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Synopsis

Acquisition of drug-resistant phenotypes is often associated with chemotherapy in osteosarcoma. A number of stud-
ies have demonstrated a critical role for autophagy in osteosarcoma development, therapy and drug resistance.
However, the molecular mechanisms underlying the autophagy-mediated chemotherapy resistance of osteosarcoma
cells remain largely unknown. In the present study, we determined the autophagy and microRNA-140 (miR-140-5p,
miRBase ID: MIMATO000431) expression induced by chemotherapeutic drugs in osteosarcoma cells. Then we de-
termined the promotory role of miR-140-5p to the chemotherapy-induced autophagy. Our results demonstrated that
miR-140-5p expression was highly induced during chemotherapy of osteosarcoma cells, and this was accompanied by
up-regulated autophagy. The increased miR-140-5p expression levels up-regulated anticancer drug-induced autophagy
in osteosarcoma cells and ameliorated the anticancer drug-induced cell proliferation and viability decrease. Import-
antly, miR-140-5p regulates this context-specific autophagy through its target, inositol 1,4,5-trisphosphate kinase 2
(IP3k2). Therefore, the results of the present study demonstrated that miR-140-5p mediated drug-resistance in osteo-
sarcoma cells by inducing autophagy. The present study provides evidence of miRNA regulation of autophagy through
modulation of IP3 signalling. The present study recognized a novel mechanism of chemoresistance in osteosarcoma
cancers.
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INTRODUCTION of drug resistance and the occurrence of ‘secondary malignan-
cies’ are often associated with chemotherapy and are significant

obstacles to achieving favourable outcomes. Thus, it is import-

Osteosarcoma is the eighth most common type of cancer found
in children and adolescents, accounting for 2.4 % of all malig-
nancies in paediatric patients and ~20% of all primary bone
cancers [1]. Chemotherapy is the first choice treatment for osteo-
sarcoma, with multiple anticancer drugs, including doxorubicin
(Dox), cisplatin (Cis) and high-dose methotrexate [2,3]. In the
last three decades, neoadjuvant chemotherapy has increased the
long-term survival rate of osteosarcoma patients from <20 to
~80 % [4-6]. However, patients that are less responsive to these
drugs have a poor prognosis. In addition, the frequent acquisition

ant to identify the molecular mechanisms underlying the drug
resistance of osteosarcoma cancer cells.

Autophagy is a universal process whereby cellular components
and damaged organelles are sequestered within autophagosomes
for lysosomal degradation. Autophagy has proven to be an essen-
tial pathway for cellular homoeostasis. In addition to removing
dysfunctional proteins and organelles, autophagy provides
amino acids, monosaccharides, nucleic acids and lipids during
times of nutrient deprivation [7,8]. Autophagy is a key pathway
for cell survival but, if protein loss becomes excessive, cell death
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will result. This degradative pathway has been implicated in
the progression of a number of diseased states including cancer.
Suppressed autophagy can result in net protein gain and neo-
plastic growth, and defects in autophagy have been implicated in
poor outcomes for hepatocellular carcinoma [9]. To the contrary,
autophagy promotes cell survival in tumours undergoing
nutrient deprivation or chemotherapy. The overproduction of the
autophagy protein, LC3B (microtubule-associated protein 1 light
chain 3B), is associated with tumour growth and poor prognosis in
aggressive pancreatic, colorectal and breast carcinoma [10-12].

During tumour development, autophagy is enhanced to pro-
mote cell survival under ischaemic conditions [13—15]. Auto-
phagy can also enhance cell survival by removing organelles
damaged by chemotherapy agents [16,13,17]. Resistance of os-
teosarcoma cell lines to Dox, Cis and methotrexate has been
shown to be due to the induction of autophagy by the DNA-
binding protein HMGB1 (high mobility group box 1) [18]. On
the other hand, autophagy is one of three primary venues of
cell death, which also includes apoptosis and necrosis. Many
existing chemotherapy drugs act by inducing apoptosis whereas
others promote autophagy-mediated cell death of neoplastic cells
[19,20]. Given that autophagy can promote cell survival or cell
death, its regulation is critical for the developing tumour.

