al. 2003; Leon-Novelo, et al. 2012; Yang and Song 

2010], capable of simultaneous consideration of hundreds to thousands of probesets. The 

utility of the probit regression approach relative to logistic regression for variant analysis in 

case-control sequencing studies was recently demonstrated by Kang et al. [Kang, et al. 

2014].
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Here we propose a fully Bayesian probit regression BRI (P-BRI) method for detection of 

individual RV risk associations and define strategies for instances of high variant 

dimensionality. We outline the basic sampling algorithm, which is an adaptation of existing 

Bayesian variable selection procedures for probit regression. We then evaluate the power of 

our approach at detecting causal rare variants via simulation studies, detailing sensitivity and 

specificity under varying conditions against L-BRI, as well as apply P-BRI to high 

dimensional variant scenarios. To illustrate our method using real data, we apply our P-BRI 

approach to a prostate cancer (PC) case-control whole-exome sequencing (WES) analysis of 

the previously detected rare variant pathway associations. Finally, we discuss the advantages 

of our approach and outline extensions and future research directions.

Methods

Model definition

Consider a case-control rare variation association study with N subjects consisting of ND 

cases and NC controls, and let Y be an N × 1 vector of corresponding binary responses 

indicating affected status, such that Yi = 1 if the ith subject is a case and Yi = 0 if a control. 

Let Z be an N × p RV genotype matrix, where zij ≡ Z[i,j] represents the minor allele count 

for subject i at RV position j for j = 1, … p. We also define the N × q design matrix X 
consisting of q additional adjustment covariates, such as age or gender. In general, it is 

assumed that the proportion of truly causal RVs in Z is relatively small and that some form 

of model selection is desired to identify a subset of the total RVs that are associated with the 

trait of interest. For our approach we apply variable selection on the set of RVs in Z to 

characterize an RV load defined by the selected RVs. As such, each possible model ℳγ 
within the model space ℳ can be characterized through a variable inclusion vector γ, a p × 1 

vector of indicators such that γj = 1 denotes that the jth RV is included in the aggregation 

measure, yielding 2p total possible models. For even moderate values of p, enumeration of 

all 2p models ℳγ ∈ ℳ is not feasible.

To account for the effects of RVs on disease risk, we apply a risk index approach that 

considers the aggregate effect of multiple RVs by the collapsed measure , where Zi 

is a column vector corresponding to the ith row of Z. The scalar quantity zγ,i is the 

summation of minor alleles over the selected RVs in the model for subject i and indicates the 

subject-wise RV burden, and we denote Zγ = (zγ,1, …, zγ,N)′. We define the binary 

regression model, such that

where g(μ) is a link function and ηi denotes the linear predictor. For our approach, we select 

the probit link, such that g−1(μ) = Φ(μ), where Φ(μ) represents the standard Gaussian 

cumulative probability distribution function. The model likelihood can then be written as
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which does not initially provide analytical solutions for the model parameter posteriors. 

However, Albert and Chib [Albert and Chib 1993] proposed a data augmentation solution to 

computing probit regression posterior distributions by introducing the additional vector of 

independent latent variables Ỹ corresponding to Y, such that

and

where (μ,σ2) indicates a Gaussian distribution with mean μ and variance σ2. Thus, the 

observed dichotomous variable Y is indicative of the sign of the latent random variable Ỹ, 

which is modeled via linear regression with fixed variance.

Prior distributions

We opt for traditional conjugate priors where applicable in order to attain full conditional 

distributions. We first define the prior distribution on the vector of design covariate 

parameters, β, to be a q-dimensional multivariate Gaussian distribution such that

which is a conventional g-prior distribution [Zellner 1983] in probit regression coefficients 

for blocked Gibbs sampling. We similarly place a standard Gaussian prior on the BRI 

coefficient βγ, such that βγ ∼ (0,1).

We specify the prior probability of a given model ℳγ ∈ ℳ, Pr(ℳγ) through the individual 

variable prior inclusion probabilities Pr(γj = 1) = πj, such that 

. We define the model probability in this fashion via the 

assumption that the probabilities that given RVs are included in the model are independent, 

since low linkage disequilibrium is expected among RV sites [Pritchard 2001]. The vector π 
= (π1, …, πp)′ can either reflect no differential prior belief of inclusion, such that π1= ⋯ 
=πp= π, or may differ based upon available functional data that informs potential RV 

functionality in relation to the trait of interest. Similar to Quintana et al. [Quintana, et al. 

