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Lymphatic pumping: mechanics, mechanisms
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Abstract A combination of extrinsic (passive) and intrinsic (active) forces move lymph against
a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump
system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This
review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting
lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion
requires not only robust contractions of lymphatic muscle cells, but contraction waves that are
synchronized over the length of a lymphangion as well as properly functioning intraluminal valves.
Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle
and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate,
contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and
valve defects are common themes among pathologies that directly involve the lymphatic system,
such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve
the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory
bowel disease.
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Abstract figure legend Diagram depicting the major factors regulating the effective pumping ability of a prenodal
collecting lymphatic vessel as it transports lymph formed in lymphatic capillaries to the subcapsular sinus of a lymph
node. Pressures indicate approximate hydrostatic pressures measured in the interstitium and at the entrance to the
lymph node, respectively, that have been recorded in many regions of the lymphatic system. Cut-away sections show the
locations of two valves. The blue shaded region depicts the relatively modest net filtration of fluid and solute that occurs
under normal conditions all along the length of the collecting vessel. Each of these factors can also become a target of
lymphatic dysfunction. AP, action potential; LEC, lymphatic endothelial cell; LMC, lymphatic muscle cell.

Abbreviations AMP, contraction amplitude; AP, action potential; ApoE−/−, apolipoprotein E knockout; Cx, connexin;
db/db, leptin receptor knockout; EC, endothelial cell; EDD, end-diastolic diameter; EF, ejection fraction; eNOS, end-
othelial nitric oxide synthase; ESD, end-systolic diameter; ESV, end-systolic volume; FPF, fractional pump flow; FREQ,
contraction frequency; GFP, green fluorescent protein; iNOS, inducible nitric oxide synthase; KATP, ATP-sensitive
potassium channel; LEC, lymphatic endothelial cell; LMC, lymphatic muscle cell; MLCK, myosin light chain kinase;
MLCP, myosin light chain phosphatase; NO, nitric oxide; NIRF, near infrared fluorescence; �P, hydrostatic pressure
gradient; Pin, inflow pipette pressure; PL, luminal hydrostatic pressure; Pout, outflow pipette pressure; ROS, reactive
oxygen species; VIP, vasoactive intestinal peptide; VSM, vascular smooth muscle; WT, wild-type.

Introduction

An extensive network of lymphatic vessels runs in
parallel to the blood vascular system, composed of
initial lymphatic capillaries that serve an absorptive
role, collecting vessels that transport lymph, and lymph
nodes/lymphoid organs that facilitate immune responses.
Lymphatic vessels or lymphatic-like structures with fluid
and/or immune cell transport function(s) have been
identified in almost every organ, including the brain
and eye (Schroedl et al. 2014; Aspelund et al. 2015;
Louveau et al. 2015). Ultimately, lymphatic collecting
vessels coalesce into central lymphatic ducts that return
lymph to the venous circulation at the confluence of the
great veins in the neck. In humans, 8–12 litres of fluid
and protein per day that otherwise would accumulate in
extravascular compartments are returned to the blood
through the lymphatic system (Renkin, 1986; Wiig &
Swartz, 2012).

A combination of extrinsic and intrinsic forces move
lymph against a hydrostatic pressure gradient in most
regions of the body. At rest, approximately 1/3 of lymph
transport in the human lower extremities results from
compression by skeletal muscle contractions (extrinsic
pump) and 2/3 to active pumping (intrinsic pump) of
the collecting vessel network (Engeset et al. 1977). The
robust contractions of lymphatic muscle cells are the
driving force for active lymph propulsion against adverse
pressure gradients (Zweifach & Prather, 1975), which can
be particularly large in dependent extremities (Olszewski
& Engeset, 1980). Backflow within the lymphatic network
is minimized by a system of one-way valves (Davis et al.
2011).

Overload of the intrinsic lymphatic pump or failure of
lymphatic valves leads to, and/or results from, chronic
lymphoedema (Olszewski, 2002). Observations in the
limbs of patients with lymphoedema suggest failure or
weakening of the active lymphatic contractions, chronic
distension of the collecting vessels and incompetence
of the valves (Olszewski et al. 1968; Olszewski, 2002).
Current therapies for lymphoedema are palliative in
nature, promoting passive lymph transport through
rigorous and daily deep tissue massage. The limitations
in lymphoedema treatments are, in large measure, due to
our lack of understanding of the molecular and mechanical
properties of lymphatic muscle cells (LMCs).

The focus of this review is the intrinsic, contractile
properties of collecting lymphatic vessels in relation to
their ability to actively transport lymph. The effectiveness
of the lymph pump system impacts not only interstitial
fluid balance but other aspects of overall homeostasis
such as fat absorption (Dixon, 2010), reverse cholesterol
transport (Martel et al. 2013) and immune cell trafficking
(Angeli et al. 2004; Lim et al. 2009; Cromer et al. 2015;
Chakraborty et al. 2015b).

Normal lymphatic pumping

Active lymph transport by collecting lymphatic vessels
depends critically on a combination of factors that
combine to produce propulsive and centripetal movement
of lymph. Lymph propulsion requires not only robust,
spontaneous contractions of LMCs, but contraction waves
that are coordinated over the length of a lymphangion,
which is the segment of a collecting lymphatic vessel
containing two intraluminal valves comprising the

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society



J Physiol 594.20 Lymphatic pumping mechanisms 5751

elementary pumping unit. In conjunction, unidirectional
valves in the vessel lumen must operate normally to
minimize backflow. For the purpose of this discussion,
lymphatic pumping is defined as the net outflow of a
collecting lymphatic segment due to active contraction
of the LMC layer(s). Net outflow is equal to forward
(centripetal) flow due to a propulsive contraction minus
any reflux through the valves during the contraction
cycle.

Pumping behaviour can be visualized in video movies
of isolated lymphangions held at constant pressure.
The images in Fig. 1 and linked movies (Movies S1
and S2 in the online Supporting information) show
contractions of a popliteal afferent lymphatic from a
mouse expressing green fluorescent protein (GFP) in
lymphatic endothelial cells (LECs) under the control of the
LEC-specific transcription factor, Prox1. The outer edges
of the fluorescent border demarcate the inner diameter
of the vessel, which becomes clear when the fluorescence
(Fig. 1B) and brightfield (Fig. 1A) images are compared.
Both valve leaflets are visible as they open and close during
the contraction cycle. Robust and nearly synchronous
contractions of a single layer of LMCs are evident.

