
Multidisciplinary approaches to stimulate wound healing

Rita Businaro1, Mariangela Corsi1, Tania Di Raimo1, Sergio Marasco1, Debra L. Laskin2, 
Bruno Salvati3, Raffaele Capoano3, Serafino Ricci4, Camilla Siciliano1, Giacomo Frati1, and 
Elena De Falco1

1Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 
Latina, Italy

2Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers 
University, Piscataway, New Jersey

3Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy

4Department of Anatomical, Histological, Legal Medicine and Orthopedics Sciences, Sapienza 
University of Rome, Rome, Italy

Abstract

The new civil wars and waves of terrorism are causing crucial social changes, with consequences 

in all fields, including health care. In particular, skin injuries are evolving as an epidemic issue. 

From a physiological standpoint, although wound repair takes place more rapidly in the skin than 

in other tissues, it is still a complex organ to reconstruct. Genetic and clinical variables, such as 

diabetes, smoking, and inflammatory/immunological pathologies, are also important risk factors 

limiting the regenerative potential of many therapeutic applications. Therefore, optimization of 

current clinical strategies is critical. Here we summarize the current state of the field by focusing 

on stem cell therapy applications in wound healing, with an emphasis on current clinical 

approaches being developed at Sapienza University. These involve protocols for the ex vivo 
expansion of adipose tissue–derived mesenchymal stem cells by means of a patented GMP-

compliant platelet lysate, Mesengen™. A combination of multiple strategies, including genetic 

modifications of stem cells, biomimetic scaffolds, or novel vehicles such as nanoparticles, are also 

discussed as future approaches.
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Introduction

Managing scarring in chronic wounds represents one of the most relevant clinical burdens in 

the United States and in Europe,1 particularly when they occur as a consequence of exposure 
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to chemicals used in a terrorist attack. These can cause severe physical damage, 

predominantly resulting in insults to the skin. Cutaneous injuries can also combine with 

mechanical trauma, resulting in exacerbated pathologies. Victims with preexisting diseases 

are of particular concern, as treatment and resolution of injury frequently requires long-term 

care. Healing is usually compromised in these individuals owing to the presence of diabetes, 

metabolic syndrome, chronic renal failure, and aging,2 since the ability to rapidly re-

epithelialize and re-vascularize injured tissue is impaired. Both clinical and genetic features 

of individual patients must be considered in wound healing, as well as variation in medical 

responses based on the type of chemical weapon employed and the nature and extent of the 

injured area. In fact, large wounds, under either adverse local or systemic conditions, 

respond poorly to treatments, and they can frequently reopen. A number of strategies have 

been developed recently to treat dermal wounds resulting from chemical exposures. One of 

the most efficient methods to lower bacterial load and reduce the incidence of sepsis is 

debridement of the wound.3 Cleansing agents and topical antibiotics are also useful to 

decrease microbial growth and to reduce invasive infection.4 Additionally, treatment of the 

wound with autologous leukocytes seeded into a proangiogenic matrix and enriched with a 

platelet concentrate preparation, has been reported to induce the release of growth factors, 

cytokines, and chemokines, thus increasing the in situ recruitment of endothelial precursor 

cells and promoting the resolution of microbial infections.5 Despite these improvements, 

treatment of dermal wounds has not always yielded positive outcomes. Major drawbacks 

include the fact that the skin is highly complex and thus difficult to reconstruct after injury. 

In fact, the physiological re-epithelialization phase is a multistep process involving several 

cell types and molecular mechanisms, and the presence of a favorable environment for 

bacterial colonization is mostly undesirable.6,7 As a consequence, most current treatments 

have been only palliative, mainly aiming to accelerate the healing time and to limit 

additional clinical complications due to adventitious bacterial infection. Therefore, 

alternative strategies are required in order to balance treatment of patients, economic costs, 

and safety of civilians.

