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von Willebrand factor's (VWF) primary hemostatic responsibility is
to deposit platelets at sites of vascular injury to prevent bleeding.
This function is mediated by the interaction between the VWF A1l
domain and the constitutively active platelet receptor, GPIba. The
crystal structure of the A1 domain harboring the von Willebrand
disease (VWD) type 2M mutation p.Gly1324Ser has been recently
published in the Journal of Biological Chemistry describing its
effect on the function and structural stability of the A1 domain of
VWEF, “Mutational constraints on local unfolding inhibit the rheo-
logical adaptation of von Willebrand factor” [1]. The mutation
introduces a side chain that thermodynamically stabilizes the
domain by reducing the overall flexibility of the A1-GPIba binding
interface resulting in loss-of-function and bleeding due to the
inability of Al to adapt to a binding competent conformation
under the rheological shear stress blood flow.
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In this data article we describe the production, quality control
and crystallization of the p.Gly1324Ser vWD variant of the Al
domain of VWF. p.Gly1324Ser A1 was expressed in Escherichia coli
as insoluble inclusion bodies. After the preparation of the inclusion
bodies, the protein was solubilized, refolded, purified by affinity
chromatography and crystallized. The crystal structure of the p.
Gly1324Ser mutant of the A1 domain is deposited at the Protein
Data Bank PDB: 5BV8

© 2016 The Authors. Published by Elsevier Inc. This is an open

access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Analytical gel filtration and Reverse phase HPLC (both performed on Beck-
man System Gold Analytical HPLC Systems), X-ray diffraction was performed
at the Advanced Light Source beamline 5.0.1 using a ADSC Q315R detector. X-
ray data was processed using iMOSFILM. The model was refined using the
PHENIX software package and build using Coot.

Processed and analyzed

VWEF A1-p.Gly1324Ser was expressed in E. coli as inclusion bodies, processed,
solubilized and refolded. The protein was purified to homogeneity through
Ni-NTA and Heparin affinity chromatography. VWF A1-p.Gly1324Ser purity
and absence of aggregates were confirmed by size exclusion and reverse
phase chromatography.

The crystal structure of p.Gly1324Ser was determined via X-ray
crystallography.

Advanced Light Source, Berkley, California

Crystallographic data within this article were deposited in the Protein Data
Bank, PDB: 5BVS.

Value of the data

This is the first crystal structure of a loss-of-function von Willebrand disease mutant of this

domain.

A detailed process for expression and purification of the p.Gly1324Ser A1 domain is described.
Size exclusion and reverse phase chromatographic methods ensure proper protein purity and
absence of protein aggregates as valuable quality control metrics.

The crystallization methods describe the process of obtaining a crystal structure for the von
Willebrand factor A1 domain harboring the loss-of-function mutation p.Gly1324Ser.

The methods and data described establish benchmarks for obtaining high quality VWF A1 domain
constructs for use in the structural and functional analysis of von Willebrand disease.
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1. Data

We describe the production, inclusion body preparation, refolding and purification of the Al
domain containing the loss-of-function mutation p.Gly1324Ser. Furthermore, the data shows quality
control steps that we use to ensure that the protein is sufficiently pure and natively folded. We also
describe the crystallization process, data refinement and obtained parameters. Finally, the structure of
the p.Gly1324Ser A1 domain variant is compared to previously published structures of the A1 domain.

2. Experimental design, materials and methods
2.1. Production of p.Gly1324Ser A1 in Escherichia coli

Recombinant human VWF A1 domain containing the loss-of-function mutation p.Gly1324Ser was
expressed in E. coli M15 cells as a fusion protein containing an N-terminal 6 x His Tag using BamHI
and HindlIII restriction sites in the Qiagen pQE-9 vector [2,3]. For the transformation of the cells, 1 pL
of plasmid was mixed with 80 uL of competent cells and heat-shocked at 42 °C for 1.5 min, followed
by 1 min incubation on ice. Then 1 mL of LB-medium was added without antibiotics and the cells
were incubated for 1h at 37 °C. Six pre-cultures (25 mL of sterile LB-medium with 100 pg/mL
Ampicillin and 25 pg/mL Kanamycin) were prepared by addition of 170 pL of the cell suspension and
then shaken overnight at 37 °C. The following morning the pre-cultures were transferred into six
flasks containing 600 mL sterile LB-medium containing 100 pg/mL Ampicillin and 25 pg/mL Kana-
mycin. The cultures were incubated for 2.5 h at 37 °C to reach an ODggo of approx. 0.6 and then
protein expression was induced by addition of 1.5 mM IPTG. After 4 h the cells were harvested by
centrifugation at 6000 x g.