Lymphatic muscle is non-striated and usually classified
as vascular smooth muscle, but it shares biochemical and
functional characteristics with both vascular and cardiac
muscle (von der Weid & Zawieja, 2004). Like vascular
smooth muscle, lymphatic muscle contraction is regulated
primarily by the balance of myosin light chain kinase
(MLCK)/myosin light chain phosphatase (MLCP) activity
controlling myosin light chain phosphorylation (reviewed
in Chakraborty et al. 2015a). Lymphatic vessels resemble
arterioles in that they develop basal tone and exhibit
myogenic constriction to pressure elevation (Davis et al.
2009). Although the physiological role of the myogenic
response in lymphatic vessels is not known, myogenic
tone/constriction may serve primarily to preserve valve
function (Scallan et al. 2012a), as discussed below. Like
blood vessels, lymphatic behaviour is regulated by nitric

oxide (NO) and other endothelium-derived factors such
as prostaglandins and histamine (Gasheva et al. 2013;
Nizamutdinova et al. 2014). Both lymphatic tone and
spontaneous contractions are inhibited by NO produced
as a result of shear stress on the endothelium (in response
to either forward or reverse lymph flow) (Gashev et al.
2002). Like cardiac muscle, LMCs express troponin C and
I as well as cardiac isoforms of tropomyosin (Muthuchamy
et al. 2003); however, the functional roles of these contra-
ctile proteins remain unclear, as are the ways in which
they might complement or interact with MLCK/MLCP to
control the contraction cycle.

Lymphatic muscle shares several electrophysiological
properties with both vascular smooth muscle (VSM)
and cardiac muscle. LMC contractions depend pre-
dominantly on Ca2+ influx through L-type, voltage-gated
Ca2+ channels (Telinius et al. 2014c), while the resting
membrane potential is influenced substantially by Cl−
(van Helden, 1993; von der Weid et al. 2008b) and
voltage-gated K+ channels (Allen & McHale, 1988;
Telinius et al. 2014b). Further, the activation of
ATP-sensitive potassium (KATP) channels (Mizuno et al.
1999; Mathias & von der Weid, 2013) and Ca2+-activated
K+ channels (Cotton et al. 1997) in lymphatic muscle can
dramatically modulate spontaneous contractile activity.
Like cardiac muscle, the spontaneous contractions of
LMCs are initiated by action potentials (APs) that probably
originate in LMCs, but also might be generated by
a network of interstitial cells (McCloskey et al. 2002;
Sanders & Ward, 2008; Briggs Boedtkjer et al. 2013).
LMCs also express several types of ion channels that are
similar to those that control pacemaking in the sino-atrial
node, e.g. fast Na+ channels (Hollywood et al. 1997b;
Telinius et al. 2015), T-type Ca2+ channels (Hollywood
et al. 1997a; Lee et al. 2014), hyperpolarization-activated
cyclic nucleotide-gated (HCN) channels (McCloskey et al.
1999) and ether-à-go-go related gene (ERG) channels (Gui
et al. 2014). The roles of these channels in lymphatic
pacemaking are not yet fully understood.

A

B

Figure 1. Brightfield (A) and fluorescence (B) images of a popliteal afferent lymphangion from a
Prox1GFP mouse after dissection, cannulation and partial cleaning
The vessel is pressurized to 3 cmH2O from cannulation pipettes on either end (out of field of view). Calibration bars
= 50 μm. Movies S1 and S2 in the online Supporting information show contraction sequences in each imaging
mode.
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Use of cardiac analyses to evaluate lymphatic
contractile function

Functionally, many aspects of the lymphatic pump
resemble those of the cardiac ventricular pump. At the
beginning of a lymphatic pump cycle both valves are closed
so that contraction of the LMC layer (i.e. systole) results
in a rapid rise in intraluminal pressure; once pressure
exceeds outflow pressure the outflow valve opens, ejecting
lymph. When the LMC layer relaxes (i.e. diastole), intra-
luminal pressure falls, the outflow valve closes, and the
inflow valve then opens to allow filling of the lymphangion.
This sequence of events is illustrated by the experimental
recording in Fig. 2 of two contraction cycles. Internal
diameter is measured from high-resolution video images
of the vessel using edge detection while valve positions
(inflow valve, blue arrow; outflow valve, red arrow) are
measured using densitometry (Davis et al. 2012). Pres-
sures at the inflow and outflow ends are controlled by a
servo system and intraluminal pressure (PL) is measured
through a 3 μm servo-nulling pipette advanced through
the wall. To evaluate pump function inflow and outflow
pressures are manipulated independently or in unison. In
this case, a slow rise in outflow pressure (Pout) is imposed
while holding inflow pressure (Pin) constant. Both pres-
sures are referenced to external pressure (atmospheric).
The contractions of the entire lymphangion are essentially
synchronized, with a delay of only a few milliseconds for
spread of the contraction wave. The contraction amplitude
(AMP) for this vessel, as determined from end-diastolic
diameter (EDD) minus end-systolic diameter (ESD), is
larger on the outflow than inflow side of the outflow
valve; note that EDD slowly rises as Pout is raised, but
remains approximately constant on the inflow side because
Pin is held low and the central segment is protected
from reverse flow in diastole by the outflow valve, which
is closed. The ejection fraction (EF) is calculated as
(EDD2 − ESD2)/EDD2, thereby converting the diameter
change to a volume change over a constant length. EF
can be as high as 80% for isolated lymphangions from rat
and mouse (Scallan et al. 2012b; Scallan & Davis, 2013).
Although pump flow in mouse and rat vessels is not able
to be measured directly with current methods (as it is in
lymphatics from larger animals; McHale & Roddie, 1976;
McHale & Meharg, 1992), pump output (FPF, fractional
pump flow) can be estimated from the product of EF and
contraction frequency (FREQ).

Modulators of the lymph pump

Like the heart (West, 1991), lymphatic pumping is
regulated by four major factors: preload, afterload,
spontaneous contraction frequency and contractility. The
influence of each factor is addressed briefly in the next
section.

Preload. Preload, which is set by end-diastolic pressure
(or volume), is a significant determinant of lymphatic
pump function. Increasing the filling pressure over a
certain range enhances pump output, analogous to the
Frank–Starling relationship for the heart (Smith, 1949;
Mislin & Schipp, 1966; McHale & Meharg, 1992). In rat
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Figure 2. Pump cycle of an isolated, cannulated (2-valve)
lymphangion from rat mesentery when Pout is elevated
ramp-wise while Pin is held constant
Normal direction of flow is left to right. Red and black diameter
traces correspond to red and black tracking windows on each side of
the output valve in the video image at the top. Blue and red
densitometer traces correspond to blue and red densitometer
windows positioned just upstream of the input and output valves,
respectively. Valve position traces represent the binary state of each
valve based on thresholding of the respective densitometer traces.
Black pressure trace is the intraluminal pressure (between the valves)
measured by a sharp servo-nulling pipette advanced through (and
sealed into) the wall. Modified from Davis et al. (2011).
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and mouse lymphangions FREQ increases with pressure
over the range 0–5 cmH2O, reaching a plateau at higher
pressures. AMP increases over 0–3 cmH2O and then
declines at higher pressures (Gashev et al. 2004; Scallan
et al. 2012b). Examples are shown in Fig. 3A. Like
the cardiac ventricles, lymphatic EDD increases in a
curvilinear fashion with pressure, reflecting the underlying
passive pressure–diameter relationship, in contrast to ESD,
which increases linearly with pressure (Fig. 3B). FPF peaks
at around 5 cmH2O, which is consistent with results from
isolated chains of lymphatic segments from larger species
(McHale & Roddie, 1976; Elias et al. 1990; Eisenhoffer et al.