2011], we specify the default prior on γj to be , such that the prior 
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probability of the global null model  to account for 

the potential of a Type I error as well as render the models equitable in this regard.

Bayesian sampling algorithm

To obtain estimates of the posterior quantities of interest, we apply a Markov Chain Monte 

Carlo (MCMC) approach [Hastings 1970], whereby samples from the respective posterior 

distributions of the model parameters are iteratively drawn using Gibbs sampling (GS) and 

MH methods. To define our sampler, we first must characterize the full conditional 

distributions of the model parameters, which include f(Ỹ|Y,β,βγ,γ), f(β|Ỹ, βγ,γ), f(βγ|

Ỹ,β,γ), and f(γ|Ỹ,β,βγ,). The full conditional distributions for the first three can easily be 

derived, such that

•  left truncated at 0

•  right truncated at 0

•
 where 

•

 where 

Since these distributions are properly defined, GS methods can be used for iterative 

updating. However, under our BMU procedure, the full conditional distribution of γ cannot 

be directly simulated easily, requiring a Metropolis-within-Gibbs approach. To sample from 

the distribution of γ, we adopt a marginalization strategy [Liu 1994], which is based upon 

the integrated distribution of the full conditional of γ over βγ, f(γ|Ỹ,β). It can be shown 

using Bayesian linear model theory that f(γ|Ỹ,β) is proportional to

which we use to define a MH algorithm for updating γ, directly followed by simulation of 

βγ from its full conditional distribution.

There are a number of options for proposing new values of γ in the MH step of the MCMC 

sampler. Quintana et al. [Quintana, et al. 2011] elected a single-step addition/deletion MH 

algorithm for model selection in L-BRI, whereby the proposed vector γ is generated by 

switching the binary value of a randomly chosen variable inclusion indicator γj. However, in 

instances of higher RV dimensionality, this approach requires a prohibitively large number 

of iterations to adequately explore the model space ℳ, resulting in relatively poor mixing. In 

contrast, updating each γi in a component-wise fashion can significantly improve mixing 

and convergence and may result in overall better performance [Johnson, et al. 2013]. 

Consequently, we apply a component-wise multistep MH algorithm, similar to that applied 

by Lee et al.[Lee, et al. 2014] for imaging data, that iteratively updates each element in γ. 
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This is conducted in a modified metropolised Gibbs framework, such that the proposal for γi 

is always the opposite of the current state, yielding more efficient mixing[Liu 1996]. The 

unique formulation of the risk index as a product of a fixed design matrix Z and variable 

inclusion vector γ permits computationally efficient component-wise MH updating, which is 

generally infeasible for high dimensional problems. At each iteration of the MCMC 

algorithm we randomize the updating order of MH step for γ, and convergence to the 

stationary distribution may be checked by running multiple chains from different initial 

values and comparing posterior samples.

Given that the defined prior on the BRI parameter βγ has positive support over the entire 

real line, it is possible for the sampler to draw negative values of βγ despite it characterizing 

risk. One simple solution is to constrain the prior distribution to the positive real line by 

using a truncated normal prior. By Gelfand et al. [Gelfand, et al. 1992], we can 

accommodate this prior by adding a rejection step to the Gibbs sampler for βγ, accepting 

new draws of βγ, βγ(⋆), only if βγ(⋆) > 0.

Posterior measures of interest

Conditional on evidence against the global null model ℳ0 (e.g., from a previously conducted 

test), a primary motivation is identifying an interesting subset of variants associated with the 

disease of interest for follow-up analyses. In the case of variable selection problems, the 

marginal posterior probabilities of inclusion are useful for such inference. Denote ζj = 

Pr(γj=1|Y) to be the marginal posterior probability of inclusion for jth RV in Z. Quintana et 

al. [Quintana, et al. 2011] derive the marginal BFs to isolate RVs that may be driving an 

association, such that

We estimate ζj in a Monte Carlo fashion from the T posterior samples of γ, such 

. Decisions of relative importance of each RV can then be made with respect to 

common thresholds (e.g., >10 or 31.6) defined by Jeffreys' grades of evidence [Jeffreys 

1961] using these marginal BFs.