There are two primary regulatory pathways of autophagy:
MTOR (mechanistic target of rapamycin), a negative regulator,
and PtdIns3K (class III phosphatidylinositol 3-kinase), a positive
regulator. MTOR inhibits the ULK1/2 (mammalian orthologues
of yeast Atg1) complex, which activates autophagy by stimulating
PtdIns3K activity [21]. The MTOR inhibitor, rapamycin, induces
autophagy-mediated cell death in glioma cells [22]. PtdIns3K
synthesizes phosphatidylinositol 3-phosphate, which provides a
docking site for ATG proteins at the sequestering membranes of
the forming autophagosome [23,24]. Chemoresistance is atten-
uated in hepatocarcinoma cells when treated with the PtdIns3K
antagonist, 3MA (3-methyladenine) [25]. Both pathways modu-
late the lipidation of LC3B by presumably regulating the activit-
ies of ATG4, ATG7 or ATG3. Of the four autophagins (ATG4A,
ATG4B, ATG4C and ATG4D) identified, Yin and co-workers
have shown that ATG4B had the highest catalytic efficiency for
cleaving the C terminus of LC3B [26]. Once the C-terminal gly-
cine of LC3B is exposed by ATG4B, ATG7 in an ATP-dependent
manner activates LC3B for delivery to ATG3, which conjug-
ates LC3B to phosphatidylethanolamine. The lipidation of LC3B
anchors this protein to the forming autophagosome where it pro-
motes membrane expansion to enlarge the autophagosome thus
increasing the amplitude of autophagy [27]. The lipidated LC3B
is either degraded within the autolysosome or cleaved by ATG4B
and the LC3B recycled. ATG4B provides the cell with enough
LC3B to amplify autophagy and recycles the lipidated LC3B to
sustain autophagy [28].

MicroRNAs (miRNAs) are family of endogenous non-coding
RNA molecules that comprise 22 nucleotides, which regulate
gene expression [29] in organisms ranging between nematodes
and humans and in a broad array of mammalian cell processes
[30]. Recently, miRNAs have been associated with cell chemo-
sensitivity or chemotherapy resistance in a variety of cancer cell

types [31], including osteosarcoma [32]. miR- 140 was reported to
be involved in the chemoresistance of osteosarcoma cells via the
suppression of histone deacetylase [4], which in turn reduced cell
proliferation [32]. Furthermore, an increasing number of studies
have demonstrated that miRNA molecules regulate cellular auto-
phagy processes [33-35]. Zhu et al. [34] reported that miR-30a
targets beclin 1, resulting in decreased autophagic activity. In ad-
dition, Brest et al. [35] showed that a miR-196-based alteration in
the expression of immunity-related GTPase family M protein can
affect the efficacy of autophagy. However, the role of miRNAs
in autophagy-mediated chemotherapy resistance in osteosarcoma
remains unknown.

In the present study, we determined the targeting role of
miR-140-5p (miRBase ID: MIMATO0000431) to inositol 1,4,5-
trisphosphate kinase 2 (IP3K2), the regulation of miR-140-5p on
the IP3K2-mediated cell autophagy during chemotherapy, and
the suppression of miR-140-5p inhibitor in the cell proliferation
of osteosarcoma cells. Thus, we identified the tumour suppressive
role of miR-140-5p inhibitor in osteosarcoma cells in vitro.

MATERIALS AND METHODS

Cell culture and reagents

Human osteosarcoma cell lines (Saos-2 and MG-63) were ob-
tained from the Cell Resource Center of the Chinese Academy of
Medical Sciences. The cells were cultured in Eagle’s Minimum
Essential Medium (Invitrogen) or McCoy’s 5A Modified Medium
(Invitrogen) supplemented with 10% FBS (GIBCO), and were
incubated at 37°C with 5% CO,. Antibodies against GAPDH,
LC3-1I and p62 were obtained from Santa Cruz Biotechnology
and rapamycin was purchased from Sigma—Aldrich. The coding
sequence of microtubule-associated protein 1-LC3 fusion with
GFP was synthesized and cloned into pcDNA3.1(+) to con-
struct the LC3-GFP-expressing plasmid.

Cell transfection

miR-140-5p mimic, miR-140-5p inhibitor and the corresponding
control oligonucleotides (purchased from RiboBio) were trans-
fected into cells as described previously [36]. The sequence
of miR-140-5p mimics was 5-UGAGAACUGAAUUCCAUG
GGUU-3', and miR-control was 5-UUC UCC GAA CGU GUC
ACG UTT-3". The sequence of miR-140-5p inhibitor was 5'-
AA CCC AUG GAA UUC AGU UCU CA-3, and miR-NC was
5’-UCU ACU CUU UCU AGG AGG UUG UGA-3'. siRNAs tar-
geting IP3K2 were obtained from RiboBio and sequences were
5’-GCU AUC AAC UGC AGA GAU U-3'. The IP3K2 siRNA and
control siRNA transfections were conducted as recommended by
the manufacturer.