1995; Li et al. 1998). The FREQ response to a change in
preload is also rate sensitive, as shown in Fig. 3C, where a
rapid pressure step evokes a burst of contractions followed
by a subsequent decline in FREQ; increasing preload at a
slower rate will eliminate the bursting (Davis et al. 2008a).

Afterload. The lymphatic pump must adapt to
elevated outflow pressures resulting from partial
outflow obstruction, increased central venous pressure
and/or gravitational shifts. Lymphangions in series can
propel lymph against higher pressures than individual
lymphangions (Jamalian et al. 2016), which is required in
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Figure 3. Effect of elevating preload independently of afterload on the contractile function of an ex
vivo mesenteric lymphangion from rat
A, Pin was elevated to various levels while Pout was held constant. Pipette resistances were purposely kept to
relatively high values to limit the inhibitory effect of forward flow produced by Pin > Pout gradient. Inset shows
diagram of pressure and diameter measurement sites. B, pressure–volume loop constructed from a portion of the
data in A, showing the curvilinear P–V relationship for EDD (dashed line) and linear P–V relationship for ESD. C,
time course of spontaneous contraction AMP and FREQ changes after a series of step elevations in Pin (Pout held
constant). After each step, AMP falls but then recovers (or gets even larger) over the course of �1 min (arrow).
Also, a burst of high FREQ contractions occurs, with FREQ subsequently slowing slightly. D, P–V plot of some of
the data in C; blue traces represent data from 3 contraction cycles prior to the Pin steps (corresponding to time
indicated by blue dot in C), black and gold traces represent single contraction cycles corresponding to the black
and gold dots in C, immediately after the pressure step (black dots in C) or �1 min later (gold dots in C). The shift
in the end-systolic P–V relationship (ESPVR) with time after Pin elevation, with unchanged end-diastolic (ED)PVR
reflects an increase in contractility. Modified from Scallan et al. (2012b).
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dependent extremities where outflow pressures can reach
relatively high levels (Olszewski, 2002). An elevation in
lymphatic outflow pressure is analogous to an elevation in
aortic pressure for the ventricular pump, as it increases the
load against which the pump must eject. For rat mesenteric
vessels studied ex vivo, the limit against which a single
lymphangion pumped was determined by slowly raising
Pout in ramp-wise fashion while monitoring the opening of
the output valve in systole (Davis et al. 2012). On average
the Pout level before reaching pump failure, denoted by
cessation of valve opening with each contraction cycle,
was �11 cmH2O higher than Pin, with considerable
variation between lymphangions (range 2–18). Given that
the inter-valve distance is only �1 mm and the difference
in pressures between lymphangions is only 1–2 cmH2O
in vivo (Zweifach & Prather, 1975), there is seemingly a
large margin of safety built into the system.

Contraction frequency. In the heart, cardiac output =
stroke volume × heart rate. The analogous expression for
the lymphatic pump is FPF = EF × FREQ. The contraction
FREQ of collecting lymphatics is exquisitely sensitive to
pressure, and changes as small as 0.5 cmH2O can double
FREQ (Scallan et al. 2012b). In some cases FREQ increases
10-fold over the pressure range 0–5 cmH2O. Striking
examples of this response can be observed in Fig. 3C at
time = 132 and 142 min. As in the heart, high FREQ can
limit filling (West, 1991) and thus have a negative effect
on AMP. This effect is illustrated in Fig. 4B at time =
391 min, where an extended pause between contractions
allows EDD to increase to a higher value.

Contractility. ‘Contractility’ is often used in a broad sense
in the lymphatic literature to describe the enhancement
of AMP or FREQ in response to a pressure increase or
agonist activation (McHale et al. 1980; Benoit et al. 1989;
Gashev et al. 2002; Muthuchamy & Zawieja, 2008; von
der Weid et al. 2008a). In contrast, the term ‘contractility’,
and the related term, ‘positive inotropy’, have very specific
definitions in the cardiac literature. Positive inotropic
agents produce an increase in cardiac muscle contra-
ctility: an increase in the strength and velocity of force
development at constant preload. Likewise, an increase in
aortic pressure (afterload) leads to an intrinsic increase
in contractility, which is also called the ANREP effect
(Sarnoff et al. 1960; West, 1991). A similar phenomenon
can be observed in isolated lymphangions in response to
elevated outflow pressure. Ramp-wise elevation in Pout

is associated with a constriction on the upstream side of
the valve and a gradual decline in AMP; however, when
Pout is returned to control, unusually large amplitude
contractions are observed for a limited period of time
(see Fig. 8 in Davis et al. (2012). Likewise, a step-wise
increase in Pout produces an initial reduction in ESD that
gradually recovers over the course of a few minutes (Fig.
4B) and, if the pressure–diameter relationship is plotted
(with diameter converted to volume), the line describing
the end-systolic volume (ESV) vs. pressure relationship
shifts gradually, increasing its slope over time; the slope
increase is indicative of an increase in contractility (Fig.
4C). Interestingly, unlike in the heart, step increases
in preload can also transiently increase contractility in
ex vivo lymphangions (Fig. 3D). The mechanistic bases of

1

A B C

V
a

lv
e

P
o

s
it
io

n

D
ia

m
e

te
r

(μ
m

)

D
ia

m
e

te
r

(μ
m

)

P
re

s
s
u

re

(c
m

H
2
O

)

S
e

rv
o

n
u

ll 
P

re
s
s
u

re

(c
m

H
2
O

)

P
L
 (

c
m

H
2
O

)

1

P
L

12

4.5

4.0

3.5

3.0

Time (min)

ESV late ESV early

10

12

8

8

6

4

2

2 4 6 8 10

Volume (nl)

0

0

4

0

2° ESD change
120

100

80

60

40

20

0
390 392

Time (min)

0

0

8

6

4

2

0

200

12-2-10 t136.7.txt 1-5-2009-10-24 AM.txt

150

100

50

0
137.0 137.5 138.0 138.5 139.0 139.5 140.0

Time (min)

12

Pout

Pin

10

Figure 4. Effect of elevating afterload in an ex vivo mesenteric lymphangion from rat
A, ramp-wise elevation in Pout (with Pin held constant) leads to a progressive increase in the peak systolic pressure
developed in the lumen (PL, black trace). Note also a modest, progressive constriction on the input side of the
valve during the pressure ramp. Opening of the output valve (top red trace) is indicative of ejection during systole,
until Pout reaches �6.2 cmH2O, at which point the pump limits (fails). B, response to a step increase in Pout.
Contraction AMP declines initially but then partially recovers over the next �1 min. C, P–V plot of the data in B
showing time-dependent leftward shift in the curves after a Pout step (data in B represent the top set of curves).
See diagram in Fig. 2 for explanation of pressure, diameter and valve position measurements. ESV, end-systolic
volume. Modified from Davis et al. (2012).
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these responses are not known but may involve changes in
calcium sensitivity, as shown for cardiac muscle (Solaro,
2011).

At least four additional factors have a significant impact
on lymphatic pumping. Each of these is addressed in the
following sections.