Simulations

To evaluate the performance of P-BRI at identifying individual risk associated RVs, we 

considered a hypothetical case-control genetic association study with N = 1000 total subjects 

(ND=NC). To simulate the RV genotype data conditional on disease status, we employed the 

model developed by Li and Leal [Li and Leal 2008] and algorithmically defined by Zhou et 

al. [Zhou, et al. 2010]. This model is based upon the conditional Poisson-binomial whereby 

any of the v risk RVs can independently cause the disease status, defined though the MAFs, 

prevalence, and relative risks of RVs. The MAFs for all RVs were randomly generated 

uniformly on the interval (0.005,0.01), and all simulated RVs that resulted in an empirical 

MAF of zero were excluded from analysis. Prevalence was fixed at 0.01 and no additional 
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covariates were included in the simulation model. Simulations under the null (i.e., no causal 

variation) simply involved random assignment of case-control status to randomly generated 

RV genotype vectors.

We first compared the performance of the P-BRI relative to the original L-BRI at detecting 

causal RVs in scenarios that were computationally reasonable for either method, fixing p = 

50. Software implementation of the L-BRI method is available via the R package BVS, 

which we applied under default settings unless otherwise noted. For simulations involving 

causal variation, we considered the quantity of truly causal RVs, v, to range from 5 to 15, 

and applied both the P-BRI and L-BRI methods to detect the associated RVs. All causal RVs 

were attributed a relative risk (RR) of 1.5, 2.5, or 5, with all remaining RVs being neutral 

(RR = 1). Convergence of the L-BRI was evaluated by running two parallel chains and 

comparing output marginal BFs, as per the method's documentation, with convergence 

defined by the root mean square error between the two sets of BFs to be < 1. To evaluate 

convergence of P-BRI, the Gelman-Rubin diagnostic was applied to MCMC posterior 

samples of βγ for two parallel chains with different starting values, with convergence 

declared if the upper 95% confidence limit was < 2. For the P-BRI method we sampled a 

total of 30,000 iterations, treating the first 15,000 as a burn-in, while for the L-BRI method 

we sampled 100,000 iterations and treated the first 50,000 as a burn-in. If convergence was 

not achieved at these iteration counts additional posterior samples were drawn until 

convergence criteria were met. Marginal BFs were also computed for P-BRI in order to 

compare the relative false positive (FPR) and true positive rates (TPR) based upon detection 

of causal variant status across all simulation iterations (50 × 500 = 25000 total variants). For 

P-BRI, instances where RVs had corresponding posterior inclusion probabilities (PIPs) 

estimates ζ̂j = 1 were adjusted to  to avoid division by zero in the marginal BF. For 

purposes of comparing performance between L-BRI and P-BRI relative to TPR and FPR, we 

computed bootstrapped 95% confidence intervals on these metrics and/or their differential 

across methods using the R package fbroc, based upon 1000 bootstrap samples.

To additionally examine the performance of P-BRI under high RV dimensionality, we 

increased the total RV counts to p = 500 and p = 1000 and fixed the number of true 

deleterious RVs to v = 25, such that the causal RV proportions were 5.0% (p = 500 and 2.5% 

(p = 1000), respectively. Given the larger quantity of RVs under simultaneous consideration, 

we focused on identification of larger effect sizes and examined performance for RRs of 2.5, 

5, and 10 for causal RVs. For these applications, the first 15,000 MCMC samples were 

discarded as a burn-in, resulting in a posterior sample size of 15,000.

Data Application: Prostate Cancer Risk

A whole-exome sequencing study of men with prostate cancer was conducted by the 

International Consortium of Prostate Cancer Genetics (ICPCG). The ICPCG has identified 

and sampled the most informative high-risk PC pedigrees known throughout the world. With 

the goal of identifying PC susceptibility loci utilizing this extraordinary collection of 

families, WES was performed on 539 familial cases of PC derived from 366 families all 

having at least three affected men with PC: 257 cases from 84 families (the majority having 

three sequenced/family) and 282 singleton cases. Whole-exome sequencing was performed 
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using the Agilent 50Mb SureSelect Human All Exon chip or the Agilent SureSelect 

V4+UTR kit. Bioinformatics analysis was performed using GenomeGPS, a comprehensive 

analysis pipeline developed at Mayo Clinic which performs alignment using Novoalign (v.

