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Abstract

This article describes the therapeutic potential of neurosteroids as anticonvulsant antidotes for 

chemical intoxication caused by organophosphate pesticides and nerve agents or gases like sarin 

and soman. Toxic manifestations following nerve agent exposure, as evident in chemical attacks in 

Japan and Syria, include hypersecretion, respiratory distress, tremors, convulsions leading to status 

epilepticus (SE), and death. Benzodiazepines, such as diazepam, are the current anticonvulsants of 

choice for controlling nerve agent–induced life-threatening seizures, SE, and brain injury. 

Benzodiazepines can control acute seizures when given early, but they are less effective for 

delayed treatment of SE, which is characterized by rapid desensitization of synaptic GABAA 

receptors, benzodiazepine resistance, and brain injury. Neurosteroid-sensitive, extrasynaptic 

GABAA receptors remain unaffected by such events, however. Thus, anticonvulsant neurosteroids 

may produce more effective protection than benzodiazepines against a broad spectrum of chemical 

agents, even when given late after nerve agent exposure.
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Introduction

Chemical weapons are a serious threat to civilians, as evident from the Syrian gas attack in 

2013. Nerve agents and organophosphate (OP) pesticides are credible terrorist threat agents. 

Nerve agents (sarin, soman, tabun, cyclosarin, and VX) and OP pesticides (chlorpyrifos, 

parathion, and paraoxon) are extremely lethal chemicals with potent neurotoxicity. These 

compounds can adversely affect the human nervous system, even at low levels of exposure. 

Acute exposure to nerve agents or OP pesticides can result in hypersecretion, respiratory 

distress, tremors, persistent seizures, status epilepticus (SE), brain injury, and death.1–6 The 

current treatment regimen for nerve agents (atropine, 2-PAM, and diazepam) can prevent 

mortality if administered early after exposure; however, these treatments do not sufficiently 
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protect the brain from SE––prolonged seizure activity lasting 30 min or longer with 

significant neuronal damage and mortality. There is emerging discussion that 

benzodiazepines often fail to guard against persistent SE and neurodegeneration occurring at 

later times after nerve agent exposure.1 Thus, there is a crucial need for new and better 

anticonvulsants as medical countermeasures for nerve agents. Newer antidotes include those 

capable of being administered as clinically effective delayed treatments for nonlethal and 

potentially lethal OP exposure. Effective on-scene treatment by non-medical personnel and 

emergency first responders provides sufficient immediate attention to allow time for 

transport of an exposed subject to a medical facility for further treatment. Neurosteroids are 

being developed to meet these criteria as broad-spectrum anticonvulsant antidotes for nerve 

agents and OP intoxication. This article provides a brief overview of current treatments and 

neurosteroid-based strategies for the protection against OP neurotoxicity in humans and 

animals.

Organophosphate intoxication and treatments

Nerve agents are chemical warfare agents that have long attracted the attention of terrorists 

for attacking civilian populations. Nerve agents (the “gases” sarin, soman, tabun, cyclosarin, 

and VX) directly target the nervous system and irreversibly impair neural signaling within 

minutes of exposure.3–9 OP pesticides, such as diisopropyl-fluorophosphate (DFP), 

parathion, and paraoxon, are considered credible threat agents because they are readily 

obtainable and are highly neurotoxic to humans and animals when exposed by a deliberate 

terrorist attack or by accident or natural disaster.10–18 Nerve agents and OP pesticides are 

extremely lethal and produce neurotoxicity via common mechanisms. They cause 

devastating damage to the brain primarily due to their irreversible inhibition of 

acetylcholinesterase (AChE), leading to an excessive accumulation of acetylcholine (ACh), 

an excitatory neurotransmitter, in the brain. Acute exposure to nerve agents or OP poisoning 

results in cholinergic hyperactivation and causes a set of predictable toxic signs: 

hypersecretion, fasciculations, tremors, convulsions, respiratory distress, and death. CNS 

signs following nerve agent exposure include convulsive seizures resulting in death or long-

term neuronal damage. The OP intoxication is categorized into cholinergic and non-

cholinergic crisis. Cholinergic crisis results as a consequence of ACh accumulation at 

postsynaptic sites. Specific symptoms vary according to the afflicted organ. OP intoxication 

also results in non-cholinergic crisis, producing profound brain damage typified by neuronal 

injury, neuronal death, neuroinflammation, and deleterious effects on brain structure and 

function. The effects of OP intoxication are persistent, and survivors may suffer chronic 

brain damage, including the risk of neurological and cognitive deficits for the duration of 

their lives.19–22

Antidotes for OP intoxication consist of a pretreatment with carbamates (pyridostigmine 

bromide) to protect AChE from inhibition by OP compounds and postexposure treatments of 