Neural modulation. While not required for lymphatic
contractions per se, the effects of neural signalling
molecules appear to be keenly involved in regulating
lymphatic contractions. However, direct observations of
lymphatic innervation and the mechanisms regulating
this process are under-studied, with much of our current
understanding stemming largely from experiments
performed in the 1980s and 90s in vessels from different
regions and species. A comprehensive discussion of this
topic merits its own review (Zawieja et al. 2011).

Sympathetic adrenergic nerve fibres appear to be the
dominant neural innervation of the lymphatic vasculature
(Todd & Bernard, 1973; Alessandrini et al. 1981;
McHale, 1990; Hollywood & McHale, 1994). α-Adrenergic
stimulation of contractile lymphatic vessels consistently
increases tone, AMP and FREQ (McHale, 1990), and these
effects are countered by β-adrenergic receptor activation
(von der Weid, 1998). Muscarinic receptors on LMCs
also promote an increase in FREQ; however, this action
of a muscarinic receptor agonist is usually masked by
a dominant, inhibitory effect of NO as a consequence
of endothelial nitric oxide synthase (eNOS) activation in
lymphatic endothelial cells (Ohhashi & Takahashi, 1991;
Scallan & Davis, 2013). Interestingly, serotonin (5-HT) can
either inhibit or increase spontaneous lymphatic contra-
ctions depending on the species and the specific pattern
of serotonin receptor expression (Miyahara et al. 1994;
McHale et al. 2000; Chan & von der Weid, 2003). The
inhibitory effects on contraction by both serotonin and
vasoactive intestinal peptide (VIP) appear to be mediated
through cAMP/cGMP and downstream activation of KATP

channels (Ohhashi et al. 1983; Chan & von der Weid,
2003; von der Weid et al. 2012). Calcitonin gene related
peptide also produces inhibitory effects on lymphatic
contractions through signalling mechanisms in both
LEC and LMC layers that appear to be mediated by
the cAMP-KATP axis (Hosaka et al. 2006). The neuro-
transmitter substance P (SP), commonly associated with
afferent nerve endings, also has profound effects on
lymphatic function, promoting extensive tone generation
and increased FREQ (Amerini et al. 2004; Davis et al.
2008b), although this enhancement comes at the expense
of reduced AMP. Direct evidence for SP+ and VIP+
peptidergic innervation has been demonstrated in guinea
pig (Guarna et al. 1991) and bovine (Ohhashi et al.
1983) mesenteric collecting lymphatics, but further work
is required to determine if those findings are representative
of other species and tissue beds. The human thoracic duct

has both sympathetic and parasympathetic innervation
(Mignini et al. 2012) that appears to decrease with ageing.
This innervation is functional because the fibres can be
activated via electrical field stimulation and affect contrac-
tions in isolated human thoracic ducts (Telinius et al.
2014a), similar to previous results in sheep lymphatics
(Hollywood & McHale, 1994).

Contraction synchrony. The LMC layer of a lymphangion
must contract in a coordinated, nearly synchronized
manner to generate a systolic pressure pulse that can open
the outflow valve and eject lymph; synchronization may
be even more critical as outflow pressure is elevated. After
lymphatic contractions are triggered by an AP in one of
the LMCs, the AP propagates rapidly from cell to cell
(at �8 mm s−1), and in either direction, over the length
of the lymphangion (McHale & Meharg, 1992; Zawieja
et al. 1993; Venugopal et al. 2007). Synchronized contrac-
tions require electrical coupling between the LMCs,
presumably through connexins that form intercellular
gap junctions. Although electrical coupling between LM
cells has been documented (von der Weid et al. 1996;
Crowe et al. 1997), the connexin isoform(s) in the
LMC layer have yet to be identified. In mesenteric
lymphatic vessel segments studied either ex vivo or
in vivo, the application of gap-junction blockers (e.g.
n-heptanol, oleic acid) leads to uncoordinated contra-
ctions of different parts of a lymphatic chain (McHale
& Meharg, 1992; Zawieja et al. 1993). However, the
particular gap junction blockers used in early studies were
notoriously non-specific; in the future, targeted deletion
of specific connexin isoforms using gene knockout models
will probably clarify the specific gap junctions involved
in coordinating contractions of the lymphatic muscle
layer.

In blood vessels, signals for vasodilatation are conducted
primarily along the endothelium because endothelial
cells (ECs) are well-coupled electrically, particularly by
connexin (Cx) 40 (Cx40) (Simon & McWhorter, 2002;
de Wit et al. 2003; Wagner et al. 2007). A focal hyper-
polarization induces a hyperpolarization wave that spreads
upstream rapidly along the EC and across the internal
elastic lamina to the VSM cell layer, which is coupled
through connexins in EC projections (myoendothelial
gap junctions, MEGJs) to VSM cells (Emerson & Segal,
2000; Sandow et al. 2012). In contrast, LECs express Cx37,
Cx47 and Cx43 but not Cx40 (Simon & McWhorter, 2002;
Kanady et al. 2011). Presumably, hyperpolarizing current
can spread along the LEC layer in the same manner as in
blood vessel endothelium, but that has not been tested;
neither is the functional benefit of conducted hyper-
polarization in a collecting lymphatic vessel obvious. Inter-
estingly, Cx43 and Cx47 mutations are associated with the
development of human lymphoedema for reasons that
could be related to contraction wave dyssynchrony, valve
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development and/or valve maturation (Ferrell et al. 2010;
Finegold et al. 2012).

An important difference between arterioles and
lymphatics is the very limited degree of electrical coupling
between LECs and LMCs (von der Weid et al. 1996;
Crowe et al. 1997). We have confirmed that LMCs of pres-
surized rat lymphatic vessels have a resting membrane
potential around −40 mV and fire spontaneous APs, while
LECs have a stable resting potential around −70 mV
(von der Weid & Van Helden, 1997) that does not
oscillate during contractions of the overlying muscle layer
(J. P. Scallan, M. J. Davis & S. D. Zawieja, unpublished
observations). A possible advantage of this arrangement is
that weak electrical coupling between LECs and LMCs may
promote more efficient spread of the AP along the LMC
layer if less electrical signal is shunted to LECs, which,
collectively, would act as an electrical sink.

Valve function. Collecting lymphatics contain bicuspid
valves (Figs 1 and 2) whose leaflets extend from a
ring-shaped base and insert as two buttresses into the
vessel wall (Schmid-Schönbein, 1990; Bazigou et al. 2014).
The valve opening is a tapered funnel (Fig. 4 in Davis et al.
2011 and Movie S3 in the online Supporting information).
Downstream from the valve is an enlarged sinus that
facilitates valve opening and partially balances the high
resistance of the narrow orifice created by the valve
leaflets (Bazigou & Makinen, 2013; Wilson et al. 2015).
Valves are spaced at semi-regular intervals and the factors
that control their spacing are not known (Kanady et al.
2011), but may involve Notch1 (Murtomaki et al. 2014)
and semiphorin3A/neuropilin-1/plexinA1 (Bouvree et al.
2012; Jurisic et al. 2012). Valves begin developing at
embryonic day (E)15–E16 in the mouse and mature post-
natally under a genetic programme that includes the
transcription factors GATA2, PROX1 and FOXC2 (Petrova
et al. 2004; Bazigou & Makinen, 2013; Bazigou et al.
2014; Sabine & Petrova, 2014; Kazenwadel et al. 2015;
Sweet et al. 2015). Fluid shear stress is a key regulator of
valve development (Sabine et al. 2012, 2015; Sweet et al.
2015) and mature valves exhibit a differential distribution
of connexins, eNOS and other proteins across the valve
(Petrova et al. 2004; Bohlen et al. 2011; Sabine & Petrova,
2014; Sabine et al. 2015). Many of the same factors
regulate the development of the lymphovenous valves
(Srinivasan & Oliver, 2011; Geng et al. 2016), which
form earlier (E12) and whose integrity is critical for pre-
venting backflow of blood into the central lymphatic ducts
and thus maintaining separation between the lymphatic
and blood circulations (Hess et al. 2014; Sweet et al.
2015).

