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An appropriate inflammatory response plays critical roles
in eliminating pathogens, whereas an excessive inflammatory
response can cause tissue damage. Runt-related transcription
factor 1 (RUNX1), a master regulator of hematopoiesis, plays
critical roles in T cells; however, its roles in Toll-like receptor 4
(TLR4)-mediated inflammation in macrophages are unclear.
Here, we demonstrated that upon TLR4 ligand stimulation by
lipopolysaccharide (LPS), macrophages reduced the expression
levels of RUNX1. Silencing of Runx1 attenuated the LPS-in-
duced IL-1� and IL-6 production levels, but the TNF-� levels
were not affected. Overexpression of RUNX1 promoted IL-1�
and IL-6 production in response to LPS stimulation. Moreover,
RUNX1 interacted with the NF-�B subunit p50, and coexpres-
sion of RUNX1 with p50 further enhanced the NF-�B luciferase
activity. Importantly, treatment with the RUNX1 inhibitor, Ro
5-3335, protected mice from LPS-induced endotoxic shock and
substantially reduced the IL-6 levels. These findings suggest that
RUNX1 may be a new potential target for resolving TLR4-asso-
ciated uncontrolled inflammation and preventing sepsis.

Toll-like receptor 4 (TLR4)4 signaling has critical roles in
regulating the inflammation response against pathogens, espe-
cially Gram-negative bacteria (1). However, excessive inflam-

mation can cause tissue damage, leading to sepsis and death.
Sepsis often occurs in patients with infection and is the leading
cause of death in hospitalized patients (2). It is accompanied by
overly exuberant inflammatory responses (3). Previous studies
have demonstrated that TLR4-deficient mice are resistant to
lipopolysaccharides (LPS)-induced septic shock (4), and other
surface receptors, including CD11b (5) and VEGFR-3 (6), also
regulate TLR4 signaling-associated sepsis. Currently, exploring
new effectors as potential targets to prevent sepsis are still
under extensive investigation. Macrophages play critical roles
in sepsis by regulating inflammation (7, 8). Macrophages can
recognize pathogens through Toll-like receptors and produce
various proinflammatory cytokines through transcription fac-
tor activation, such as nuclear factor �B (NF-�B) (9). The
NF-�B family consists of five members: p50/p105, p52/p100,
p65 (RelA), RelB, and c-Rel. They share an evolutionarily con-
served Rel homology region and can form heterodimers or
homodimers (10). The precursors of p50 subunit and p52 sub-
unit are p105 and p100, respectively (11). However, both p50
and p52 lack a transcription activation domain, and they may
inhibit transcription unless they interact with other NF-�B
family members or other transcription factors containing a
transcription activation domain (10). The p50-p65 het-
erodimer is the classical NF-�B family member (12).

The runx family, another group of key transcription factors,
is composed of RUNX1 (also known as acute myeloid leukemia
1 (AML1)), RUNX2, and RUNX3 (13). In humans, RUNX1 is
one of the genes most frequently altered by chromosome trans-
location and point mutations in acute myelogenous leukemia
(14). In addition to participating in the regulation of cell cycle
(15), proliferation (16), apoptosis (17), and ribosome biogenesis
(18), RUNX1 is functionally related to the immune system.
RUNX1 is critical in inducing the production of many genes in
immune cells, such as IL-2 (19), IL-3 (20), macrophage colony-
stimulating factor 1 receptor (CSF1R) (21), CSF2 (22), and CD4
(23). RUNX1 has been reported to be associated with autoim-
mune diseases, including rheumatoid arthritis (24) and sys-
temic lupus erythematosus in humans (25). Previous studies
suggest that RUNX1 mediates transactivation of Rorc to pro-
mote TH17 differentiation and interacts with ROR�t to induce
IL-17 production (26). Interestingly, RUNX1 is required for the
optimal expression of Foxp3 in natural regulatory T cells and
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also interacts physically with FOXP3 (27). Moreover, RUNX1
deficiency in CD4� T cells causes lethal lung inflammation (28).
Although a role for RUNX1 has been suggested in T cells, it
remains unclear about how RUNX1 regulates TLR4-mediated
inflammation in macrophages.

