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Abstract

Threats by fundamentalist leaders to use chemical weapons have resulted in renewed interest in 

cyanide toxicity. Relevant insights may be gained from studies on cyanide mass intoxication in 

populations relying on cyanogenic cassava as the main source of food. In these populations, 

sublethal concentrations (up to 80 µmol/L) of cyanide in the blood are commonplace and lead to 

signs of acute toxicity. Long-term toxicity signs include a distinct and irreversible spastic 

paralysis, known as konzo, and cognition deficits, mainly in sequential processing (visual–spatial 

analysis) domains. Toxic culprits include cyanide (mitochondrial toxicant), thiocyanate (AMPA-

receptor chaotropic cyanide metabolite), cyanate (protein-carbamoylating cyanide metabolite), and 

2-iminothiazolidine-4-carboxylic acid (seizure inducer). Factors of susceptibility include younger 

age, female gender, protein-deficient diet, and, possibly, the gut functional metagenome. The 

existence of uniquely exposed and neurologically affected populations offers invaluable research 

opportunities to develop a comprehensive understanding of cyanide toxicity and test or validate 

point-of-care diagnostic tools and treatment options to be included in preparedness kits in response 

to cyanide-related threats.
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Introduction

A substantial body of literature suggests that cyanide or its precursors could be used as 

chemical asphyxiants in mass killings during military operations or terrorist attacks.1 The 

unpredictable nature of such events imposes a sustained attention on the research 

community, as type, source, and timing of exposure may significantly vary, and preparedness 

kits must be developed accordingly. Exposure scenarios that naturally or accidently occur 

may serve as conceptual frameworks to develop research lines relevant to the field. Exposure 

to cyanide or its precursors may occur via inhalation of smoke, notably during the 

combustion of fabrics containing nylon, silk, or wool, and plastics, such as melamine, 

polyurethane, and polyacrylonitrile; or hydrogen cyanide during murder attempts.1–4 Other 

sources of exposure include drinking water contaminated with cyanurated industrial wastes 

or spills, and ingestion of cyanogenic food, such as cassava.5,6 Additional lessons can also 

be learned from studies of individual cases of cyanide poisoning, which may occur in 

patients on laetrile or sodium nitroprusside.4

The toxicity of cyanide occurs as a result of its chemical binding to cytochrome c oxidase, 

blocking the mitochondrial electron transport chain with subsequent inhibition of tissue 

aerobic respiration.4,7 Acute toxicity may lead to depression of the central nervous system 

and death. Survival with or without sequelae remains possible, and individual susceptibility 

factors have yet to be uncovered.4 While animal studies and clinical experience have led to a 

robust understanding of the metabolism of cyanide, finding effective therapies to deploy in 

the context of mass intoxication of a terror type has remained a daunting task.1,8,9 Studies of 

the efficacy of antidotes or treatment options are hampered by ethics that prohibit 

randomized trials in those needing medical attention for acute exposure or less common 

scenarios of mass exposures. Also, the source and type of exposure (e.g., hydrogen cyanide 

alone or in combination with chemical stabilizing agents), as well as the timing of the 

intervention, are among other factors that determine success in treatment protocols.1 These 

limitations underscore the importance of toxicity models that can allow testing and/or 

validation of point-of-care diagnostic tools, testing of treatment options, and understanding 

of both acute and long-term impacts of cyanide on human health and functioning.

This article reviews the impact of cyanide on the human brain, as well as the susceptibility 

factors and the long-term neurocognitive impact, from a model of cyanide poisoning in 

populations that almost exclusively rely on cyanogenic cassava as a staple food. Current 

understanding of the neurotoxic effects associated with cassava remains limited, as most of 

the features of toxicity in humans have not been fully reproduced in experimental 

models.10–13
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Epidemiology of food (cassava) cyanide poisoning and related neurological 

disease

Food (cassava) cyanide poisoning has often resulted in death or survival with permanent 

neurological deficits, such as the paralytic disease known as konzo, in thousands of people 

in sub-Saharan African countries, notably in Angola, Cameroon, the Central African 

Republic, the Democratic Republic Of Congo (DRC), Tanzania, Uganda, and Mozambique. 

In these countries, populations heavily rely on cyanogenic cassava as the main source of 

food.14–21 Cassava (Manihot esculenta Crantz) is a drought-tolerant tropical shrub that is 

cultivated for its starchy storage roots and leafy vegetation and is believed to be a staple for 

more than 600 million people in the tropics, half of whom live in Africa.22–24 Cassava 

cultivars are either “bitter” or “sweet.” The former generally contain higher amounts of 

cyanogenic glycosides, mainly linamarin and structurally similar lotaustralin (in a ~93:7 

concentration ratio).23 Traditional processing methods are used to remove cyanogenic 

glycosides and their degradation products from cassava before human consumption. 