anticholinergics and pyridinium oximes. Current treatment includes a specialized drug 

regimen: (1) atropine sulfate, a muscarinic receptor antagonist; (2) 2-PAM (pralidoxime 

chloride), a drug that regenerates AChE activity; and (3) diazepam, a benzodiazepine 

anticonvulsant.1–3,7,23 This regimen is distributed in CHEMPACKs with autoinjectors for 

use in case of chemical attacks or accidents. A diazepam injection (5 mg/mL) is packaged in 
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a 2-m: disposable autoinjector. A prefilled DuoDote® autoinjector provides a single 

intramuscular dose of atropine (3 mg/mL) and 2-PAM (600 mg/2 mL). These antidote 

products are designated for administration by emergency medical services personnel. 

Atropine sulfate (AtropenR®) autoinjectors are available in a variety of doses (0.25, 0.5, 1, 

and 2 mg), specifically designed for self or caregiver administration. Midazolam is being 

considered as a replacement anticonvulsant for diazepam for treatment of OP intoxication.24

There are some limitations with the current medical regimen for OP intoxication.1–3,25–34 

Anticholinergic drugs work to counteract the effects of excess ACh by blocking cholinergic 

receptors. Atropine is an effective antidote in conjunction with 2-PAM or other pyridinium 

oximes, such as trimedoxime or obidoxime, for OP intoxication. Such drugs reactivate 

AChE that has undergone covalent modification by OP chemical nerve agents.25,26 However, 

the use of oximes has been found to be less beneficial, perhaps even harmful, in at least two 

meta-analyses.27–29 A serious limitation of these drugs is their poor central nervous system 

(CNS) bioavailability, owing to their permanent positive charge and lack of suitable active 

transporters at the blood–brain barrier. Therefore, the oximes 2-PAM, obidoxime, and HI-6 

cannot directly reactivate nerve agent–inhibited AChE in the brain. As a result, there is little 

neurological protection from 2-PAM treatment.

Presently, there are few effective antidotes for delayed treatment (40 min or later) of lethal 

signs and symptoms of nerve agent poisoning. Medical treatment for OP intoxication earlier 

than 40 min is not practical in most instances of mass chemical exposure, owing to the 

expected delay of first responders. The most common postexposure treatment, atropine, is 

very effective at preventing lethality from OP intoxication, but it lacks the ability to prevent 

postexposure incapacitation, performance deficits, and permanent brain damage. While 

atropine is highly effective in antagonizing ACh at most peripheral muscarinic receptors and 

partly at central muscarinic receptors, it is ineffective at nicotinic receptors and also for 

intoxication mediated by such receptors in the brain and peripheral system. It is likely that 

nicotinic receptors are involved in OP intoxication and morbidity.35 Nicotinic antagonists 

have not been used, owing to the difficulties of administering a dose of a competitive 

neuromuscular blocker sufficient to antagonize the effects of excessive ACh, but not so great 

that it paralyzes the muscles. A noncompetitive nicotinic antagonist can produce significant 

protection against nerve agent poisoning, as evident from sarin or tabun exposure in guinea 

pigs.36 Atropine may not effectively mitigate the central muscarinic and nicotinic effects of 

OP intoxication, owing to its limited brain penetration at therapeutic doses.37 Larger doses 

are required to get appreciable concentrations of atropine into the CNS; however, researchers 

seek compounds (scopolamine) that can do so more quickly and at greater concentrations. 

Nevertheless, OP intoxication can immediately produce generalized seizures and brain 

damage despite atropine administration. This notion is supported by the occurrence of 

chronic neurological symptoms in survivors of sarin attacks in Japan19–22 as well as in 

ample animal studies that seek new anticonvulsants for nerve agents.8,12–14,30,33,36

Benzodiazepines have long been the first line of treatment for the control of seizures and SE, 

including seizures induced by OP intoxication.38,39 Benzodiazepines act as positive 

allosteric modulators of synaptic GABAA receptors. The GABAA receptor mediates two 

types of inhibition, now characterized as synaptic (phasic) and extrasynaptic (tonic) 
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inhibition. Synaptic release of GABA results in the activation of low-affinity γ2-containing 

synaptic receptors, while high-affinity δ-containing extrasynaptic receptors are persistently 

activated by the ambient GABA present in the extracellular fluid. Benzodiazepines bind 

specifically to γ2-containing synaptic receptors and augment phasic inhibition, but do not 

modulate extrasynaptic δGABAA receptor–mediated tonic inhibition. Thus, benzodiazepines 

do not require extrasynaptic GABAA receptors for anticonvulsant activity.40 The 

benzodiazepine diazepam is currently the only U.S. Food and Drug Administration (FDA)–

approved injectable anticonvulsant for the cessation of seizures caused by nerve agents and 