Previous studies reported that RUNX1 could promote
STAT3 activation and inhibit the expression of SOCS3/4 in
epithelial cancer (29). The SOCS family, especially SOCS3/4,
plays a negative regulatory role in TLR4-mediated inflamma-
tion (30). In this study, we asked whether RUNX1 played vital
roles in TLR4-mediated inflammation. We found that RUNX1
interacted with the NF-�B subunit p50 to enhance the produc-
tion of inflammatory cytokines in macrophages, such as IL-1�
and IL-6, and a RUNX1 inhibitor, Ro 5-3335, could protect
mice from LPS-induced shock. Our data identify RUNX1 as a
positive regulator in macrophage inflammatory responses via
the p50 pathway.

Results

Knockdown of Runx1 Expression Reduces the Production of
Proinflammatory Cytokines in LPS-stimulated Macrophages—
To explore the role of RUNX1 in macrophages, we first exam-
ined whether RUNX1 expression was regulated in response to
TLR4 agonist (LPS) stimulation at the mRNA and protein lev-
els. RUNX1 was expressed in the human monocytic cell line,
THP-1, mouse macrophage-like cell line, RAW264.7, and pri-
mary mouse peritoneal macrophages (PEMs) (Fig. 1, A–C). The
purity of CD11b� F4/80� PEMs was analyzed by FACS (sup-
plemental Fig. S1). In response to LPS stimulation, RUNX1
expression at the mRNA level was significantly reduced in all
these cells (Fig. 1, A–C, i.e. �6 h). We also detected a substantial
decrease of RUNX1 at the protein level in these cells following
LPS treatment (Fig. 1D, supplemental Fig. S2, A–B). To deter-
mine whether other stimuli affect the expression of Runx1 in
macrophages, macrophages were stimulated with IL-1�, IL-6,
or TNF-�. However, these cytokines did not modulate Runx1
mRNA and protein expression in PEMs (supplemental Fig. S3).
These results demonstrate that RUNX1 is constitutively
expressed in macrophages, and TLR4 activation decreases
RUNX1 levels in macrophages.

To study the role of RUNX1 in primary macrophages, we
used specific siRNA to knockdown Runx1 in PEMs. The mRNA
levels of Runx1 decreased by 70% in the siRunx1-transfected
PEMs compared with the negative controls (Fig. 1E). The
knockdown efficiency was also confirmed by Western blot
analysis (Fig. 1E). Next, we analyzed the effects of Runx1 silenc-
ing on the production of inflammatory cytokines in macro-
phages. In response to LPS, the siRunx1-transfected PEMs pro-
duced diminished inflammatory cytokine expression at the
mRNA level, including Il-1� and Il-6, but not Tnf-�, compared
with the controls (Fig. 1F). We also examined IL-6 concentra-
tions using an ELISA kit, and we confirmed that Runx1-si-
lenced PEMs produced lower IL-6 levels than control cells at
the indicated times (6, 12, and 24 h) (Fig. 1G). In addition to
Il-1� or Il-6, the mRNA levels of other LPS-dependent genes
including Il-12b, Csf2, and Ccl3 were also decreased in the
siRunx1-transfected PEMs (supplemental Fig. S4, A–C).

Regulation of IL-6 and IL-1� Production by RUNX1 Overex-
pression or Treatment with a RUNX1 Inhibitor—To further
confirm the effect of RUNX1 on TLR4-induced production of
proinflammatory cytokines, we overexpressed RUNX1 in RAW
264.7 cells. Upon LPS treatment, RAW 264.7 cells that overex-
pressed RUNX1 had profoundly enhanced Il-6 and Il-1�
expression levels, but not Tnf-�, compared with control cells
that overexpressed GFP (Fig. 2A). Additionally, RUNX1 over-
expression also induced RAW 264.7 cells to secrete more IL-6
into the supernatant, as detected by ELISA (Fig. 2B).

As the RUNX1 inhibitor, Ro 5-3335 has been previously well
described (31), we next examined whether it could inhibit
TLR4-triggered production of proinflammatory cytokines in
macrophages. As shown in Fig. 2, C–E, Ro 5-3335 substantially
blocked the expression of Il-6 at the mRNA and protein level in
THP-1 cells, RAW 264.7 cells, and PEMs. We also found that
Ro 5-3335 could inhibit the expression of Il-6 in PEMs stimu-
lated with the TLR2 agonist, PGN, but not the TLR3 agonist,
poly(I:C), or the TLR9 agonist, CpG (supplemental Fig. S5).
These findings indicate that RUNX1 might positively regulate
the TLR4 signaling pathway and proinflammatory cytokine
production in macrophages.