Methods to remove cyanogens include soaking raw cassava in water for up to 4 days or 

grating the tuber followed by sun drying or heating.16,25,20 Once the physical integrity of the 

cassava tissue has been disrupted, linamarin is brought in contact with the β-glycosidase 

linamarase, which is located in the plant cell walls, and hydrolyzed to glucose and 

cyanohydrins. At pH > 5, the cyanohydrins spontaneously break down into ketones, and 

hydrogen cyanide (HCN) gas escapes. Processed cassava roots are then used to produce 

flour and other types of food items for household consumption. However, in times of famine 

that may be caused by flood, drought, pestilence, or war, poor populations are forced to 

reduce food-processing times. Under these conditions, higher residual amounts of 

cyanogenic compounds in poorly processed foodstuffs are ingested and metabolized to 

cyanide, a highly toxic compound, which will be converted into the less toxic thiocyanate 

(Fig. 1).14,26–28

Patterns of low-level chronic cyanogenic exposure punctuated by rises and peaks in exposure 

are common in those populations relying on cyanogenic cassava as the main source of food. 

For example, peaks in exposure are seen during the dry season, due to shortcuts in cassava-

processing methods because of limited availability of water and pressing need for cassava 

flour. Under these circumstances, rise in cyanide exposure has often been followed by 

outbreaks of konzo (vide infra).15,27,29 A number of epidemiological studies have shown 

that the disease mainly affects children and women of childbearing age––mostly those with 

poor dietary intake of animal protein, a major source of sulfur amino acids needed to provide 

sulfur for the detoxification of cyanide. Whether the greater susceptibility of children or 

women is explained by factors other than poor nutrition is still unknown. 30

Konzo was named after a local designation in kiyaka, a local language spoken in the DRC, 

and means “tied legs,” in reference to the scissoring spastic gait of affected subjects. The 

disease was first documented in 1938 in the southwestern region of Zaire, the former 

"Belgian Congo," presently known as the DRC. The literature indicates that konzo was 

already known to the local population of the Bandundu province in the DRC in the late 

1800s.31,32 Since the beginning of the 20th century, outbreaks have occurred in several other 

Tshala-Katumbay et al. Page 3

Ann N Y Acad Sci. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



countries.14,15,18,20,26–28,33,34 While isolated cases of the cyanide-related spastic paralysis 

may be seen, the disease often occurs in an outbreak manner, with a point prevalence of up 

to 10% in certain areas. The total number of cases has been underestimated owing to the 

lack of reliable demographic censuses and surveillance systems. A single major outbreak in 

the Kahemba district of the DRC accounted for nearly 2000 children affected by the disease 

during the dry season that spanned June–September 2009.21 The exposure patterns were 

similar to those reported in outbreaks that previously occurred in all of the above-mentioned 

countries.21,35

Cassava cyanide–associated neurological deficits and phenotypes

There are numerous reports of acute toxicity and death following consumption of toxic 

cassava. Acute signs of toxicity include headache, dizziness, lethargy, and sometimes seizing 

events. Gastrointestinal (GI) symptoms are also common and may include nausea, vomiting, 

and abdominal pain.36–39 These symptoms are commonplace in konzo areas, as cyanogenic 

cassava is the main source of food. Whether they reflect a direct toxicity of cyanide to the GI 

tract smooth muscle or the autonomic nervous plexi is unknown. Subacute exposure to 

cassava cyanogens, often punctuated by a rise in exposure when shortcuts are undertaken 

during the processing of cassava, is followed by a sudden onset of konzo. Subjects with 

konzo present with signs of dysfunction in the motor system, with a clear and distinct type 

of spastic paraparesis (leg paralysis), or tetraparesis (both legs and arms are paralyzed) in 

those severely affected by the disease (Fig. 2).19,40 Symptoms at onset often occur after a 

long walk and include sudden trembling in the legs, sometimes in association with 

paresthesia; sensations of electrical discharges in the spine and legs; and loss of visual 

acuity. There are no signs of peripheral nerve involvement. The mechanisms underlying the 

spasticity observed immediately at the onset of the disease, as well as those preferentially 

targeting the upper motor system, have yet to be uncovered.19,41–43

The World Health Organization (WHO) has adopted the following definition criteria for the 

disease konzo: (1) a visible symmetric spastic abnormality of gait while walking or running; 

