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Fragile X mental retardation protein controls ion channel
expression and activity
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Abstract Fragile X-associated disorders are a family of genetic conditions resulting from the
partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders
is fragile X syndrome, the most common cause of inherited intellectual disability and autism.
FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic
effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed
hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including
a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels
(Kv3.1 and Kv4.2) mRNAs and regulates their expression in somatodendritic compartments of
neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA
regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel
complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown
to directly interact with FMRP; this interaction alters the single-channel properties of the Slack
channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated
potassium (BK) channel; this interaction increases calcium-dependent activation of the BK
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channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium
channel, Cav2.2, and reduce its trafficking to the plasma membrane. Studies performed on
animal models of fragile X syndrome have revealed links between modifications of ion channel
activity and changes in neuronal excitability, suggesting that these modifications could contribute
to the phenotypes observed in patients with fragile X-associated disorders.
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Abstract figure legend Fragile X mental retardation protein (FMRP) interacts with voltage-gated potassium channels
(Kv3.1 and Kv4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. FMRP also
directly interacts with Slack, BK and Cav2.2 channel complexes and alters their activity in the soma and presynaptic
terminals. Overall, FMRP modulates neuronal excitability by controlling ion channel expression and activity.

Abbreviations BK, large conductance Ca2+-activated potassium channel; CaV2.2, voltage-gated calcium channel;
FMR1, fragile X mental retardation 1 gene; FMRP, fragile X mental retardation protein; FXS, fragile X syndrome;
FXTAS, fragile X-associated tremor/ataxia syndrome; Kv, voltage-gated potassium channel; PP2A, protein phosphatase
2A; S6K, ribosomal protein S6 kinase; Slack, sodium-activated potassium channel.

The fragile X mental retardation protein (FMRP) is an
RNA-binding protein encoded by the fragile X mental
retardation 1 (FMR1) gene located on the chromosome X
(Bhakar et al. 2012). A variety of disorders are associated
with mutation in the FMR1 gene including fragile X
syndrome (FXS) and fragile X-associated tremor/ataxia
syndrome (FXTAS) (Lozano et al. 2014).

FXS is the most common heritable form of intellectual
disability and is the leading known monogenic cause
for autism spectrum disorders (Bhakar et al. 2012). The
FMR1 gene contains an unstable CGG-repeat in the 5’
untranslated region which is normally 5–44 repeats long.
FXS is caused by a CGG expansion of more than
200 repeats (called full mutation) which induces methy-
lation of the gene and leads to the partial or complete
absence of FMRP. Rarely, FXS can also be caused by point
mutations or deletions (Bassell & Warren, 2008; Myrick
et al. 2015). FXS has a prevalence of 1 in 2500–4000 males
and 1 in 7000–8000 females. The prevalence of carrier
status has been estimated to be up to 1 in 130–250
of females. People with FXS show mild to moderate
cognitive dysfunction, attention deficits and hyperactivity,
anxiety, autistic behaviours, sensory integration problems
(such as hypersensitivity to loud noises, bright lights
and heightened tactile sensitivity) and they are often also
affected by seizures.

FXTAS is caused by an expansion of 55–200
CGG-repeats (called premutation) inducing an elevation
in FMR1 mRNA transcript levels (Lozano et al. 2014).
The leading molecular mechanism proposed for these
disorders involves elevated levels of mRNA containing
the expanded CGG-repeats. This is thought to sequester
RNA-binding proteins and as a consequence affect
their normal functions (Hagerman & Hagerman, 2013).
However, a recent study investigating FMR1 splice variants

in brain samples of premutation carriers has shown
that mRNA isoforms lacking the C-terminal of FMRP
are the most increased (Pretto et al. 2015). The fact
that FMRP C-terminus contains important functional
domains (Bagni & Greenough, 2005; Bassell & Warren,
2008; Ferron et al. 2014) led the authors of the study to
suggest that the overexpression of these truncated FMRP
isoforms could inhibit FMRP function and contribute to
the pathology of premutation disorders. People with the
premutation expansions can present with a wide range
of clinical phenotypes, from mild cognitive problems
during childhood (attention deficit hyperactivity disorder,
autism spectrum disorder) to psychiatric disorders in
adulthood (anxiety and depression), motor symptoms
(tremor, ataxia, muscle weakness and Parkinsonism),
neuropathy and chronic pain. FXTAS has a prevalence
of 1 in 260–814 males and 1 in 100–260 females indicating
that 1 in 3000 men and 1 in 5200 women in the general
population will develop symptoms of FXTAS.