RUNX1 Synergizes with the NF-�B Subunits to Enhance
TLR4-triggered Inflammation—MAPKs and NF-�B signaling
have critical roles in the induction of inflammatory cytokine
production (32, 33). To reveal the function of RUNX1 in the
TLR4 signaling pathway, we first analyzed the phosphorylation
levels of MAPKs and NF-�B. Fig. 3, A–B, shows that Runx1
knockdown did not affect the ERK, JNK, p38, or p65 phosphor-
ylation levels in PEMs. Additionally, we did not detect I�B�
degradation differences between the Runx1-silenced and wild
type PEMs (Fig. 3B). Moreover, the RUNX1 inhibitor, Ro
5-3335, did not affect p65 phosphorylation levels or I�B� deg-
radation in PEMs (supplemental Fig. S6).

Because RUNX1 is predominantly located in the nucleus
(34), it is possible that RUNX1 might physically interact with or
cooperate with other transcription factors in the nuclei to reg-
ulate inflammation. In agreement with this speculation, we
observed that treatment with the NF-�B inhibitor, BAY
11-7082, strictly abrogated LPS-induced IL-6 and IL-1� pro-
duction in the GFP control or RUNX1-overexpressing macro-
phages (Fig. 3C). Next, we examined the effect of RUNX1 on
NF-�B activation using a dual-luciferase reporter assay.
Although RUNX1 expression alone did not induce activation of
the reporter gene in 293T cell, co-expression of RUNX1 and the
NF-�B family members, p105, p50, or p65, significantly
increased the NF-�B reporter activity compared with co-ex-
pression of the GFP control (Fig. 3D). The RUNX1 inhibitor, Ro
5-3335, partly reversed the synergized effect between RUNX1
and p50, p65, or p105 (Fig. 3E).

RUNX1 Interacts with the p50 Subunit of NF-�B—We next
investigated whether RUNX1 could interact with p105, p50, or
p65. 293T cells were transiently transfected with RUNX1
together with p105, p50, p65, or the GFP-myc vector control.
Cell lysates were immunoprecipitated with anti-p50/p105, p65,
or anti-Myc antibodies. We noticed that RUNX1 preferred to
be coprecipitated with p50, compared with the other NF-�B
family members including p105 and p65 (Fig. 4A). Immunopre-
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cipitation using an anti-RUNX1 antibody was also performed,
which indeed pulled down p50 (Fig. 4B). Next, we asked
whether RUNX1 interacted with the endogenous p50, and con-

firmed the endogenous interaction between RUNX1 and p50 in
THP-1 cells (Fig. 4C). The interaction between RUNX1 and p50
was not significantly changed by LPS treatment in RAW 264.7

FIGURE 1. Knockdown of Runx1 expression inhibits proinflammatory cytokine production in LPS-stimulated macrophages. THP-1 cells (A and D), RAW
264.7 cells (B), and PEMs (C) were stimulated with LPS at different doses for the indicated time points. The RUNX1 expression levels were detected by
immunoblotting or RT-qPCR. The data are shown as the mean � S.D. of a representative experiment. E–G, PEMs were transfected with Runx1 siRNA or
nonspecific siRNA using the Lipofectamine RNAiMAX for 48 h, and the knockdown efficiency was measured by RT-qPCR and immunoblotting (E). These PEMs
were then stimulated with 1 �g/ml of LPS for the indicated times. The Il-1�, Il-6, and Tnf-� mRNA levels were measured by RT-qPCR (F), and the supernatants
IL-6 levels were determined by ELISA (G). The data are shown as the mean � S.E. of three independent experiments. *, p � 0.05; **, p � 0.01; ***, p � 0.001.
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at early time points (30 or 60 min), which overexpressed
RUNX1 (Fig. 4D). These findings suggest that RUNX1 might
regulate TLR4 signaling and proinflammatory cytokine pro-
duction by binding to p50.

We further investigated whether RUNX1 could affect the
recruitment of p50 to the Il-6 promoter using a ChIP analy-
sis. Consistent with previous reports (35, 36), the levels of
p50 on the Il-6 promoter were unchanged in macrophages in
response to LPS treatment, and the RUNX1 inhibitor did
not affect the recruitment of p50 to the Il-6 promoter

(supplemental Fig. S7, left panel). However, the RUNX1 inhib-
itor greatly reduced the levels of RNA polymerase II binding to
the Il-6 promoter (supplemental Fig. S7, right panel). These
results support the role of RUNX1 in regulating IL-6 transcript
in macrophages after LPS stimulation.