Adipose tissue–derived mesenchymal stem cells

The potential use of different types of stem cells for regenerative applications to repair skin 

injuries has recently received considerable attention.8 Several protocols have been 

established aimed at ensuring the resolution of wounds by targeting different phases of the 

healing process, namely the control of inflammation in a suitable microenvironment, the 

enhancement of stem cell engraftment after implantation, an efficient and terminal 

transdifferentiation of progenitors towards the dermal lineages, and the reconstruction of the 

vasculature system around the wound.9,10 Mesenchymal stem cells (MSCs) have recently 

been proposed as a promising solution to enhance the re-epithelialization phase.11 Studies 

using mouse models have shown that intradermal injection of human MSCs or adipose tissue 

derived stromal cells (ASCs) accelerates skin wound healing in nude mice.1 Similarly, 

results from clinical trials have demonstrated the benefits derived by the employment of both 

autologous or heterologous MSCs, especially in chronic wounds.12–15 Defined as adult 

multipotent cells, MSCs can be easily obtained from multiple sources, including adipose 

tissue depots, localized in different body compartments during major and/or aesthetic 
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surgical procedures.16,17 Multiple mechanisms underlying the potential of both populations 

to positively influence wound repair have been proposed; these include modulation of 

inflammatory states, stimulation of angiogenesis, cell proliferation and fibroblast activity, 

activation and enhanced migration of keratinocytes to sites of injury in a paracrine fashion, 

the possible direct transdifferentiation of MSCs towards the dermal lineage (including 

fibroblasts and keratinocytes), and, finally, the recruitment of host cells.12,18–19 After in vivo 
administration, the immunotolerance generated by ASCs, defined as the ability to modulate 

the immunosurveillance system in the recipient, has been largely reported as the main 

biological property, thus highlighting a major advantage of their use.20,21 Moreover, cross 

talk between ASCs and inflammatory cells at the site of injury is a major contributory factor. 

Soluble factors released by MSCs and ASCs, such as vascular endothelial growth factor, 

interleukin-6, or transforming growth factors, are known to regulate local cellular responses 

during cutaneous injury.11 Of note, MSCs may also exert antibacterial effects at the wound 

site by both directly secreting IL-37, an antimicrobial protein, and positively influencing 

phagocytosis by the immune system.11,22 The proliferative and transdifferentiative potential 

of MSCs has been also highlighted in tissue engineering–based applications, specifically 

with regard to skin graft reconstruction, where MSCs are employed either alone, as a feeder 

layer for keratinocytes, or seeded in combination with gelatin-, collagen/chitosan–, or fibrin 

polymer–based scaffolds.23–25 Of note, among suitable substrates, synthetic polymers have 

exhibited a strong ability to absorb and transport fluids and protect from bacterial 

exposure.26 Other methods used to deliver MSCs to the wound site have included injection 

and topical or systemic administration, by employing a range of vehicles such as scaffolds, 

matrix, and human amniotic membrane grafts.27–30

Novel strategies developed at Sapienza University

Despite great improvements in the use of ASCs and MSCs for skin-regenerative 

applications, current use is limited by the presence of fetal bovine serum (FBS) in the 

cultures during their ex vivo expansion. According to the European Good Manufacturing 

Practice (GMP) guidelines, the employment of FBS is discouraged, as it is a potential source 

of zoonoses.16,31–32 In light of this, platelet lysate (PL), a hemoderivate enriched with 

soluble mitogenic factors,16,31,33 represents a superior alternative to FBS. Reported to 

enhance the biological stem cell properties of ASCs, such as proliferation, clonogenic 

capacity, and migration,15,33,34 PL has been also recently been demonstrated to promote 

ASCs pluripotency and commitment towards specific phenotypes.33–36 Interestingly, PL, 

manufactured in an injectable form or gel,5,6 embedded in scaffolds3 or incorporated into 

nanoparticles,4 also represents a widely investigated clinical strategy to accelerate wound 

healing in chronic ocular and diabetic dermal ulcers. Because of the large amounts of 

cytokines and growth factors contained in PL, it has multiple and significant advantages if 

locally applied to skin wounds, such as enhancement of angiogenesis and fibroblast 

migration, restoration of collagen synthesis, and reduction of oxidative stess.33 In addition, 