FMRP is expressed in the nucleus and the cytoplasm,
and is part of cytoplasmic RNA granules, where it plays
a role in both the trafficking of specific mRNAs to sites
of translation, and the stalling of their translation (Bassell
& Warren, 2008; Darnell et al. 2011). FMRP has been
shown to bind a large number of mRNAs, also called
the FMRP transcriptome, and many of them code for
proteins involved in neuronal excitability and synaptic
transmission (Darnell et al. 2011). In fmr1 knockout mice,
the loss of FMRP results in an excessive and unregulated
dendritic mRNA translation (Antar et al. 2004; Bassell
& Warren, 2008), and an alteration of synapse number
and shape (Antar et al. 2006). Consequently, research has
concentrated particularly on the dendritic/postsynaptic
role of FMRP (Ronesi & Huber, 2008; Krueger & Bear,
2011). However, there is now growing evidence for a
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presynaptic role of FMRP. Loss of presynaptic FMRP
reduces the formation of functional synapses (Hanson
& Madison, 2007) and modifies presynaptic protein
levels (Liao et al. 2008; Klemmer et al. 2011). Moreover,
electron microscopy studies of the ultrastructure of the
synapses of CA3 pyramidal neurons onto CA1 pyramidal
neurons in the hippocampus of fmr1 knockout mice have
revealed an increase in the number of docked vesicles at
the active zones compared with control animals (Deng
et al. 2011; Klemmer et al. 2011). In central neurons,
granules containing FMRP are present in presynaptic
terminals and axons and they are mostly prominent
during synapse maturation (Christie et al. 2009; Akins
et al. 2012). Studies also show a role for FMRP in
local protein synthesis in peripheral sensory axons (Price
et al. 2006). While fmr1 knockout mice present normal
acute nociceptive responses, they show modifications
of the chronic responses, both in the peripheral and
central nervous system (Price et al. 2007). Heightened
tactile sensitivity and self-injurious behaviour is described
in some FXS patients, and this could be linked to
dysregulation of nocifensive behaviour (Price et al. 2007).

The analyses of the brain FMRP transcriptome have
revealed that, among the mRNA coding for proteins
involved in excitability and synaptic transmission, a
number of target mRNAs code for ion channels (Brown
et al. 2001; Darnell et al. 2011; Brager & Johnston,
2014). Voltage-gated potassium channels Kv3.1b and
Kv4.2 mRNA have been confirmed as targets of FMRP
(Darnell et al. 2001, 2011; Gross et al. 2011; Lee et al.
2011). Kv3.1 channels play a critical role in auditory brain-
stem sound localisation circuits in rodents (Brown &
Kaczmarek, 2011). In fmr1 knockout mice, the normal
gradient of Kv3.1 in the medial nucleus of the trapezoid
body is flattened and the activity-dependent increase of
Kv3.1 expression is abolished damaging encoding and
processing of auditory information (Strumbos et al. 2010).
In hippocampal neurons, the A-type potassium channel
Kv4.2 is the major potassium channel regulating neuronal
excitability, and it has been confirmed that FMRP binds
Kv4.2 mRNAs (Gross et al. 2011; Lee et al. 2011). However,
the impact of FMRP on Kv4.2 expression is still a matter of
debate. Indeed, two studies have investigated the level of
Kv4.2 expression in fmr1 knockout mice and their results
point towards opposite conclusions: Gross et al. concluded
that FMRP acts as a positive regulator of Kv4.2 whereas
Lee et al. found that FMRP acts as a repressor of Kv4.2
expression (Gross et al. 2011; Lee et al. 2011). The reason
for this discrepancy has not been elucidated but the use
of two different mouse strains has been suggested as a
possible explanation (Brager & Johnston, 2014).