We then sought to determine which domain of RUNX1
could interact with p50. Different truncations of RUNX1 were
constructed, including the N-terminal fragment (R1–242), the
C-terminal fragment (R243– 453), and the Runt domain (R50 –
178) (Fig. 4E). We noticed that all of these truncations could

FIGURE 2. Regulation of IL-6 and IL-1� production by RUNX1 overexpression or treatment with a RUNX1 inhibitor. A and B, RUNX1-GFP or a GFP vector
control (6 �g) were co-transfected with pCL-10A1 (6 �g) into 293T cells. The retroviral supernatants were harvested and used to infect RAW264.7 cells, which
was followed by FACS sorting of the GFP� cells. These stable RAW264.7 cells that overexpressed RUNX1 or GFP were stimulated with 100 ng/ml of LPS for the
indicated times. The Il-1�, Il-6, and Tnf-� mRNA levels were measured with RT-qPCR (A), and the IL-6 levels in the supernatants were determined with ELISA (B).
The data are shown as the mean � S.E. of three independent experiments. THP-1 cells (C), RAW 264.7 cells (D), and PEMs (E) were stimulated with LPS (100 or
1000 ng/ml) for 4 h in the absence or presence of the RUNX1 inhibitor, Ro 5-3335 (50 �M). IL-6 levels were measured by RT-qPCR or ELISA. The data are shown
as the mean � S.D. of a representative of three independent experiments. *, p � 0.05; **, p � 0.01.
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interact with p50 (Fig. 4F). This interaction is similar to the
interaction between RUNX1 and Ets-1; both N-terminal and
C-terminal fragments of RUNX1 can bind to Ets-1 (37). To
further determine which domain of RUNX1 was responsible for
NF-�B activation, we overexpressed different truncations of
RUNX1 in RAW 264.7 cells. Following LPS stimulation, the
C-terminal fragment and the full-length RUNX1 showed
enhanced IL-6 expression, but the N-terminal fragment
showed no significant effect (Fig. 4G). These results indicate

that RUNX1 is dependent on its C-terminal region to augment
TLR4-NF-�B activity.

A RUNX1 Inhibitor Protects against LPS-induced Septic
Shock in Vivo—Excessive TLR4-NF-�B activation is critical for
the induction of sepsis that is accompanied by exacerbated
inflammatory responses (6, 7). To investigate the in vivo role
of RUNX1 in inflammation, we utilized a murine endotoxic
shock model via intraperitoneal injection of a lethal dose of
LPS. LPS induced death in over 80% of mice at 20 h, whereas

FIGURE 3. RUNX1 synergizes with the NF-�B subunits to enhance TLR4-triggered inflammation. A and B, PEMs were transfected with Runx1 siRNA or
nonspecific siRNA, then stimulated with 1 �g/ml of LPS for the indicated times. Cell lysates were extracted for immunoblotting to detect the phosphorylated
ERK, P38, JNK, or p65 levels as well as the total I�B� and p65 levels. The data are shown as a representative of two independent experiments. C, the stable RAW
264.7 cell lines that overexpressed RUNX1 or GFP were stimulated with 100 ng/ml of LPS for 3 h in the presence of the NF-�B inhibitor, 10 �M BAY 11-7082,
followed by detection of Il-1� and Il-6 by RT-qPCR. D and E, plasmids expressing RUNX1 or GFP were co-transfected with plasmids expressing p50, p65, or p105
into 293T cells in the presence of an NF-�B luciferase reporter plasmid and a Renilla luciferase plasmid. After 24 h, the cell lysates were assayed with a dual
luciferase reporter assay system (D). Alternatively, after 8 h, Ro 5-3335 (50 �M) or DMSO was added for 18 h to examine the luciferase readings (E). The data are
shown as the mean � S.E. of at least two independent experiments. *, p � 0.05; **, p � 0.01; ***, p � 0.001.
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the RUNX1 inhibitor, Ro 5-3335, significantly improved the
mouse survival rates at 20 h, 48 h, or longer time points when
used at 5 mg/kg (Fig. 5A). We further examined the expres-
sion of proinflammatory cytokines in various organs and

serum in these mice. Unexpectedly, we observed no signifi-
cant differences in the Il-1�, Il-6, or Tnf-� mRNA levels in
the liver, spleen, lungs, or serum IL-6 concentrations at 3 h
after the Ro 5-3335 intervention when compared with the