PL has been demonstrated to efficiently reestablish skin integrity.37

Recently, a GMP-compliant PL (Mesengen™, Pub. No. WO/2013/042095) has been 

developed as an adjuvant for culturing human ASCs, endothelial progenitor cells, and 

fibroblasts.16,33,38,39 The method to generate Mesengen has been standardized and 
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optimized, including determining the amounts of cytokines and growth factors in the 

preparation. Importantly, potential fungi, viruses, and bacteria known to contaminate human 

emoderivates are avoided by rapidly inactivating the Mesengen™ through a combination of a 

photochemical agent and UV radiation. A summary of the basic steps in the preparation of 

PL is summarized in Figure 1. Of note, researchers at Sapienza have exploited the biological 

and molecular properties of Mesengen by concurrently establishing a standardized protocol 

(Fig. 2) to isolate and expand ex vivo ASCs from alternative fat depots, such as the 

mediastinum (Fig. 3).16,34 Recent studies on Mesengen by our team have also elucidated its 

ability to influence the commitment of ASCs by inducing epigenetic modifications,34 as well 

as to positively alter the in vitro microenvironment by decreasing oxidative stress.33 These 

studies highlight the ability of PL to boost the biological and functional properties of 

mesenchymal-like cell populations. Therefore, it is plausible that the combination of 

Mesengen and ASCs or other progenitor cell populations could be successfully employed to 

target wound repair and regeneration. Moreover, PL has been reported to maintain its 

properties as either a liquid formulation or frozen, highlighting an important clinical 

advantage. In the future, this approach could be considered complementary to routine 

strategies developed at Sapienza University, where a Center of Excellence for the in vitro 
culturing of skin substitutes is already available, including the treatment of a wide range of 

dermal disorders, such as burns, chronic ulcers, giant congenital melanocytic nevi, and even 

the reconstruction of epithelial mucosa.40–45 Specifically, the epithelial “organoid” 

developed by our research group is based on a combination of transplanted autologous cells 

seeded on biomimetic scaffolds. This methodology has been successfully established and 

clinically available at several hospitals collaborating with Sapienza, and it has already shown 

to significantly reduce the hospitalization time and costs.

Perspectives

Despite advances in treating wound healing, dermal tissue still remains a difficult organ to 

regenerate. Our future work will likely consist of multistep approaches rather than single 

repair strategies, which have shown only partial efficacy.46 The strategy will combine stem 

cell properties, next-generation scaffolds or vehicles (i.e., nanoparticles), and growth factors 

or supplements, such as PL. In this way, multiple biological and functional properties can be 

exploited. In addition, ex vivo gene therapy of adult multipotent stem cells may prove useful 

to target specific signaling pathways or molecular mechanisms underlying chronic wounds, 

as well as severe skin diseases resistant to routine therapy. Improvements in our 

understanding of skin biology and physiological process of wound repair will allow us to 

better elucidate the healing microenvironment. We will also focus on the mechanical and 

physical trauma caused by burns or wounding, attempting to clarify whether they might be 

controlled or redirected towards the resolution of the injury. Our final aim will consist of 

designing more personalized therapy, which takes into account genetic variability, type of 

wound, and patients’ clinical and metabolic features.
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Figure 1. 
Overview of the major steps in the manufacturing of platelet lysate (Mesengen™).
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Figure 2. 
Flow diagram showing the optimization and standardization phases to isolate and expand in 
vitro ASCs derived from the mediastinal fat depots.
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Figure 3. 
Optical image of ASCs at passage 3 cultured in PL and displaying the typically spindle-

shaped morphology (A). Note that platelet lysate is able to preserve the mesodermal 

transdifferentiation of ASCs towards the adipogenic (B), osteogenic (C), and chondrogenic 

(D) lineages. Magnification 5×.
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