07.13), realignment and recalibration using the Genome Analysis Tool Kit (GATK,v3.3), 

germline single nucleotide and small insertion/deletion variant calling using GATK 

HaplotypeCaller, and Variant quality score recalibration (VQSR), following GATK best 

practices v3 [DePristo, et al. 2011; McKenna, et al. 2010; Van der Auwera, et al. 2013]. 

Population-based controls were selected from samples that were sequenced at Mayo Clinic 

using similar library preparation and sequencing to the cases. We identified 494 samples 

from four studies which met our inclusion criteria (germline sequencing using Agilent V2 or 

V4+UTR capture and with initial alignment performed using the same version of Novoalign. 

Samples included 89 unselected samples from the Mayo Clinic Community Biobank, 355 

samples from two studies of cardiovascular phenotypes and 50 samples from a study of 

neuropathy. All samples were re-processed using the bioinformatics pipeline described 

above and underwent the same stringent quality control analyses.

We conducted a pathway-directed RV case-control study (see Supplemental Methods for 

details) to evaluate the role of RVs in risk of PC using 860 gene-set definitions from KEGG 

[Kanehisa 2002] and Reactome [Joshi-Tope, et al. 2005]. For our purposes, we restricted our 

analyses to unrelated subjects by randomly selecting single individuals from pedigrees with 

multiple sequenced subjects. After sample exclusions for quality control or relatedness, a 

total of 333 cases and 349 controls remained. In our analyses, we identified multiple highly 

overlapping gene-sets related to the Lands cycle (Reactome IDs R-HSA-1482922.1, R-

HSA-1483226.1, R-HSA-1482788.1, R-HSA-1482839.1, R-HSA-1482925.1) to be 

significantly associated (P <5.8E-05) using SKAT-O[Lee, et al. 2012] and burden-based 

testing. The Lands cycle is involved in the acyl-chain remodeling of a variety of 

phospholipids, and the union of the associated pathways constitutes 26 genes involving 438 

unique observed variants with empirical MAF < 0.05. To investigate which RVs may be 

driving the association, we applied the P-BRI approach to the data, including additional 

covariate adjustment for WES capture kit and five leading principal components derived 

from the complete genetic data. Similar posterior sampling procedures that were used in the 

simulations were applied and no additional information was used to alter the priors on γ.

Results

Simulation Analysis

The TPRs for RV associations declared at a marginal BF threshold of BF ≥ 10 are presented 

in Table I. Overall, we observed higher TPR as well as FPRs for L-BRI relative to P-BRI, 

indicating marginal BFs to be larger in general for the L-BRI approach and rendering 

performance comparisons difficult. When evaluating TPRs at a fixed FPR of 0.01 (Table II), 

we noted comparable performance. We additionally observed reduced TPR at fixed RR 

effect sizes as the proportion of causal variants increased, regardless of method. This is 

likely due to the fact that models encompassing a larger number of causal variants are less 

likely under the default prior distribution on the model space ℳ. In general, performance 

was comparable between the two approaches, with P-BRI tending to perform better under 
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conditions of lower effect size and smaller proportion of causal variants and L-BRI under 

large effect sizes and higher causal variant proportion.

Marginal TPR and FPR results at BF thresholds of 10 and 31.6 for the high RV 

dimensionality simulations are presented in Table III. We observed similar patterns of 

performance with respect to underlying RR and causal variant proportions as observed in the 

low RV count simulations, with higher global TPRs for p = 500 relative to p = 1000 for a 

fixed causal variant effect size. Marginal RV detection evaluated by TPR and FPR was 

comparable across differing total number of evaluated variants at a fixed BF threshold, with 

increasing TPR at higher effect sizes with the FPR remaining relatively fixed.