Quantitative GFP-LC3 light microscopy autophagy assays
were performed in Saos-2 cells with various treatments. Cells
were grown to 80% confluency and were transfected with
a GFP-LC3-expressing plasmid using Lipofectamine 2000
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(Invitrogen Life Technologies). At 24 h following transfection,
the cells were subjected to 0.2 pg/ml Dox (Sigma-Aldrich) or
20 uM Cis (Sigma—Aldrich) for an additional 24 h. In a separate
experiment, cells were simultaneously and additionally trans-
fected with 20 nM miR-140-5p and analysed with fluorescence
microscopy. The number of punctate GFP-LC3 dots in each cell
was counted and at least 100 cells were included for each group.

miRNA extraction and quantitative PCR

Total miRNA extraction was performed using a mirVana miRNA
Isolation kit (Ambion). Quantification of miR-140-5p expression
was conducted using the mirVana qRT-PCR miRNA Detection kit
(Ambion), where U6 small nuclear RNA was used as an internal
control, according to the protocol previously described [37]. The
specific primer of miR-140-5p was: GTC GTA TCC AGT GCA
GGG TCC GAG GTA TTC GCA CTG GAT ACG ACC TAC
CAT.

For mRNA detection, total RNA was extracted using TRIzol
reagent (Life Technologies), according to the manufacture’s in-
struction. The mRNA expression was determined by using the
standard SYBR-Green RT-PCR kit (Takara), in accordance with
the manufacturer’s instructions. The specific primers were as fol-
lows: IP3K2, 5'-TTA CTC AAG GAC GCG GTC TGT GAT C-3
(forward) and 5'-ATT GGC CCC AGC TTG CTT-3' (reverse).
GAPDH was used as an internal control with primers: 5'-AGC
CTT CTC CAT GGT GGT GAA-3' (forward) and 5'-ATC ACC
ATC TTC CAG GAG CGA-3’ (reverse).

Western blot analysis

Cell extracts were prepared according to the standard protocol,
and protein expression levels were detected by western blot
analysis using polyclonal (rabbit) anti-LC3-II, anti-p62 or anti-
GAPDH antibodies. Goat anti-mouse IgG or goat anti-rabbit IgG
(Pierce Biotechnology) secondary antibodies, that were conjug-
ated to horseradish peroxidase, were used for detection via an en-
hanced chemiluminescence detection system (Super Signal West
Femto, Pierce Biotechnology).

Cell proliferation assay

Cell viability was expressed as the relative percentage of viable
cells to control human umbilical vein endothelial cells. For the
proliferation assay, following transfection with miR- 140-5p mim-
ics or miRNA control, cells were incubated with Cell Counting
Kit-8 (CCK-8; Dojindo Molecular Technologies). The absorb-
ance of each well at 450 nm was detected following visual colour
occurrence at 24, 48 or 72 h. Independent experiments were per-
formed in triplicate.

Ca?* measurements

Fura-2 fluorescence was utilized to determine intracellular Ca>+
concentrations [38]. Cells were loaded with Fura-2/AM (2 uM,
Invitrogen) for 20 min at 37°C. Cells were excited alternatively
at 340 and 380 nm through an objective (Fluor 40x/1.30 oil) built
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in an inverted phase-contrast microscope (Axiovert100, Zeiss).
Emitted fluorescence intensity was recorded at 505 nm. Data were
acquired using specialized computer software (Metafluor, Uni-
versal Imaging). Cytosolic Ca?* activity was estimated from the
340 nm/380 nm ratio. Store-operated Ca>* entry (SOCE) was
determined by extracellular Ca®>* removal and subsequent Ca>*
readdition in the presence of thapsigargin (1 uM, Invitrogen).
For quantification of Ca’>* entry, the slope (delta ratio/s) and
peak (delta ratio) were calculated following readdition of Ca2*.
Experiments were performed with Ringer solution containing:
125 mM NaCl, 5 mM KCI, 1.2 mM MgSO,, 2 mM CaCl,, 2 mM
Na,HPOy, 32 mM HEPES, 5 mM glucose, pH 7.4. To reach nom-
inally Ca?*-free conditions, experiments were performed us-
ing Ca’* -free Ringer solution containing: 125 mM NaCl, 5 mM
KCl, 1.2 mM MgSOy, 2 mM Na,HPO4, 32 mM HEPES, 0.5 mM
EGTA, 5 mM glucose, pH 7.4.