2.2. Inclusion body preparation, solubilization and refolding

Cell pellets were resuspended in 50 mM Tris HCI, 150 mM NacCl, pH 8.2 and then incubated with
Lysozyme (approx. 1 mg/gram biomass) on ice. After 30 min, 4 mg/g biomass of deoxycholic acid was
added and the cells were incubated at 37 °C for 10 min. For digestion of cellular RNA and DNA, RNAse
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Fig. 1. Analytical gel filtration and reverse phase HPLC of A1 p.Gly1324Ser. The upper panel shows a chromatogram of A1 p.
Gly1324Ser obtained from analytical gel filtration. The inset shows a molecular weight calibration curve consisting of the
retention times of Ferritin (440 kDa), Aldolase (158 kDa), BSA (67 kDa), Ovalbumin (43 kDa), Ribonuclease A (13.7 kDa) and
Vitamin B12 (1.35 kDa) (®). The retention time of p.Gly1324Ser A1 is indicated by (o). The lower panel shows a reverse phase
HPLC run (solid line) with a gradient (dotted line) of 2% B between 5 and 55 min.
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and DNAse were added (0.6 mg/0.3 mg per 5 g of biomass). After approx. 30 min of incubation on a
shaker, the lysed cells were centrifuged at 15,000 x g for 15 min at 4 °C. The supernatants were
discarded and the pelleted inclusion bodies were resuspended and washed in 2 M urea, 0.5% Triton
X-100, 10 mM EDTA, 200 mM NacCl, 50 mM Tris HCl, and pH 8.2. This procedure was repeated
three times.

The inclusion bodies were solubilized in 6 M GdnHCl, 25 mM Tris HCl, pH 7.5 at room temperature
and centrifuged at 15,000 x g for 15 min at 4 °C. The supernatant was filtered using 0.8 um filters.
Then the solubilized protein was refolded via dilution into 4 L of cold buffer containing 50 mM Tris
HCI, 1 M NaCl and 0.5% Tween 20, pH 7.5.

3. Purification

The refolded protein was loaded overnight on a Ni NTA column, washed with 100 mM Tris HCI,
1M Nadcl, 25 mM imidazole, pH 7.5 for 3 h and then eluted with 250 mM Imidazole in the same
buffer. The eluted A1 domain then was dialyzed overnight against 25 mM Tris HCl, 150 mM Nacl,
0.05% Tween 20, pH 7.5.

For the second purification step, the A1 domain was loaded on a Heparin-Sepharose column,
washed with 25 mM Tris HCI, 125 mM NaCl, pH 7.5 for 3 h and eluted with 450 mM NaCl afterwards
[2,3]. The protein then was dialyzed exhaustively against TBS and stored on ice at 0 °C for a maximum
of two weeks. Prior to any experiment the protein was centrifuged for at least 10 min at 60,000 x g.

3.1. Quality control

To ensure that the protein preparation is of sufficient purity, natively folded and does not contain
aggregates, reverse phase HPLC and analytical gel filtration experiments were performed. The upper
panel of Fig. 1 shows an analytical gel filtration experiment performed on a Beckman System Gold
Analytical HPLC System (Pump model 125, UV detector model 166) using a Phenomenex S3000
column at 0.5 ml/min. The A1 domain elutes at approx. 19 min, which demonstrates that the 29 kDa
protein is monomeric and globular when comparing it with a molecular weight calibration curve

Table 1
Crystal data, collection data, and refinement parameters for VWF A1 p.Gly1324Ser (5BV8).

VWEF A1 p.Gly1324Ser (5BV8)

Data collection Refinement
A 0.97741 . A 43.23-1.59

Wavelength (e) Resolution (€)
Space group P 61 No. reflections 38781
Cell dimensions Ruork/Riree 0.164/0.180

A 86.45, 86.45, 68.16 No. atoms
a, b, c(e)
a, f, 6 (deg) 90, 90, 120 Proteins 1651

. A 68.16-1.59 Ligand/ion 5
Resolution (e)
Rumerge 0.081 (0.986) Water 232
CCyj* 0.999 (0.651) B-factors
cc 0.999 (0.888) Protein 22.699
Ilol 14 (1.5) Ligand/ion 55.408
Completeness (%) 99.9 (98.9) Water 35.498
Redundancy 6.5 (5.7) R.M.S. deviations

A 0.006
Bond lengths (e)
Bond angles (deg) 1.109

T 5% of data were used for validation and were excluded from refinement.