(2) a history of onset of less than 1 week followed by a nonprogressive course in a formerly 

healthy person; and (3) bilaterally exaggerated knee or ankle jerks without signs of disease 

of the spine. Once the subject is capable of standing and/or walking, the disease severity is 

graded as follows: mild konzo (able to walk with no support), moderate konzo (needs 

support to walk), and severe konzo (unable to walk).44 Severely affected subjects may 

present with speech and swallowing difficulties. Motor symptoms are permanent and 

irreversible. However, somatosensory and visual symptoms tend to regress over the course of 

the disease, and genitourinary functions remain normal. Deficits in fine motor control, in 

association with exaggerated deep tendon reflexes or ankle clonus, are commonly found in 

the general population of konzo-affected areas, suggesting the existence of subclinical and 

preclinical konzo.19,43,45,46

Clinical electrophysiological studies indicate slowing of nerve conduction in the motor, 

somatosensory, and visual pathways, as well as a general slowing of activities in the 

electroencephalogram (Table 1).42,47–49 A recent study using the Kaufman Assessment 

Battery for Children, 2nd edition (KABC-II) for cognition and the Bruininks/Oseretsky Test, 
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2nd Edition (BOT-2) measure for motor proficiency revealed that cassava cyanide poisoning 

is associated with cognitive deficits and severe impairments of fine motor control and 

coordination (Table 2).35 Experimental studies suggest that neurocognitive deficits may be 

caused by cassava cyanogens and/or their metabolites, including cyanate. Whether the motor 

and cognitive deficits observed in children from konzo areas share the same pathogenic 

mechanisms has yet to be determined.35,50–52

On the biomarkers and mechanisms of cassava cyanide–associated 

neurological disease

Biomarkers of exposure

In most studies, the exposure to cyanogenic compounds is ascertained by measuring the 

concentrations of thiocyanate (SCN), the main cyanide metabolite in urine (U-SCN) or 

plasma (P-SCN).30 Levels of U-SCN or P-SCN may be as high as 1720 and 426 µmol/L, 

respectively, in konzo-affected populations. A recent study found a concentration of 520.4 

± 355.7 (mean ± SD) µmol/l of U-SCN in children with konzo, which was significantly 

higher than 382.5± 226.3 µmol/L, in those with no konzo (P < 0.05).35 Samples of cassava 

flour from 18 consenting households were collected and found to have cyanide 

concentrations from 30–200 ppm with a mean of 92.2 (± 56.2) ppm, well above the 10-ppm 

safe limit proposed by the WHO (Joint Food and Agriculture Organization/World Health 

Organization report on food contaminants, Rotterdam, 2009).35 The introduction of a new 

food-processing method has helped reduce the cyanogenic content of cassava and, hence, the 

levels of exposure to its cyanogenic compounds, and a subsequent decrease in the number of 

incident cases of konzo was noted in select areas of the DRC and Tanzania.16,20,53,54 The 

only study that measured the concentration of cyanide in the blood of konzo subjects found 

concentrations that reached ~ 20 times the "accumulation level" of 4 µmol/L in three 

subjects within the first week of konzo onset.14 In general, a fatal level is considered to 

exceed 100–115 µmol/L.

Biomarkers of susceptibility

Current knowledge of cassava toxicity clearly indicates that konzo is associated with chronic 

reliance on improperly processed cyanogenic (bitter) cassava as the main source of food. It 

is possible that outbreaks of the disease and/or its sudden onset are triggered by a peak in the 

exposure to the cassava cyanogens and, hence, to their toxic metabolites (vide 
infra).17,26,27,34 While most subjects from konzo-affected areas rely on cyanogenic cassava 

as staple food, only a fraction (i.e., up to 10%) suffers from overt gait abnormalities, 

suggesting that there may be individual factors that dictate susceptibility to the disease. The 

latter include malnutrition and younger age or female gender, for reasons that are not clearly 

understood, as well as poor cyanide detoxification capability and, possibly, genetics. 

Impaired cyanide detoxification may be seen as a result of poor nutrition (insufficient 

protein intake and/or availability of sulfur donors) and/or possible genetic polymorphisms.30
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Putative biomarkers of neuropathology

To date, the only observation performed on an autopsied brain, in the 1930s, was not 

conclusive.31 Most insight on the site of the lesion in konzo has been provided by 

electrophysiological studies, which suggest that both motor and somatosensory pathways, as 

well as visual pathways are affected (Table 1).42,48,49 Additional insights have been gained 

from experimental studies, which suggest that the neuropathology of konzo may be 

mediated through mechanisms of oxidative damage or protein carbamoylation induced by 

cyanide (pro-oxidant) or cyanate (cyanide metabolite, motor system toxicant, and protein-

carbamoylating agent).11,55–57 We recently confirmed the association between the serum 

levels of 8,12-iso-iPF2α-VI F2-isoprostane isomer, a marker of lipid peroxidation and thus 

oxidative damage, and the extent of neurocognitive deficits found in children with konzo 

(Fig. 3).51 However, these peripheral markers of oxidative stress may not reflect the exact 

neuropathogenic mechanisms taking place in the central nervous system in response to the 

toxicity of cyanogenic cassava.