Besides its role as an RNA binding protein and
translation modulator, FMRP has recently been shown
to directly interact with ion channels. The first ion
channel to be identified that interacts with FMRP was

the sodium-activated potassium channel Slack (Brown
et al. 2010). In this study, Brown and co-workers used
biochemical techniques and single channel recordings to
demonstrate that FMRP directly interacts with the cyto-
plasmic carboxy-terminal tail of the Slack channel and
increases the channel mean open time (Brown et al. 2010).
FMRP has also been shown to interact with endogenous
Slack channels and modulate their activity in bag cell
neurons of Aplysia (Zhang et al. 2012). Slack channels
contribute to the firing patterns of a variety of neurons
(Yang et al. 2007; Zhang et al. 2012) and it has been
suggested that some of the neuronal defects observed in
FXS patients could be linked to the alteration of Slack
channel activity (Kim & Kaczmarek, 2014).

A second type of potassium channel has been shown
to be modulated by FMRP: the large conductance
Ca2+-activated potassium BK channel (Deng et al. 2013).
The modulation of BK channel function by FMRP does
not occur directly with the pore-forming subunits of the
BK channel but involves an interaction with the auxiliary
β4 subunit. β4 subunits have been described as a negative
modulator of BK channels (Brenner et al. 2000; Torres
et al. 2007). The proposed mechanism of action is that
the binding of FMRP to the auxiliary β4 subunit alters
the interaction of β4 subunits with the pore-forming
subunits and consequently reduces its sensitivity to
Ca2+ (Deng et al. 2013). BK channels are important
regulators of action potential duration by driving both
the phases of repolarisation and after-hyperpolarisation
(Bean, 2007). In hippocampal and cortical pyramidal
neurons of knockout fmr1 knockout mice, Deng et al. have
shown a reduction of BK channel activity that leads to the
elongation of the action potential duration and an increase
in presynaptic calcium influx (Deng et al. 2013). As a direct
consequence, glutamate release and short-term synaptic
plasticity is affected between CA3 and CA1 pyramidal
neurons of the hippocampus of fmr1 knockout mice.
Interestingly, a recent study has shown that the genetic
upregulation of BK channel activity normalises a number
of neuronal defects in a mouse model of fragile X syndrome
(Deng & Klyachko, 2016). In this latter study, the authors
have crossed fmr1 knockout mice with sloβ4 knockout
mice (sloβ4 corresponds to kcnmb4 gene that codes for
the BK channel auxiliary β4 subunit) to genetically
upregulate BK channels in the absence of FMRP and they
show that BK single-channel properties, action potential
duration, glutamate release and presynaptic short-term
plasticity in hippocampal pyramidal neurons are similar
to those in control animals (Deng & Klyachko, 2016).

In addition to potassium channels, FMRP has also
been shown to directly interact with N-type voltage-gated
calcium channels (Ferron et al. 2014). These channels
(CaV2.2) are critical for neurotransmission both in
central neurons, particularly early in development, and
in the autonomic and sensory nervous system (Hirning
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et al. 1988; Turner et al. 1993; Catterall & Few, 2008).
Thus they are the main mediators of neurotransmission
between primary sensory afferent neurons involved in
nociception and other sensory modalities, and the spinal
cord (Bowersox et al. 1996; Altier et al. 2007). CaV2.2
channels are formed from a main pore-forming α1 sub-
unit and auxiliary α2δ and β subunits (Dolphin, 2012).
FMRP has been shown to interact with the α1 subunit
of CaV2.2 channels (Ferron et al. 2014). The interaction
with FMRP occurs between two cytoplasmic domains of
the CaV2.2 α1 subunit: the cytoplasmic loop between
the transmembrane domains II and III and the carboxy
terminal tail. These intracellular domains of the CaV2.2
channel are important for the targeting to the presynaptic
terminals (Mochida et al. 2003; Szabo et al. 2006; Kaeser

et al. 2011) and they have been described to functionally
interact with presynaptic proteins (Sheng et al. 1994;
Bezprozvanny et al. 1995; Mochida et al. 1996; Maximov
et al. 1999; Coppola et al. 2001; Kaeser et al. 2011). In
peripheral neurons, the loss of FMRP induces an increase
in CaV2.2 channel cell surface expression and an increase
in neurotransmitter release (Ferron et al. 2014).