FIGURE 4. RUNX1 interacts with the p50 subunit of NF-�B. A, RUNX1 was co-transfected with plasmids expressing GFP-myc, p50, p105, or p65 into 293T
cells. The cell lysates were immunoprecipitated (IP) with the indicated antibodies followed by immunoblotting (IB) with an anti-RUNX1 antibody. B, 293T
cells were co-transfected with p50 and RUNX1, and cell extracts were immunoprecipitated with an anti-RUNX1 antibody, followed by immunoblotting
with the indicated antibodies. C, THP-1 cell lysates were immunoprecipitated with an anti-p50 antibody followed by immunoblotting with an anti-
RUNX1 antibody to detect the endogenous interaction between RUNX1 and p50. D, RAW 264.7 cells that overexpressed RUNX1 were stimulated with LPS
for 30 and 60 min, then cell lysates were immunoprecipitated with an anti-p50 antibody followed by immunoblotting with an anti-RUNX1 antibody. E,
the RUNX1 truncations are listed (Runt, Runt domain; AD, activation domain; ID, inhibition domain). F, 293T cells were transiently co-transfected with
p50-FLAG and HA-tagged RUNX1 truncations (R1�242, R50 –178, R243– 453 or R1– 453), then cell lysates were immunoprecipitated with an anti-HA
antibody, followed by immunoblotting with an anti-FLAG antibody. The results are shown as a representative of three independent experiments. G, the
stable RAW264.7 cells overexpressing GFP or the different RUNX1 truncations (R1�242, R243– 453, or R1– 453) were stimulated with 100 ng/ml of LPS for
6 h. The Il-1� and Il-6 mRNA levels were measured with RT-qPCR. The data are shown as the mean � S.E. of two independent experiments. *, p � 0.05;
**, p � 0.01; ***, p � 0.001.
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DMSO control mice.5 However, the Il-6 mRNA levels were
selectively decreased in the kidneys of the treated mice at a
later stage (i.e. 24 h) (Fig. 5B). These results indicate that the
RUNX1 inhibitor may resolve IL-6 production in the kidneys
and protect against LPS-induced septic shock.

Discussion

Excessive TLR4-NF-�B signaling is closely related to uncon-
trolled inflammation, tissue damage, and septic shock (38, 39)
and is critical to identifying new key regulators in the TLR4-
NF-�B pathway, as they could be potential targets that prevent
sepsis. RUNX1 is a master transcription factor in hematopoie-
sis (40) and plays indispensable roles in T cells and autoimmune
diseases (28, 41, 42). However, its role is still unknown in the
regulation of TLR4-NF-�B signaling in macrophages.

In the current study, we found that RUNX1 mRNA and pro-
tein expression levels decreased following LPS stimulation in
macrophages. Silencing of Runx1 and treatment with the
RUNX1 inhibitor, Ro 5-3335, attenuated the expression of Il-6
and Il-1�, but not Tnf-�, in mouse peritoneal macrophages,
RAW 264.7 cells, and human THP-1 cells. In agreement with
this, RUNX1 overexpression enhanced the production of
TLR4-induced IL-6 and IL-1�. These findings indicate that
RUNX1 is a positive regulator of the TLR4 pathway for the
induction of the inflammatory response. Our study is consis-
tent with previous findings that RUNX1 could promote STAT3
phosphorylation by inhibiting SOCS3/4 expression in epithelial
cancer cells (29), and STAT3 is a major signal component in
IL-6 signaling (43). Although another recent study reported
that RUNX1 inhibits NF-�B signaling by blocking the activity of
the I�B kinase in leukemia (44), we detected no differences in
I�B� degradation and p65 phosphorylation after silencing
Runx1 or inhibition of RUNX1 activity in LPS-treated murine
primary macrophages. These contradictory observations might
be due to the different cell types that were used and treated with
different experimental methods.