OP pesticides. However, there are many concerns with the use of diazepam for controlling 

nerve agent seizures. As evident from animal studies, the efficacy of diazepam decreases as 

the interval between OP intoxication or initiation of seizures and the drug administration 

increases.33,34 Diazepam must be administered within a few minutes of OP intoxication for 

effective protection against seizures and SE. This timeline is often not practical in many 

incidents, such as emergencies and mass casualties. The development of resistance to 

diazepam is also a concern, because seizures gradually acquire resistance to 

benzodiazepines, as noted in animal studies.33,34 Additionally, seizures often recur after 

termination of the initial SE by benzodiazepines. Seizures induced by cholinergic 

hyperactivation can thus become self-sustaining and develop time-dependent refractory 

SE––a serious condition associated with significant brain injury and mortality.41 Although 

animal studies are largely supportive of the above limitations of benzodiazepines, apparently 

there is little published data from human incidents. In clinical studies, diazepam has variable 

pharmacokinetics and adverse effects at multiple dosages.38,39

The mechanisms underlying the intractability of nerve agent seizures are unclear. A variety 

of mechanistic premises have been proposed for the development of pharmacoresistance to 

SE and benzodiazepine insensitivity. Studies in animal models of SE indicate that such a 

phenomenon may involve internalization and downregulation of synaptic GABAA 

receptors.42–46 Following nerve agent exposure, it is likely that the rate of synaptic GABAA 

receptor internalization increases rapidly, and the subunit composition of these receptors 

swiftly changes, causing benzodiazepines to ultimately lose efficacy due to lack of receptor 

availability.42,43,46 A significant decrease in the surface expression of γ2-containing 

synaptic GABAA receptors (targets for benzodiazepines) is observed during persistent SE, 

while no such change is evident in δ-containing extrasynaptic GABAA receptors.44,45 This 

reduced synaptic GABA inhibition is also evident in the CA1 and CA3 regions during SE,46 

indicating that anticonvulsants that exclusively target synaptic GABAA receptors may exert 

less efficient protection against persistent SE, such as that which occurs following OP 

intoxication.

Neurosteroid treatment of OP intoxication

Neurosteroids are innovative experimental countermeasures for OP intoxication. 

Neurosteroids are steroid compounds that can rapidly modify neuronal excitability through 

non-genomic mechanisms.47–50 They function in the brain as endogenous modulators of 

seizure susceptibility. Although a variety of neurosteroids are present in the brain, the most 

examined are allopregnanolone (5α-pregnan-3α-ol-20-one), THDOC (5α-pregnan-3α,21-
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diol-20-one), and androstanediol (5α-androstan-3α-ol-20-diol). Neurosteroids are highly 

lipophilic molecules, and therefore can easily cross the blood–brain barrier.47,48

Neurosteroids act rapidly to decrease neuronal excitability through direct interaction with 

membrane GABAA receptors in the brain (Fig. 1). Neurosteroids are positive allosteric 

agonists of both synaptic and extrasynaptic GABAA receptors.51–53 There are two discrete 

binding sites for neurosteroids: an allosteric site within the α-subunit transmembrane 

domain and a site of direct activation at the α–β subunit interface.53,54 Structure–activity 

relationship studies at synaptic γGABAA receptors show that the C3α-OH steroid structure 

is essential for the binding and the receptor-enhancing function of neurosteroids.55,56 Apart 

from 5α-H stereoselectivity, the C17- or C20-ketone group is important for allosteric 

modulation.57–62 Neurosteroids bind to all GABAA receptors, but δ-containing receptors at 

peri- and extrasynaptic sites exhibit preferential sensitivity.63–65 The allosteric binding of 

neurosteroid to low-efficacy δGABAA receptors induces a pronounced conformational 

change, greater channel opening, and non-desensitizing tonic inhibition.66 Increased 

δGABA-A receptor expression enhances neurosteroid sensitivity through greater 

potentiation of tonic current.67–70 Conversely, deficiency of δGABAA receptor expression 

reduces the sensitivity to neurosteroids.71–74 Thus, neurosteroids can produce robust 

inhibition in the brain by acting at both synaptic and extrasynaptic GABAA receptors that 

are intricately involved in the control of network hyperexcitability and seizure activity.

Several synthetic neurosteroids have been prepared and tested for their anesthetic, 

anxiolytic, and antiseizure effects.75,76 The best known of these are alphaxolone, 

minaxolone, and ganaxolone. As therapeutic agents, neurosteroids have some advantages, in 

that tolerance do not appear to develop with chronic use.77 Neurosteroids are broad-

spectrum anticonvulsants and confer seizure protection in a variety of animal models. 