Future perspectives

The human model of food (cassava) cyanide poisoning offers invaluable opportunities to 

explore treatment options (e.g., antidotes for cyanide poisoning) and elucidate the 

neuropathogenic mechanisms underlying the long-term impact of cyanide exposure on the 

brain. Other opportunities to be exploited include testing and validation of point-of-care 

diagnostic tools to measure and monitor levels of cyanide exposure and metabolites in 

relation to risks for neurological disease. Further studies should explore the differential roles 

of cyanide (mitochondrial toxicant), thiocyanate (AMPA-receptor chaotropic metabolite), 

cyanate (protein-carbamoylating metabolite), and 2-iminothiazolidine-4-carboxylic acid 

(seizure inducer) in the pathogenesis of cassava-associated neurological damage.57 Whole-

genome or exome sequencing, metagenomics, and epigenetics may unveil other factors of 

individual susceptibility to cyanide-related neurological disease.

There is no effective treatment for the motor sequelae associated with the neurotoxicity of 

cassava cyanogens. Once the neurodamaging process has stabilized, the disability (konzo) 

remains unchanged. Centrally acting spasmolytics, dorsal rhizotomy, or intramuscular 

injection of botulinum toxin, used with success to reduce adductor spasticity in patients with 

cerebral palsy, could be tested to alleviate symptoms. Prospects on cognitive rehabilitation 

have yet to be defined and tested.
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Figure 1. 
Metabolic fate of linamarin and cyanide during cassava processing and after ingestion of 

poorly processed cassava foodstuffs. Once the physical integrity of the cassava tissue is 

disrupted, linamarin is hydrolyzed to glucose and cyanohydrins. At pH > 5, the 

cyanohydrins spontaneously break down into ketones, and hydrogen cyanide (HCN) gas 

escapes. Lower pH leads to persistence of cyanohydrins in the finished food product, with 

the result that cyanide may be released by bacterial enzymatic cleavage in the 

gastrointestinal tract and enter the bloodstream. Once in the bloodstream, cyanide is either 

trapped by methemoglobin (MetHB–CN) or converted into thiocyanate (SCN). The human 

body may then excrete either intact linamarin or reportedly less toxic SCN in urine.
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Figure 2. 
Spastic stance in a child severely affected by the cassava-associated spastic paraparesis 

known as konzo (child left) and a woman with a moderate form of the disease (woman with 

walking stick).
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Figure 3. 
Low motor or cognition performance scores significantly correlate with high serum 

concentrations of 8,12-iso-iPF2α-VI isoprostane. Neuropsychological assessments were 

done using the Kaufman Assessment Battery for Children, 2nd edition (KABC-II) for 

cognition and the Bruininks/Oseretsky Test, 2nd Edition (BOT-2) measure for motor 

proficiency. (A) MPI (KABC-II) scores relative to serum concentration of 8,12-iso-iPF2α-

VI isoprostane (triangles = konzo children, r = −0.78, P = 0.00; circles = non-konzo 

children, r = −0.24, P = 0.47). (B) BOT-2 scores relative to serum level of 8,12-iso-iPF2α-VI 

isoprostane (triangles = konzo children, r = −0.63, P < 0.01; circles = non-konzo children, r 
= −0.06, P = 0.86).51
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Table 1

Clinical electrophysiology of the cassava cyanide–associated spastic paraparesis konzo

Explorations Abnormalities

Motor evoked potentials (MEPs) Frequent inability to elicit MEP.a When present, central motor conduction time is often increased.b

Peripheral nerve conduction studies Normal motor and sensory nerve conduction. Increased amplitude of F-waves.

Somatosensory evoked potentials (SEPs) Cortical responses following tibial stimulation frequently absent. If present, the latency is 
prolonged. Median SEP often normal.

Visual evoked potentials (VEPs) Frequent delay and decreased amplitude of P100.

Electroencephalography (EEG) Frequent generalized slowing of background activity and nonspecific paroxysmal activities.

a
Consistent with reduction of the upper motor neuron pool.

b
Consistent with loss of pyramidal conductivity from spinal tract (axonal) damage.
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