In our study, we also determined whether RUNX1 affected
expression of the MyD88-independent genes, such as Ifn-� and
Ccl5. No significant difference of their expression was detected

at the mRNA levels in RAW 264.7 cells overexpressed by either
GFP or RUNX1 (supplemental Fig. S8, A and B). In agreement
with this, RUNX1 did not affect the IRF3 phosphorylation lev-
els (supplemental Fig. S8, C and D). These findings suggest that
RUNX1 may not affect type I interferon production.

In agreement with the finding that RUNX1 is located pre-
dominantly in the nucleus (34), coexpression of RUNX1 with
NF-�B family members p50, p105, or p65, enhanced the NF-�B
luciferase activity. However, we observed that RUNX1 specifi-
cally interacted with p50, but not p65, and LPS did not affect the
interaction between RUNX1 and p50 at early time points. This
might explain why RUNX1 did not affect the Tnf-� expression
levels in macrophages, since p50-deficient macrophages induce
normal Tnf-� expression in response to LPS stimulation (45).
Previous studies have demonstrated that p50 lacks a transcrip-
tional activation domain (10, 46), and p50 needs to interact with
other transcription factors or transcription coactivators,
including p65/RelA, RelB, C-Rel, BCL3, and I�B� (10), for the
induction of its downstream target genes. Our study provides
the first evidence that RUNX1 binds to p50 and synergizes as a
transcriptional coactivator for the production of IL-6 and IL-1�
in macrophages. As noticed, the C-terminal fragment of
RUNX1 was responsible for NF-�B activation. Since the C-ter-
minal fragment of RUNX1 contains the activation domain, it
suggests that p50 might coordinate with the RUNX1 activation
domain to activate gene expression. Interestingly, RUNX1a, an
isoform of RUNX1, contains a highly conserved N-terminal
fragment of RUNX1 (i.e. 1–242 amino acids) (13). RUNX1a
promotes hematopoietic lineage commitment from human
pluripotent stem cell (47) and was overexpressed in acute leu-
kemia (48). Because NF-�B plays critical roles in hematopoietic
differentiation and leukemia (49, 50), it is interesting to ask
whether RUNX1a might bind to p50 to regulate hematopoietic
differentiation and acute leukemia. Nevertheless, no ortholog
of human RUNX1a exists in mice (51). Additionally, our data
indicates that the N-terminal fragment of RUNX1 was not
responsible for NF-�B activation in macrophages. This sug-
gests that RUNX1a cannot compromise the role of RUNX1 in
macrophages for the interaction with p50.

Although RUNX1 did not affect the recruitment of p50 to the
Il-6 promoter, it is indispensable for the recruitment of RNA
polymerase II to the Il-6 promoter. This indicates that RUNX1

5 M. Luo, S. Zhou, D. Feng, J. Xiao, W. Li, C. Xu, H. Wang and T. Zhou, unpub-
lished data.

FIGURE 5. A RUNX1 inhibitor protects against LPS-induced septic shock in vivo. LPS (20 mg/kg) was used to induce septic shock in C57BL/6 mice in the
presence or absence of the RUNX1 inhibitor, Ro 5-3335. The survival rates of these mice were recorded (A), and the Il-6 mRNA levels in the kidneys were detected
by RT-qPCR (B). The data are shown as the mean � S.D. of three independent experiments. *, p � 0.05; **, p � 0.01.
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might act as a transcriptional coactivator of p50 for the produc-
tion of IL-6 in macrophages.

Another implication of our findings is the in vivo function of
the RUNX1 inhibitor, Ro 5-3335, in preventing LPS-induced
septic shock. The RUNX1 inhibitor, Ro 5-3335, substantially
improved the survival rates in the LPS-induced sepsis model.
Indeed, we observed a significant reduction of Il-6 levels at the
later stage in mouse kidneys after the Ro 5-3335 treatment. This
may be due to the facts that I�B� binds to p50 and that this is
dependent on p50 to selectively promote Il-6 transcription, not
Tnf-�, in macrophages (35). As septic shock is the leading cause
of acute kidney injury and IL-6 is a vital mediator of acute kid-
ney injury (52, 53), we propose that the RUNX1 inhibitor may
protect against LPS-induced septic shock by attenuating IL-6
production and blocking acute kidney injury. RUNX1 might be
a new potential therapeutic target for resolving TLR4 signaling
that is related to acute excessive inflammation or septic shock.