Allopregnanolone and related neurosteroids protect against seizures induced by GABAA 

receptor antagonists (pentylenetetrazol, picrotoxin, TBPS, bicuculline), 6-Hz electrical 

stimulation, pilocarpine administration, and electrical kindling stimulation.75–85 The 

potencies of neurosteroids in models where they confer seizure protection vary largely in 

accordance with their activities as positive allosteric modulators of GABAA 

receptors.60,79,80 Neurosteroids are highly active in the 6-Hz model, a better paradigm in 

which limbic-like seizures are induced by electrical stimulation of lower frequency and 

longer duration than in the maximal electroshock test.79 Unlike benzodiazepines, 

anticonvulsant tolerance is not evident with chronic neurosteroid treatment. Additionally, 

neurosteroids can promote neuroprotection and inhibit epileptogenesis.77,81

Neurosteroids are viable anticonvulsants that can surpass the limitations of benzodiazepines 

for OP intoxication. Unlike diazepam, neurosteroids can be effective anticonvulsants when 

administered late after chemical exposure. These suggestions are based on the emerging 

molecular mechanisms of OP intoxication seizures and SE. Extrasynaptic δ-containing 

GABAA receptors that generate tonic inhibition supposedly do not internalize during 

SE;44,45 thus, neurosteroids, which activate both extrasynaptic and synaptic receptors, could 

be more effective treatments for SE. There is emerging preclinical data in support of this 

premise. In a rodent model of SE induced by the cholinergic agonists or other convulsants, 

neurosteroids have been highly effective in protecting against SE, including seizure models 
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that are designed to simulate refractory SE.85–88 Although neurosteroids show promise in 

the treatment of diverse forms of seizures, none are currently approved by the FDA for 

clinical use.

In the National Institutes of Health CounterACT U01 project, entitled “Neurosteroid 

treatment for OP intoxication,” we discovered the efficacy of neurosteroids, which enhance 

phasic and extrasynaptic tonic inhibition,89 in protecting against chemical neurotoxicity 

(results were presented and discussed at the annual CounterACT Research Network 

Symposium, June 15–27, 2016 in New York, hosted by the New York Academy of 

Sciences). We tested a variety of natural and synthetic neurosteroids in the DFP pesticide 

model (a surrogate for OP nerve agents) and the nerve agent soman model using a delayed 

(40-min) postexposure protocol in rats. We utilized a DFP protocol that was described 

previously.12 We adapted the soman protocol from the USMRICD report.13 We found that 

pregnane neurosteroids produced a dose-dependent protection against DFP- and soman-

induced seizures and SE, indicating their potential anticonvulsant efficacy in OP intoxication 

models in rats. In addition, neurosteroids have significant neuroprotectant activity even with 

delayed treatment after soman exposure. The benzodiazepine midazolam, which does not 

activate extrasynaptic δGABAA receptors,89 is utilized as the comparative anticonvulsant. In 

the delayed (40-min) protocol, midazolam showed a suboptimal protection of DFP- and 

soman-induced SE and seizure activity returned following initial suppression. Overall, it is 

suggested that neurosteroids have potential efficacy in OP intoxication models, especially 

for delayed postexposure therapy, because of their unique mechanistic and other 

advantages.90

Conclusions

Current treatment for OP intoxication includes a specialized drug combination containing 

atropine, 2-PAM, and diazepam. Benzodiazepines are effective anticonvulsants for OP 

agents when administered within a few minutes postexposure; however, protection is limited 

following delayed administration, as evident from animal studies. Late-stage seizures, 

especially refractory SE, can cause profound brain damage. Presently, there are a few 

effective antidotes for delayed treatment of OP intoxication, especially for rapid and 

effective termination of persistent seizures and brain damage. Recently, neurosteroids have 

been identified as novel experimental antidotes for nerve agents. Neurosteroids are stronger 

anticonvulsants, even when administered very late after chemical exposure. It is suggested 

that neurosteroids that enhance phasic and extrasynaptic tonic inhibition produce more 

effective protection against persistent SE, prevent brain injury, and extend the therapeutic 

window when compared to benzodiazepine treatments. Certain neurosteroids have been 

approved by the FDA for preliminary trials, making them practical potential 

countermeasures in case of a chemical incident.
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Figure 1. 
Neurosteroid-based therapeutic strategy for organophosphate intoxication. Neurosteroids 

that enhance GABAA receptor synaptic phasic and extrasynaptic tonic inhibition in the brain 

have been demonstrated to be effective for controlling organophosphate chemical 

intoxication–induced seizures, neuronal damage, and related morbidity.

Reddy Page 12

Ann N Y Acad Sci. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Organophosphate intoxication and treatments
	Neurosteroid treatment of OP intoxication

	Conclusions
	References
	Figure 1