FMRP interaction with CaV2.2 does not affect the
biophysical properties of the channel which contra-
sts with the interaction of FMRP with Slack and BK
channels. Another noticeable difference resides in the
domain of FMRP that is involved in the interaction with
the channel. The amino terminal domain of FMRP is a
well-described platform for protein–protein interactions
(Bagni & Greenough, 2005; Ramos et al. 2006; Bassell
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Figure 1. Diagram illustrating the interaction between FMRP and ion channels in neurons
A, in wild-type neurons (WT), FMRP interacts with voltage-gated potassium channels (Kv3.1 and Kv4.2) mRNAs and
regulates their expression in somatodendritic compartments of neurons. In the soma and presynaptic terminals,
FMRP directly interacts with Slack, BK and Cav2.2 channel complexes and regulates their activity. B, in neurons
lacking FMRP (no FMRP), in the same way as in models of fragile X syndrome, ion channel expression and activity
is modified inducing alteration of excitability and neurotransmitter release.
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& Warren, 2008) and this domain interacts with Slack
channels and the β4 subunit of BK channels (Brown et al.
2010; Deng et al. 2013). Interestingly, it is the carboxy
terminal domain of FMRP that has been shown to interact
with voltage-gated calcium channels (Ferron et al. 2014).
The carboxy terminal domain of FMRP is a non-conserved
region in the related FXR1P and FXR2P (Bassell & Warren,
2008) and only two other protein–protein interactions
have been described (Menon et al. 2004; Dictenberg et al.
2008). The carboxy terminal domain of FMRP was then
suggested to contribute to the specificity of FMRP function
(Menon et al. 2004). This idea is supported by a recent
study performed on premutation carriers that suggests a
potential link between the overexpression of an FMRP
mRNA splicing variant lacking the carboxy terminal
domain and the pathology of premutation disorders
(Pretto et al. 2015).

One can speculate on the function of the direct inter-
action between FMRP and ion channels. It has been hypo-
thesised that the interaction of an ion channel with part
of the biochemical machinery that regulates translation
of mRNAs suggests that changes in channel activity may
contribute to the regulation of activity-dependent protein
synthesis in neurons (Zhang et al. 2012; Lee et al. 2014).
FMRP has been shown to modulate postsynaptic local
protein synthesis in dendrites of hippocampal neurons
(Muddashetty et al. 2007). FMRP phosphorylation status,
controlled by protein phosphatase 2A (PP2A) and
ribosomal protein S6 kinase (S6K), determines the switch
between translational activation and repression of mRNA
targets of FMRP (Narayanan et al. 2007, 2008). Local
protein synthesis also occurs in presynaptic terminals
(Akins et al. 2009) and PP2A and S6K are expressed
in presynaptic terminals (Viquez et al. 2009; Cheng
et al. 2011). Moreover, a recent study identified a sub-
set of mRNAs encoding presynaptic proteins as targets
of FMRP (Darnell et al. 2011). FMRP has been shown
to form protein complexes with CaV2.2 channels in the
soma and also in the presynaptic terminals of neurons
(Ferron et al. 2014). Therefore, FMRP tethering to the
vicinity of CaV2.2 may localise it to sites where local
activity-dependent presynaptic protein synthesis may
occur. Moreover, PP2A activity can be modulated by Ca2+
influx through voltage-gated calcium channels (Ferron
et al. 2011), which suggests that presynaptic Ca2+ influx
resulting from CaV2.2 channel activation may activate
PPA2, which in turn would dephosphorylate FMRP and
affect local translation. Determining the mechanisms
that control FMRP function will be an important issue
for future investigations. Indeed, a study has recently
shown that the deletion of S6K1 in fmr1 knockout mice
partially corrected the phenotypes associated with FXS
(Bhattacharya et al. 2012).

In conclusion, FMRP can regulate ion channel activity
(Fig. 1) either by controlling the stability and trafficking

of the mRNA encoding particular channels (Kv3.1b and
Kv4.2) or by a new and unconventional way, by directly
binding to a channel subunit (Slack, BK and CaV2.2
channels). Several other ion channels have been reported
to be altered in different parts of the brain of animal
models of fragile X syndrome but the mechanisms of
regulation have not been identified yet (Brager & Johnston,
2014; Contractor et al. 2015). All those modifications of
ion channel expression contribute to the modification of
neuronal excitability and could account for the alterations
observed in fragile X-associated disorders (Fig. 1).
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