I CC]/Z is defined as the correlation coefficient between two random half data sets.
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(inset) obtained from retention times of Ferritin (440 kDa), Aldolase (158 kDa), BSA (67 kDa), Oval-
bumin (43 kDa), Ribonuclease A (13.7 kDa) and Vitamin B12 (1.35 kDa).

Reverse phase HPLC (lower panel of Fig. 1) was performed to determine the purity of the protein
preparation. An analytical Beckman HPLC system (Pump model 126, UV detector model 166) was used
with a Grace Vydac Cig column at 0.5 mL/min. A 2% B-gradient (Buffer A: Water with 0.1% Tri-
fluoroacetic acid, Buffer B: Acetonitrile (ACN) with 0.1% Trifluoroacetic acid) was applied, to separate
the A1 domain from potential impurities. The protein elutes at approx. 45 min (70% ACN) as a single
sharp peak with no other major impurities visible in the chromatogram.

4. Crystallization and processing

p.Gly1324Ser A1 was shipped on ice overnight for crystallization. The protein was then passed
through a 0.22 um filter to clear aggregates and then concentrated to 20 mg/mL. p.Gly1324Ser A1 was
screened against the Wizard Classic 1 & 2 screens (Emerald BioSystems) using a mosquito Crystal (TTP
Labtech). Concentrated protein was mixed 1:1 with the crystallization solutions, and set up as 400 nL
hanging drops at 4 °C. The crystallization solution selected from the screen was 30% (v/v) PEG 400,
100 mM CAPS/sodium hydroxide, pH 10.5. Crystals grew within 5 days in 2 uL drops. After a five
minute incubation in the crystallization solution supplemented with 33% ethylene glycol, the crystals
were frozen in liquid nitrogen. Flash frozen crystals were sent to the Advanced Light Source (Berkeley,
California) for diffraction experiments. Diffraction data was processed using CCP4 and iMOSFLM, CC; >
values were used to guide resolution cutoffs [4,5]. Initial phases were generated using PDB ID: 4C29 as
a search model for molecular replacement (MR). MR was performed using Phenix.Phaser [6]. The
model was fully refined with no Ramachandran outliers using Phenix.Refine and built using Coot
[6,7]. The data collection, processing and refinement statistics for the crystal structure are shown in
Table 1 and a representative picture of the crystals is shown in Fig. 2. The structural model was
deposited in the Protein Data Bank (accession code PDB: 5BVS).

4.1. Comparison of p.Gly1324Ser A1 with other crystal structures of the A1 domain

Fig. 3 shows all crystal structures of the A1 domain found in the literature. Since its first crys-
tallization in 1998 [8], the wildtype A1 domain has been crystallized in complex with the platelet
receptor GPIBa [9], with the RNA aptamer ARC1172 [10], the monoclonal antibody Fab fragment of
NMC4 [11] and in presence of the snake venoms Botrocetin and Biticitin [ 12-14]. The type 2B (gain of
function) mutations 11309V and R1306 have also been crystallized either alone or in various

Fig. 2. Photograph of the VWF A1 p.Gly1324Ser crystals taken with a polarized light microscope. VWF A1 p.Gly1324Ser grew as
needle clusters in the presence of 30% (v/v) PEG 400, 100 mM CAPS/sodium hydroxide, pH 10.5 at 4 °C.
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Fig. 3. Overlay of VWF A1 domain structures available from the Protein Data Bank [8-17]; (G1324S=p.Gly1324Ser).

complexes [12,15-17]. A structure of the A1 domain where the disulfide bond has been shifted one
residue towards the N-terminus alone and in complex with GPIBa has also been published [16]. The
overlay, illustrated in the center of Fig. 3, compares the obtained crystal structure for p.Gly1324Ser
with the structures mentioned above. Fig. 3 illustrates that p.Gly1324Ser is identical to all published
structures of the A1 domain.
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Supplementary data associated with this article can be found in the online version at http://dx.doi.
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