The ultrastructure of lymphatic valves was described
extensively in the 1970s–1980s (Lauweryns, 1971; Vajda
& Tomcsik, 1971; Gnepp & Green, 1980; Albertine et al.
1982), yet no functional studies were published until

recently. We developed tests of isolated valves for rat
(Davis et al. 2011) and mouse vessels (Sabine et al.
2015) in which ex vivo segments contain a single valve
to enable pressure control through cannulation pipettes
on either side. A servo-nulling pipette, inserted through
the wall on the input side and positioned upstream
from the valve leaflets, allows measurement of small,
local pressure changes upstream from the valve (Fig. 5).
With this protocol the adverse pressure gradient (�P)
required to close the valve can be determined with high
precision. The first surprising observation is that the
valves have an open bias, meaning they are predisposed
to be open when the trans-valve pressure gradient is
zero. Although this property may seem inefficient from
a conceptual viewpoint (permitting reflux at certain times
in the contraction cycle), it results in lower resistance
to forward flow under conditions of little or no adverse
pressure gradient. A second surprising observation is that
the �P for valve closure is substantially dependent on the
vessel diameter. At low diameters (associated with systole
or a high level of basal tone), adverse pressures as small as
0.1–0.3 cmH2O are sufficient to close the valve; however,
as vessel diameter approaches its maximum (as it does
when the vessel is distended in chronic lymphoedema;
Olszewski, 2002), pressures of several cmH2O are required.
One caveat of the valve closure measurement is that the
resistances of the small micropipettes used to cannulate
rodent vessels can lead to an overestimation of the �P
for valve closure when substantial flow occurs. During the
normal lymphangion pump cycle, the diameter at the end
of systole/early diastole reduces to a value that will facilitate
valve closure if there is even a slight (<0.3 cmH2O) adverse
pressure gradient. This implies that the valve may not
close properly in lymphangions that are dilated and/or
unable to generate a systolic pressure greater than that
in the adjacent lymphangion downstream. The simple
observation of reflux occurring in a collecting lymphatic
network in vivo (Brice et al. 2002; Kriederman et al. 2003;
Normen et al. 2009), when pressures are unknown, does
not provide incontrovertible evidence of an abnormal
valve. Even modest valve defects can have enormous effects
on the relationship between �P for closure and vessel
diameter (Sabine et al. 2015), as discussed below.

Barrier function. It is now appreciated that filtration
disequilibrium exists across blood capillaries in skin,
muscle and other tissues, where the combined hydro-
static and oncotic pressure gradient favours net filtration
of fluid into the tissues. The steady reabsorption of this
fluid by the venous circulation cannot occur in most
organs, necessitating a lymphatic vasculature that absorbs
and transports this fluid. Thus, the lymphatic vasculature
serves a vital, rather than accessory, role in preventing
tissue oedema (Levick & Michel, 2010). Lymphatic vessels
have widely been regarded as ‘impermeable’ to fluid and
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solute, which would suggest that these vessels must have
special junction adhesion proteins to constitute a very tight
barrier. However, detailed analyses of collecting lymphatic
endothelial junction proteins reveal no major differences
from those of blood vessels (Baluk et al. 2007). Recent
studies designed to directly quantify solute flux across the
vessel wall of intact lymphatic vessels in vivo (Scallan &
Huxley, 2010) and ex vivo (Scallan et al. 2015) demonstrate
that collecting lymphatics are not only permeable to
solute and fluid, but that their albumin permeability
is comparable to that of postcapillary venules; further,
lymphatic permeability is actively regulated because it
can be modified by several signalling pathways, including
nitric oxide (Scallan et al. 2013, 2015).

Lymphatic capillaries are an order of magnitude more
permeable than collecting lymphatic vessels (Scallan &
Huxley, 2010), most likely due to their discontinuous
pattern of junctional adhesion proteins (Leak & Burke,
1968; Baluk et al. 2007), facilitating fluid and solute
absorption from the interstitium. Although permeable
collecting vessels may seem inefficient compared to

idealized vessels that would retain all fluid and solute,
the basal permeability leads to several interesting
consequences. For example, it has been hypothesized
that this extravasation allows antigen transported by
the collecting lymphatics to reach local immune cells
to mediate immune responses (Kuan et al. 2015).
The basal permeability may therefore serve as the
means of communication between lymph contents and
regulation of vessel contraction through the recruitment
and activation of immune cells. Activation of these
immune cells may then lead to the production of nitric
oxide through inducible nitric oxide synthase (iNOS)
or other vasoactive molecules, which would inhibit
lymphatic contractions and reduce lymph flow. Another
consequence of having permeable collecting lymphatics is
that lipids carried by these vessels will be distributed to
the tissues, which may help explain why there is always
adipose tissue located adjacent to collecting lymphatics
and lymph nodes (Harvey, 2008). Indeed, this supports the
finding that mice heterozygous for the lymphatic identity
transcription factor, Prox1, develop late onset obesity as
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a result of pathological lymphatic leakage (Harvey et al.
2005).

Lymphatic pump dysfunction
in pathological states

Lymphoedema can result from inherited (primary) or
acquired (secondary) defects of the lymphatic system.
Mutations in a number of genes including PROX1, GATA2,
FOXC2 and VEGFR3/FLT4 lead to malformations in
lymphatic vessels and/or valves, resulting in primary
lymphoedema in humans (Brice et al. 2005; Ferrell et al.
2010; Mellor et al. 2011; Finegold et al. 2012; Sabine &
Petrova, 2014). However, the majority of lymphoedema
cases in developed countries occur secondary to other
pathologies, for example breast cancer radiation/surgery
(Szuba et al. 2003), where 30–50% of breast cancer
survivors undergoing axillary node dissection ultimately
suffer from lymphoedema (Rockson, 1998; Armer, 2005).
Lymphatic pump dysfunction in this context could
result from a number of factors, including contrac-
tile dysfunction, abnormal lymphangiogenesis, barrier
dysfunction and valve defects. Each is discussed in the
next section.