Experimental Procedures

Reagents and Mice—Antibodies against RUNX1, p50/p105,
p65, and I�B� were obtained from Santa Cruz Biotechnology
(Santa Cruz, CA). Antibodies against p-p65, p-p38, p-ERK,
p-JNK, and p-IRF3 were obtained from Cell Signaling Technol-
ogy (Danvers, MA). Antibodies against GAPDH were obtained
from Beyotime Institute of Biotechnology (Shanghai, China).
Anti-HA, anti-Myc, anti-�-Actin-HRP, and anti-FLAG anti-
bodies were purchased from Sigma. Anti-CD11b-FITC and
anti-F4/80-APC antibodies, as well as ELISA kits for IL-6 were
from eBioscience (San Diego, CA). ChIP-grade antibody
against p50 was purchased from Abcam (Cambridge, UK). The
EZ-ChIPTM Chromatin Immunoprecipitation Kit was obtained
from Merck Millipore (Billerica, MA). Murine IL-1�, IL-6, and
TNF-� were obtained from PeproTech (Rocky Hill, NJ). PGN,
CpG, and poly(I:C) were purchased from InvivoGen (San
Diego, CA). The RUNX1 inhibitor, Ro 5-3335, was purchased
from Tocris Bioscience (Bristol, UK). The NF-�B inhibitor,
BAY 11-7082, was purchased from Beyotime Institute of Bio-
technology. Highly purified LPS from Escherichia coli O55:B5
were obtained from Sigma. Male C57BL/6 wild type mice (8 –10
weeks old) were purchased from the Model Animal Research
Center of Nanjing University, Nanjing, China.

Cell Culture—Primary mouse PEMs from C57BL/6 wild type
mice were prepared as described previously (6). PEMs, RAW
264.7 cells (kind gifts from Dr. B. Sun, SIBCB, CAS, Shanghai,
China), and 293T cells (kind gifts from Dr. J. F. Chen, SIBCB,
CAS, Shanghai, China) were cultured with complete DMEM
containing 10% FBS, penicillin (100 units/ml), and streptomy-
cin (100 �g/ml). Human THP-1 cells (kind gifts from Dr. B. Ge,
Tongji University, Shanghai, China) were maintained in com-
plete 1640 medium supplemented with 10% FBS, penicillin (100
units/ml), and streptomycin (100 �g/ml). For macrophage
induction, THP-1 cells were stimulated with 100 ng/ml of phor-
bol 12-myristate 13-acetate for 24 h and allowed to rest for
8 –12 h. PEMs were obtained from mice that received an intra-
peritoneal injection of 2.5–3 ml of 3% Brewer thioglycollate
medium for 4 days, and the purity of CD11b�F4/80� macro-
phages was analyzed by FACS (supplemental Fig. S1).

Plasmids—The MigR1-RUNX1 plasmid was a gift from Dr.
Shi Jingyi (Shanghai Institute of Hematology). HA-tagged
RUNX1 and various RUNX1 truncations (54) (R1�242, R50 –
178, and R243– 453) were inserted into the XhoI-EcoRI site of
the mammalian expression vector, pcDNA3.1 or MigR1.
Human p65 (a kind gift from Dr. Z Zhou, SIBCB, China), p50,
and p105 were also inserted into the XhoI-EcoRI site of the
vector, pcDNA3.1. The primers are listed in the supplemental
information (supplemental Table S1).

Retroviral Transduction—To generate retroviral particles,
MigR1-RUNX1/RUNX1 truncations (R1�242, R243– 453)-
GFP (6 �g) were co-transfected with pCL-10A1 (6 �g) into
293T cells by the calcium phosphate method. After 24 h, the
retroviral supernatants were collected to infect RAW264.7
cells, and the cells were passaged three times, followed by flow
cytometry sorting of GFP� cells.

siRNA Transfection and RT-qPCR—PEMs (5 � 105) were
transfected with 20 nM siGENOME SMARTpool mouse Runx1
siRNA (Dharmacon, Lafayette, CO) or with 20 nM nonspecific
siRNA using the Lipofectamine RNAiMAX kit (Invitrogen)
according to the manufacturer’s instructions. The siRNA
sequences are listed in the supplemental information (supple-
mental Tables S2 and S3). Total RNA was extracted with
RNAiso reagent (TaKaRa Ltd, Kyoto, Japan). cDNA was gener-
ated from 1 �g of RNA using Moloney MLV transcriptase (Pro-
mega) and examined with quantitative RT-qPCR with SYBR
Green Master Mix on a CFX-96 machine (Bio-Rad). siRNA
sequences or the primers for detecting Il-1�, Il-6, and Tnf-�
were used as described previously (6), and are listed in supple-
mental Table S4. To determine the specificity of siRNA, expres-
sion of the unrelated proteins, including Wdr7, Asap1, Naip2,
and Vps13b, were detected by RT-qPCR (supplemental Fig. S9).