The above simulation results do not take into account the likely high degree of multiple 

testing that would likely occur prior to post-hoc evaluation, as the simulations only consider 

the case where true causal variation is present. Consequently, false positive rates may be 

higher than reported, depending upon how Type I error was controlled at the first stage of 

testing. To evaluate the behavior of P-BRI under false positive testing results, we conducted 

an additional 500 simulations for each of the high variant dimensionality conditions where 

none of the simulated variants were associated with case/control status. At a BF threshold of 

10, variant-level false positive rates were commensurate with those reported in Table III 

(0.012 for p = 500; 0.013 for p = 1000).

Data Application

The marginal BFs for the 438 RVs analyzed in the PC risk analysis are presented in Figure 

1. A total of four variants in three separate genes corresponded to a BF >10 (Table IV), 

including a splice-site variant in gene PLA2G4F (hg19 chr15:42448635A→T) with a 

corresponding marginal BF of 2787.7 and PIP of 0.815, occurring in 19 cases but only one 

control. Both PLA2G4D and PLA2G4F encode proteins that selectively hydrolyze 

glycerophospholipids, and dysregulation of lipid metabolism has been noted in many 

cancers[Huang and Freter 2015].

To evaluate the MCMC mixing for the data application, we computed the model mutation 

rate as the proportion of posterior samples that resulted in model state transitions (77.5%). 

Computational runtime for the full 30,000 iterations was approximately 20 minutes. Similar 

application of L-BRI resulted in only 188 accepted model transitions (mutation rate = 

1.25%) for the same number of iterations. After 100,000 iterations (∼1 hour runtime) for 

two independent runs with a 50,000 burn-in, examination of the marginal BF output from L-

BRI still indicated lack of convergence.

Discussion

In this paper, we have presented a regression-based Bayesian variable selection strategy for 

post-hoc analysis of aggregative RV associations in disease risk via a reformulation of the 

BRI method for case-control RV association analysis. By modeling the probability of 

affected status using a probit link function, in contrast to a logistic regression approach, we 

have demonstrated the method to be feasible for high dimensional applications. We have 

also proposed a component-wise MH algorithm for updating the variable inclusion vector γ, 
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which results in rapid exploration of the model space. Our simulation results comparing L-

BRI and P-BRI for moderate RV counts indicate that their ability to detect causal RVs is 

comparable for a variety of conditions, while P-BRI was also capable of detecting causal 

variation under very high RV dimensionality. This renders P-BRI a powerful method for 

dense post-hoc RV association analyses, as evidenced by both our large-scale simulations 

and our PC risk analysis of 438 RVs within genes involved in the Lands Cycle. The 

application of our approach indicates the significant associations previously detected by 

pathway-based analyses may be driven by variants within three phospholipase genes and 

additional targeted sequencing of these genes may be warranted in future research.

From a computational perspective, our probit approach benefits from a multi-step MH 

algorithm for updating variable inclusion vector γ. Execution runtimes for P-BRI in our 

simulation study under conditions where p = 50 and N = 1000 averaged 6.2 minutes, while 

runtimes for our larger simulations where p = 1000 and N = 1000 at 30,000 iterations were 

approximately 75 minutes on average. The latter analyses were not feasible for L-BRI in our 

simulations due to the high model space dimensionality and single-step updating of γ. These 

timings are based upon working code written in the R statistical language and executed on a 

modern workstation equipped with a Quad-Core AMD Opteron™ Processor and 16 Gb of 

RAM. We anticipate that computational burden for the P-BRI method may be further 

reduced substantially with alternative BVS methods, such as objective Bayes model 

selection [Leon-Novelo, et al. 2012] and particle stochastic search [Shi and Dunson 2011] 

approaches, as well as implementation of parts of the current MCMC algorithm in more 

computationally efficient computer languages such as C++.

A simplifying assumption of risk index methods in general is that each included RV 

contributes an equal effect to the RV burden, or rather that it models the mean effect of the 

selected RVs. While this assumption permits efficient sampling, it may not accurately reflect 

the effects of the individual RV associations. It is possible to utilize existing structural 

definitions, such as genes or exons, as a grouping mechanism and assign separate burden-

based parameters, although careful consideration is necessary to avoid singular design 

matrices if the number of included elements exceeds the sample size. If protective RV's are 

present, they would not be appropriately modeled by our approach. However, the P-BRI 

method could be simply modified by increasing the support of γ to include negative 

indicators, as in the MixBRI approach by Quintana et al. [Quintana, et al. 2011].