Contractile dysfunction

Contractile dysfunction is a common theme among several
pathologies that involve the lymphatic system. Pioneering
studies of human patients with chronic lymphoedema
provide evidence of lymphatic contractile dysfunction.
Olszewski and colleagues cannulated collecting lymphatic
vessels in the dependent extremities of such patients
and recorded pressures, either end-on or side-on, when
the limbs were placed in various positions (Olszewski
et al. 1968; Olszewski, 2002). Vessels in patients with
lymphoedema were enlarged, exhibited weak contra-
ctions and elevated lymphatic diastolic pressures with the
limbs in a dependent position. More recently, another
group studying lymphatic transport in humans with
breast cancer lymphoedema using lymphoscintigraphy
has demonstrated that a component of the lymphatic
dysfunction observed in these patients is lymphatic pump
failure (Modi et al. 2007). That group is now employing
genetic screening of human patients presenting with
various forms of lymphoedema to identify new genetic
mutations (Fotiou et al. 2015), some of which may regulate
lymphatic contractile function.

Whether lymphatic pump dysfunction precedes the
development of lymphoedema, or lymphoedema over-
loads the capacity of the lymphatics to precipitate contrac-
tile dysfunction, is difficult to determine. This question
is particularly challenging in humans as patients are
not seen in the clinic until lymphoedema is already
established. Animal models of lymphoedema can, in

principle, be used to distinguish between cause and effect,
but the severity of lymphoedema produced in rodent
models is usually quite limited (Shin et al. 2003). More
recent rodent models (Mendez et al. 2012a,b) consistently
produce lymphoedema, and those models might be useful
particularly if combined with newly developed imaging
approaches to assess lymphatic contractile function in
vivo (Liao et al. 2011; Proulx et al. 2013; Kwon et al.
2014). Likewise, ex vivo methods for quantifying murine
lymphatic contractile function (Scallan & Davis, 2013)
could be used in conjunction with non-invasive, in vivo
imaging techniques to assess collecting lymphatic contra-
ctile function at various time points during and after the
development of lymphoedema (Dongaonkar et al. 2013).

Inflammation. Lymphatic contractile dysfunction is often
contingent with tissue inflammation, and post-surgical
infection is a significant risk factor for developing
secondary lymphoedema. Histological changes in
lymphatic capillary size and density are widely assessed
in both human disease states, yet experimental animal
models often fail to address the pump function of
the collecting vessels. The lymphatic expansion seen
in disease states may actually suggest a deficit in
lymphatic pumping, resulting in an activation of a
compensatory lymphangiogenesis that nevertheless fails to
resolve the pumping insufficiency (Tammela et al. 2007).
Inflammatory modulation of lymphatic pump function
was first described in the 1980s as a consequence of endo-
toxin infusion in sheep (Elias et al. 1987), where the actions
of prostaglandins (Johnston et al. 1983; Ohhashi & Azuma,
1984) were hypothesized to contribute to the oedema
observed in sepsis. The formation of reactive oxygen
species (ROS), a hallmark of inflammation, also negatively
influences lymphatic contractions (Zawieja et al. 1991)
and ROS production as a result of fluorescent dye
excitation for prolonged periods during in vivo imaging
sessions could become a significant confounding variable
when assessing lymphatic contractile function.

Current research on lymphatic contractile dysfunction
in inflammation has focused heavily on the production of
NO by regional iNOS positive immune cells (Liao et al.
2011). Recent studies have demonstrated the significant
investiture of immune cells, primarily myeloid-derived
cells, in the adventitia of lymphatic collecting vessels,
and their presence appears to be dynamically regulated
in disease states and associated with adverse lymphatic
function (Cromer et al. 2015; Chakraborty et al. 2015b).
Even after removal from the tissue, a typical collecting
lymphatic vessel still retains significant populations of
immune cells (neutrophils, macrophages, monocytes,
dendritic cells, mast cells) that reside on and within the
wall, and can modulate contraction (Chatterjee & Gashev,
2012, 2014; Chakraborty et al. 2015b). As described above,
NO is a potent inhibitor of lymphatic contractions and is
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produced in abundance by iNOS-positive murine myeloid
cells such as monocytes, macrophages and dendritic cells.
Interleukin (IL)-1β increases iNOS expression in cultured
LECs (Cromer et al. 2014) and impairs lymphatic pump
function through PGE2 production (Johnston et al. 1983;
Hanley et al. 1989; Al-Kofahi et al. 2015). However, iNOS
expression and NO production can vary between different
mouse strains and this must be taken into consideration
when using in vivo models to assess the consequences of
inflammation and lymphatic pumping. Furthermore, the
lack of iNOS expression or significant NO production by
human macrophages (Schneemann et al. 1993; Gross et al.
2014) in response to classical inflammatory agents raises
critical questions concerning the translation of lymphatic
dysfunction in rodent inflammatory models to human
disease.

Lymphatic dysfunction is also present in lymphatic
networks of the ear in the apolipoprotein E knockout
(ApoE−/−) mouse model of hypercholesterolaemia (Lim
et al. 2009). Dysfunction results in part from profound
structural abnormalities in the lymphatic vasculature:
initial lymphatic vessels are enlarged and collecting vessels
assume an immature phenotype, with greatly decreased
smooth muscle cell coverage, impaired valve formation or
maintenance, and upregulation of the lymphatic capillary
marker, Lyve1. It has yet to be demonstrated whether loss
of mural cell coverage occurs in tissue beds outside of
the ear, but if so, impairment of contractile function and
lymph transport would certainly be expected.

Rheumatoid arthritis is a chronic inflammatory joint
disease. In tumour necrosis factor (TNF)α-overexpressing
mice, the popliteal lymph node enlarges during
the pre-arthritic ‘expanding’ phase, and subsequently
‘collapses’. The collapsed phase is associated with the loss of
the intrinsic lymphatic pulse in vivo (which may represent
pumping strength, contraction frequency, or both) as
assessed using a pressurized occluding cuff in conjunction
with near infrared fluorescence (NIRF) imaging (Bouta
et al. 2014). Consistent with contractile dysfunction, the
pumping pressure of popliteal afferent lymphatics in those
mice was found to be significantly elevated compared to
the pumping pressure in wild-type (WT) control mice
in the expanding phase; however, pressure decreased
below that of WT vessels in the collapsed phase. Inter-
estingly, lymph node pressure followed the inverse pattern.
Altogether, these changes result in a severely compromised
lymph flow associated with collapsed lymph nodes in this
mouse model.

Crohn’s disease and inflammatory bowel disease
(IBD). The earliest descriptions of Crohn’s disease
or ‘regional ileitis’ by prominent clinical pathologists
involved observations of lymphangectasia, oedema
and lymphatic-associated granulomas. The regional
heterogeneity of the disease was suggested to be due

to obstruction or failure of the lymphatics draining
that region; however, the majority of current IBD
research fails to account for an underlying component
of lymphatic dysfunction (Van Kruiningen & Colombel,
2008). Artificial sclerosing or damage of the mesenteric
collecting lymphatic vessels is able to recapitulate many
of the phenotypes of Crohn’s disease (Kalima, 1970)
and chemically induced rodent models of IBD exhibit
lymphatic contractile dysfunction. Guinea pig mesenteric
vessels isolated from a 2,4,6-trinitrobenzenesulfonic acid
(TNBS)-induced model of ileitis exhibit a dramatic
loss of spontaneous contractions and enlarged collecting
vessels (Wu et al. 2006), both of which are linked to
NO-dependent activation of KATP channels (Mathias
& von der Weid, 2013). Mesenteric vessels from
rats with TNBS-induced colitis also show impaired
lymphatic contraction regulation despite being isolated
from the ileum and remote from the active site of
TNBS administration (Cromer et al. 2015). While IBD
studies in mice replicate the increased lymphatic density
and remodelling observed in human disease, there are
currently no data available on mouse lymphatic contractile
function in this disease (Alexander et al. 2010; Ganta et al.
2010; Rahier et al. 2011). This is in part due to the lack of
propulsive lymphatic contractions of murine mesenteric
collecting lymphatics, which raises important questions
regarding the role of lymphatic contractile dysfunction
in the pathology of these diseases in the mouse and the
usefulness of that species to replicate this particular aspect
of human pathology.