Cell Stimulation and Cytokine ELISA—PEMs, RAW 264.7,
and phorbol 12-myristate 13-acetate-differentiated THP-1
cells were seeded in 12-well plates and stimulated with LPS (100
or 1000 ng/ml) for 3, 6, 12, or 24 h in the absence or presence of
50 �M Ro 5-3335 or 10 �M BAY 11–7082, which was added as a
pretreatment for 1 h. The supernatants were collected for cyto-
kine analysis using a commercial ELISA kit according to the
manufacturer’s instructions.

Luciferase Assay—293T (5 � 105) cells were co-transfected
with 0.1 �g of expression plasmid (p50, p65, or p105) and 0.25
�g of NF-�B luciferase reporter plasmid containing 1/20
Renilla luciferase plasmid with 0.8 �g of pcDNA3.1-RUNX1 or
pcDNA3.1-GFP plasmid using the Lipofectamine 2000 reagent.
The cells were recovered for 24 h and measured with a dual
luciferase reporter assay system (Promega). For the Ro 5-3335
intervention experiment (31), briefly, 293T cells were tran-
siently co-transfected with 0.1 �g of expression plasmids
encoding p50, p105, or p65 plus 0.8 �g of pcDNA3.1-RUNX1.
After 6 – 8 h, the medium was removed and 50 �M Ro 5-3335 or
DMSO was added into the new medium. Then, 18 h later, the
cell lysates were assayed with an NF-�B luciferase assay.

Coimmunoprecipitation and Western Blot Analysis—293T
cells (5 � 106) were co-transfected with 6 �g of pcDNA3.1-
p50/p105/p65 plasmid and 6 �g of pcDNA3.1-RUNX1-HA or
HA-tagged various RUNX1 truncations, and the whole cell
lysates were collected to perform co-immunoprecipitation
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experiments with the indicated antibodies. The endogenous
interactions between RUNX1 and p50 were examined by co-
immunoprecipitation in RAW 264.7 or THP-1 cells. PEMs,
THP-1, or RAW 264.7 cells were seeded in 12-well plates and
stimulated with LPS (1000 ng/ml) for 3, 6, 12, or 24 h, and the
whole cell lysates were subjected to immunoblotting with anti-
RUNX1 antibodies.

Chromatin Immunoprecipitation—RAW 264.7 cells were
stimulated with 100 ng/ml of LPS for 5 h in the absence or
presence of 50 �M Ro 5-3335. ChIP experiments were per-
formed with the EZ-ChIPTM kit according to the manufactu-
rer’s instructions. To measure enrichment, the purified DNA
was quantified by qPCR with the primers covering NF-�B bind-
ing site of the murine Il-6 promoter used as described previ-
ously (55). The primers are listed in the supplemental informa-
tion (supplemental Table S5).

LPS Shock Model and Ro 5-3335 Treatment—Male C57BL/6
mice (8 –10 weeks old) received an intraperitoneal injection of
the RUNX1 inhibitor, Ro 5-3335 (5 mg/kg), with 5% DMSO in
PBS or 5% DMSO in PBS for 3 h, following by an intraperitoneal
injection with a lethal (20 mg/kg) or sublethal dose (10 mg/kg)
of LPS to induce LPS shock as described previously (56). All the
mice were observed and the survival rates were calculated.
Serum, liver, lung, kidney, and spleen samples were collected at
the indicated time points for cytokine measurements.

Statistical Analysis—Statistical analysis was performed with
GraphPad Prism 5, and statistically significant differences were
determined by a two-tailed Student’s t test with 95% confidence
intervals.

Author Contributions—M.-C. L. and S.-Y. Z. performed the experi-
ments and statistical analysis. D.-Y. F., J. X., C.-D. X., and W.-Y. L.
helped with the experiments. H.-Y. W., T. Z., and M.-C. L. designed
the study. H.-Y. W., M.-C. L., T. Z., and S.-Y. Z. prepared the
manuscript.
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