Although the P-BRI method permits efficient exploration of high-dimensional model spaces, 

alternative MH algorithms for sampling from the model space ℳ may be useful in extreme 

scenarios where the RV dimensionality renders the component-wise MH algorithm 

computationally infeasible. One approach is to consider a subset of the model space ℳ, ℳb, 

by defining the MH transition kernel such that the number of included RVs in any model ℳγ 
∈ ℳb is invariant and equal to an a priori defined quantity b. This approach is comparable to 

the MCMC algorithm outlined in Baragatti [Baragatti 2011] and preliminary simulations 

indicate feasibility for P-BRI with p ≥ 10,000, although further work is necessary to 

formally develop these methods. Adaptive algorithms designed for high-dimensional 

sampling in GWAS may also be of utility[Peltola, et al. 2012].
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There are a variety of promising extensions from our development of the P-BRI method for 

post-hoc RV analysis. An added benefit of this work is that application to quantitative traits 

is trivial, since the algorithms are already in place through the latent variable Ỹ, although 

variational Bayesian methods have previously demonstrated high computational efficiency 

in this area[Logsdon, et al. 2014]. We could also extend the regression procedure to include 

common variants in the model selection for a comprehensive association analysis, as well as 

easily adopt the integrative variable selection procedures in Quintana et al. [Quintana and 

Conti 2013] for informed model selection based upon existing variant annotation. Finally, 

we are actively evaluating methods to estimate global null model posterior probabilities 

using sampling procedures implemented by Liang et al.[Liang and Xiong 2013] for 

association inference, as well as integrating P-BRI methods with curated pathway databases 

to facilitate genome-wide exploratory rare variant gene-set analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Depiction of BFs (y-axis on log10 scale) for all 438 RVs within 26 genes related to 

pathways previously identified to have significant associations with PC risk in the data set. 

Colors of the points alternate by gene membership from dark gray to light gray, and the y-

axis is annotated in the original scale. Horizontal lines depict BF thresholds of 10 and 31.6.
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Table II

Simulation results for empirical TPRs for causal RV detection across simulation replications at a fixed FPR of 

0.01. For comparisons across methods, the difference in TPR (Δ) and corresponding bootstrap 95% confidence 

interval are reported.

True Positive Rate

Method RR ν =5 ν =10 ν =15

P-BRI 1.5 0.324 0.288 0.265

L-BRI 0.253 0.262 0.250

 Δ (95% CI) 0.070 (0.056,0.086) 0.026 (0.012,0.038) 0.015 (0.002,0.027)

P-BRI 2.5 0.660 0.603 0.523

L-BRI 0.638 0.612 0.560

  Δ (95% CI) 0.022 (0.014,0.034) -0.009 (-0.020,0.001) -0.037 (-0.049,-0.022)

P-BRI 5.0 0.966 0.919 0.845

L-BRI 0.968 0.929 0.877

  Δ (95% CI) -0.002 (-0.006,0.001) -0.010 (-0.015,-0.007) -0.032 (-0.039,-0.024)
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Table III

Simulation results for P-BRI in high RV dimensionality (p = 500, 1000) for marginal TPR and FPRs at 

traditional BF thresholds (10 and 31.6), along with bootstrap 95% confidence intervals.

Marginal (BF>10) Marginal (BF>31.6)

RR TPR FPR TPR FPR

p =500

2.5 0.379 (0.368,0.385) 0.014 (0.014,0.015) 0.235 (0.228,0.241) 0.004 (0.004,0.004)

5.0 0.605 (0.596,0.613) 0.014 (0.013,0.014) 0.477 (0.468,0.486) 0.004 (0.004,0.004)

10.0 0.833 (0.826,0.840) 0.012 (0.012,0.013) 0.762 (0.754,0.770) 0.004 (0.004,0.004)

p =1000

2.5 0.378 (0.369,0.386) 0.013 (0.013,0.014) 0.238 (0.231,0.245) 0.004 (0.003,0.004)

5.0 0.586 (0.577,0.594) 0.014 (0.014,0.014) 0.454 (0.445,0.461) 0.004 (0.004,0.004)

10.0 0.801 (0.794,0.808) 0.013 (0.012,0.013) 0.717 (0.709,0.725) 0.004 (0.004,0.004)
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