Obesity and metabolic syndrome. Despite being a
historical risk factor for the development of post-surgical
lymphoedema in cancer patient survivors (Ahmed et al.
2011), we know relatively little about the effects of
obesity on lymphatic function (Chakraborty et al. 2010;
Mehrara & Greene, 2014). Clinical data continue to
accumulate, linking obesity to lymphatic dysfunction
with the emergence of massive localized lymphoedema
in the morbidly obese population, which appears to
be functionally, but not structurally, related to the
obesity (Vasileiou et al. 2011). As mentioned above,
mice heterozygous for the lymphatic transcription
factor Prox1 consistently develop adult onset obesity
(Harvey et al. 2005; Sabine et al. 2015). While
functional characterization of the lymphatic pump has
not been performed in Prox1+/− mice, those mice
display significant structural abnormalities. However,
an obese phenotype has not been observed in other
models of disrupted lymphatic development (Harvey
et al. 2005). In humans, massive localized lymphoedema
appears to be largely predicated on body mass index,
although obese patients probably also fall under the
spectrum of the metabolic syndrome, an amalgamation
of metabolic impairments that are largely driven by
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obesity (Grundy, 2004). Mesenteric lymphatic vessels iso-
lated from a high-fructose-fed, non-obese rat model of
metabolic syndrome were shown to have a significant
reduction in lymphatic pumping as a consequence of
reduced contraction frequency (Zawieja et al. 2012).
The high-fructose fed Sprague–Dawley rat does not gain
weight and adiposity changes are controversial, despite
consistent presentation with elevated serum insulin,
glucose, cholesterol and triglycerides (Oron-Herman et al.
2008). However, a diet-induced obesity mouse model
recapitulates the impaired pressure–FREQ response of
lymphatic collecting vessels observed in vivo using NIRF
imaging (Blum et al. 2014), and interstitial flow and
lymphatic capillary recruitment may be impaired in the
tissue remodelling associated with the disease (Weitman
et al. 2013). The primary defect in contractile function
in both of these cases appears to be a reduction in
FREQ. This effect is similar to the lymphatic dysfunction
observed in aged rats, which also display a reduced
FREQ (Akl et al. 2011) associated with increased ROS
production in the vessel wall (Thangaswamy et al. 2012).
These observations may point to a common underlying
mechanism of dysfunction under conditions of obesity or
metabolic stress, perhaps suggesting a role for a metabolic
sensor such as the KATP channel.

Fibrosis and chronic inflammation. A clinical hallmark
in lymphoedema patients is a predisposition for, and
the presence of, elevated extracellular matrix deposition
and fibrosis (Rockson, 2013). Unsurprisingly, fibrosis
is a significant factor in the aetiology of both human
obesity (Henegar et al. 2008; Divoux et al. 2010) and
Crohn’s disease (Lockhart-Mummery & Morson, 1960),
where fibrosis may contribute to the inhibition of fluid
return and lymphatic function in those disease states.
Fibrosis is often the result of chronic inflammation and
typically is associated with the activation of the Th2
inflammatory paradigm and the production of IL-6, IL-13,
IL-4 and transforming growth factor (TGF)β. These cyto-
kines have profound influences on altered macrophage
accumulation and polarization (Mosser & Edwards,
2008; Ghanta et al. 2015), fibroblast activation and
muscle cell dedifferentiation into a secretory phenotype.
Recent studies that have attempted to delineate the
role of fibrosis in lymphoedema have relied heavily
on gross observations using the mouse tail model and
oxazolone-induced swelling in the rat axillary lymph
node dissection model. The resolution of lymphoedema
in the mouse tail model depends on the ability of the
wound to fill in and for superficial lymphatic vessels
to reform connections. This process is accelerated by
the application of vascular endothelial growth factor C
(VEGF-C), which promotes lymphangiogenesis (Yoon
et al. 2003; Rutkowski et al. 2006), or the blockade of IL-4
and TGFβ, which otherwise inhibit lymphangiogenesis

(Clavin et al. 2008; Avraham et al. 2010, 2013). Similar
patterns emerge in experiments using the rat axillary node
oxazolone/dissection model, suggesting that fibrosis plays
an important role in inflammation-induced swelling in
that preparation (Lynch et al. 2015).

These studies highlight the negative impact of fibrosis
on lymphatic function and raise important questions for
further research. What are the effects of Th2 cytokines on
the lymphatic pump function and/or contractile activity
of the remaining lymphatic vessels in these models?
Is the LMC phenotype and/or contractile function
impaired due to the exposure to these cytokines or vessel
wall remodelling? To what extent do fibrosis-associated
changes in the adventitia/matrix covering the collecting
lymphatic vessels alter their function? As previously
discussed, both initial and collecting lymphatic vessels
are populated by multiple types of immune cells, and the
influence of those cells and the cytokines they produce on
LECs and LMCs are areas of active research.

Lymphatic network
development/maturation/disruption

Defects in lymphangiogenesis occur in numerous
mouse models deficient in genes responsible for
lymphatic development, maturation, or valve formation/
maintenance. Several of these models are characterized
by a lack, or augmented recruitment, of smooth muscle
cells to lymphatic capillaries or collecting lymphatic
vessels. Aberrant LMC recruitment has been reported
in mice deficient for the genes Foxc2 (Petrova et al.
2004), Reln (Lutter et al. 2012), Angpt2 (Makinen et al.
2005; Dellinger et al. 2008) and Akt1 (Zhou et al.
2010). Additionally, platelet-specific deletion of Clec2
disrupts lymph flow, which indirectly leads to enhanced
smooth muscle cell (SMC) recruitment to collecting
lymphatic vessels and the thoracic duct (Sweet et al.
2015). Whether enhanced SMC recruitment or decreased
SMC investiture would lead to augmented or inhibited
contractile function, respectively, has yet to be directly
explored.

Lymphatic vessel dilatation and network hyperplasia
have also been observed in some of these and other
models (Lapinski et al. 2012; Sevick-Muraca & King, 2014)
and might be predicted to have a negative impact on
lymphatic pump function; however, that idea has yet to
be tested. Additionally, as lymph is propelled against an
adverse pressure gradient, failure of the lymphovenous
valve(s) and/or collecting lymphatic valves may lead to
elevation of intralymphatic pressures that the lymph pump
system may be unable to overcome; this could result in
regurgitation and lymph stasis in the initial lymphatic
network. Prolonged exposure to elevated pressure could
lead to proliferation, remodelling and contractile muscle
phenotype loss. A combination of in vivo imaging
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techniques and intra-lymphatic pressure recordings
in intact animals will ultimately help answer these
questions.

Barrier dysfunction

Collecting lymphatic permeability is regulated and
maintained at a low level (�2 × 10−7 cm s−1), but
in certain disease states the barrier properties change
and filtration has been shown to increase dramatically.
In mouse mesenteric lymphatics studied ex vivo,
comparisons of WT and eNOS−/− vessels suggest that
basal nitric oxide (NO) production increases lymphatic
permeability. Exogenous NO donors increase lymphatic
permeability further, while inhibitors of NO synthase
decrease basal lymphatic permeability. Histamine, which
elicits endogenous NO production, exerts a similar effect
on lymphatic permeability (Scallan et al. 2015). Diabetic
mice deficient in the leptin receptor exhibit a >100-fold
increase in lymphatic permeability. Unexpectedly, this
barrier dysfunction is rescued by exposing the vessels to
L-arginine to augment NO production, indicating that
severely impaired, as well as elevated, NO production
can both lead to disrupted lymphatic barrier function.
A plausible explanation for this result is that cAMP, which
stabilizes and lowers permeability, may be reduced in LECs
of diabetic animals because it is normally degraded by
the enzyme phosphodiesterase 3, which is overactive in
those animals due to impaired NO production. Thus,
treating the diabetic lymphatic vessels with a chemical
inhibitor specific for phosphodiesterase 3 rescues the
barrier dysfunction in leptin receptor knockout (db/db)
vessels in mice (Scallan et al. 2015).

Two other metabolic diseases in which lymphatic barrier
function has been shown to be compromised are obesity,
as discussed above, and hypercholesterolaemia. Injection
of Evans Blue dye into the ears of ApoE−/− mice reveals
gross leakage of dye out of the lymphatic vessels of the
ear (Lim et al. 2009). This defect is not due to the
loss of the ApoE gene itself, since it can be rescued by
pharmacological block of cholesterol absorption from
the gut (Lim et al. 2013). Whether lymphatic leakage
occurs in other organs during hypercholesterolaemia,
and the mechanisms behind the leakage, remain to be
elucidated. In atherosclerotic ApoE−/− mice, the lymphatic
vasculature is required for reverse cholesterol transport
even from the aortic wall. Without a functional lymphatic
network near the aorta, labelled cholesterol was retained
within the aortic plaques, presumably due to a defect in
macrophage egress (Martel et al. 2013).

Valve dysfunction

Normal lymphatic pumping requires adequate contractile
strength and synchrony of lymphatic muscle as well as

proper valve function. If a lymphangion is undergoing
robust, large amplitude contractions, but either valve
has abnormal reflux, or is completely incompetent, then
forward lymph propulsion will be compromised. When
lymphatic output is calculated from the product of EF
and FREQ (i.e. FPF), as it is in rodent vessels (Gashev
et al. 2002, 2004; Liao et al. 2011; Nagai et al. 2011), that
calculation assumes normally functioning valves; output
will be grossly overestimated if the valves are in any way
dysfunctional.

Defects in valve development underlie multiple types
of primary lymphoedema (Sabine et al. 2015). Mice
engineered with complete loss of Gata2 function develop
lymphoedema due to defective lymphovenous and
lymphatic valves (Kazenwadel et al. 2015). Deletion of
integrin α9, which with fibronectin lines the core of the
lymphatic valve leaflet, results in truncated leaflets and
retrograde flow from collectors to precollectors (Bazigou
et al. 2009). Likewise, loss of function mutations of
one allele of FOXC2 in humans result in lymphoedema
distichiasis, which is characterized by lymphoedema in
dependent extremities (Mellor et al. 2007). Foxc2+/−
mice lack about 50% of lymphatic (and venous) valves
and exhibit many of the same systemic defects (Petrova
et al. 2004). Inducible Foxc2 null (Foxc2lecKO) mice have
a more severe phenotype, dying within a few days if
induced shortly after birth, or at �5 months of age if
induced at 4 weeks, providing evidence that Foxc2 is
critical for lymphatic valve maintenance (Sabine et al.
2015). We recently applied some of the functional tests
described above to valves in Fox2lecKO mice. The valves
exhibited a 4- to 9-fold increase in pressure back-leak
compared to WT mice when outflow pressure was raised
(Sabine et al. 2015). Defects in the valve closure–diameter
relationship were also noted (M. J. Davis, unpublished
observations), which would predict that pump output
should be severely compromised even in the absence of
changes in lymphatic muscle contractile function. Other
than this example, pump function tests have not been
reported for any genetically altered mice with valve defects;
however, the application of such tests to newly developed
mouse models of human primary lymphoedema (Lapinski
et al. 2012; Kazenwadel et al. 2015; Geng et al. 2016)
will be important for assessing the mechanism and
severity of valve and/or pump dysfunction in those
models.

Conclusions

Lymphatic pump function is essential for normal lymph
transport, particularly in dependent extremities. Pump
function is determined by the intrinsic properties of
lymphatic muscle, which is regulated by lymphatic pre-
load, afterload, spontaneous contraction rate, contractility
and neural influences. In addition, normal pump function
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depends on a coordinated LMC contraction wave, and
proper LEC valve and barrier function. Each of these
parameters may be compromised to a different extent in
inherited and acquired forms of lymphoedema, as well as
in diseases that have a secondary component of lymphatic
dysfunction, including inflammatory diseases such as IBD,
Crohn’s disease, rheumatoid arthritis, obesity, diabetes
and metabolic syndrome. The tools for investigating the
roles of each factor are becoming available and can be
applied to the study of lymphatic vessels in genetically
modified mice, offering hope for the development of
therapeutic strategies to target lymphatic dysfunction in
humans, even in diseases that were previously unknown
to contain a lymphatic component.
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A, Burnard KG, Jeffery S, Levick JR & Mortimer PS (2011).
Mutations in FOXC2 in humans (lymphoedema distichiasis
syndrome) cause lymphatic dysfunction on dependency.
J Vasc Res 48, 397–407.

Mendez U, Brown EM, Ongstad EL, Slis JR & Goldman J
(2012a). Functional recovery of fluid drainage precedes
lymphangiogenesis in acute murine foreleg. Am J Physiol
Heart Circ Physiol 302, H2250–H2256.

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society



5766 J. P. Scallan and others J Physiol 594.20

Mendez U, Stroup EM, Lynch LL, Waller AB & Goldman J
(2012b). A chronic and latent lymphatic insufficiency
follows recovery from acute lymphedema in the rat foreleg.
Am J Physiol Heart Circ Physiol 303, H1107–H1113.

Mignini F, Sabbatini M, Coppola L & Cavallotti C (2012).
Analysis of nerve supply pattern in human lymphatic vessels
of young and old men. Lymphat Res Biol 10, 189–197.

Mislin H & Schipp R (1966). Structural and functional
relations of the lymph vessels. In Rüttiman A. (ed.), Progress
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