Statistical analysis

For GFP-LC3 dot number analysis, relative miR-140-5p expres-
sion, conversion of LC3-I to LC3-II, relative expression of p62
against GAPDH and CCK-8 measurements, the statistical eval-
uations are presented as the mean + S.E. Data were analysed
using the Student’s ¢ test. All data were analysed by the SPSS
v16.0 (SPSS). P < 0.05 was considered to indicate a statistically
significant result.

RESULTS

miR-140-5p expression increases in osteosarcoma
cells following treatment with chemotherapy
agents

The role of miRNAs in chemotherapy-induced autophagy of can-
cer cells remains unknown. To screen possible miRNAs that may
be important for anticancer drug-induced autophagy in osteo-
sarcoma cells, miRNA expression levels were analysed by mi-
croarray in osteosarcoma cells following treatment with Dox.
miR-140-5p was demonstrated to be the most highly-expressed
miRNA. Thus, the expression level of miR-140-5p was quanti-
fied in Saos-2 and MG-63 cells following treatment with Dox or
Cis. The results indicated that treatment with 0.2 pg/ml Dox or
20 uM Cis significantly up-regulated the miR-140-5p expression
levels in the two cell lines. A quantitative PCR (qPCR) assay
demonstrated that significantly higher expression levels of miR-
140-5p were induced in Saos-2 or MG-63 cells following Dox
or Cis treatment (Figures 1A and 1B). Therefore, miR-140-5p
expression is induced in vitro during anticancer drug therapy in
osteosarcoma cells.

Inhibition of miR-140-5p promotes the anticancer
drug-induced cell proliferation decrease

To determine the possible effect of miR-140-5p on osteosarcoma
cell proliferation, the proliferation of Saos-2 or MG-63 cells that
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Figure1l miR-140-5p expression was up-regulated in osteosarcoma cells following treatment with chemotherapeutic
drugs
qPCR analysis showing the relative miR-140-5p expression to U6 in (A) Saos-2 and (B) MG-63 cells. All the experiments
were performed in triplicate. *P < 0.05 compared with control.
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Figure 2 Inhibition of miR-140-5p ameliorated the anticancer drug-induced cell proliferation decrease in vitro
(A and B) Osteosarcoma cells were transfected with miR-140-5p inhibitor or a scrambled control. Forty-eight hours after
transfection, Cis was added and after 24 h cell viability was determined with a CCK-8 assay. Independent experiments
were performed in triplicate. *P < 0.05 compared with control. (C and D) Growth curves showing the cell proliferation
following Dox treatment and miR-140-5p inhibitor or miR-control transfection in osteosarcoma cells. *P < 0.05 compared
with control. (E and F) When transfected with miR-140-5p inhibitor or miR inhibitor control, real-time PCR was used to
validate the changes of miR-140-5p expression in Soas-2 and MG-63 cells. *P < 0.05.
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Figure 3 Overexpression of miR-140-5p up-regulated anticancer drug-induced autophagy in osteosarcoma cells

(A) LC3 punctas under fluorescence microscopy in Saos-2 cells following 0.1 ug/ml Dox or 10 uM Cis treatment and
miR-140-5p mimics or miR-control transfection. (B) Quantitative analysis of the punctate GFP-LC3 dots. (C) Realtime
PCR was used to validate the changes of miR-140-5p expression after miR-140-5p mimics transfection. *P < 0.05. (D)
Western blotting of LC3-I/Il and p62 in miR-140-5p mimics or miR-control-transfected Saos-2 cells. (E) Relative expression
of LC3-Il to LC3-l in miR-140-5p mimics or miR-control-transfected Saos-2 cells. (F) Relative expression of p62 to GAPDH
in miR-140-5p mimics or miR-control-transfected Saos-2 cells. Independent experiments were performed in triplicate.

*P < 0.05 compared with control.

had been treated with Dox or Cis and transfected with miR-140-
5p inhibitors was determined using a CCK-8 assay. As shown in
Figures 2(A) and 2(B), transfection with miR-140-5p inhibitor
gave rise to a marked increase in sensitivity after treatment with
60 and 80 uM Cis in the Saos-2 and MG-63 cell lines. As shown
in Figures 2(C) and 2(D), miR-140-5p in transfection resulted
in a dose-dependent amelioration of 0.6 and 0.8 pg/ml Dox-
induced cell proliferation inhibition in the Saos-2 and MG-63
cell lines. The effect of inhibiting was determined by real-time
PCR shown in Figures 2(E) and 2(F). Thus, inhibition of miR-
140-5p ameliorated the anticancer drug-induced cell proliferation
decrease in osteosarcoma cells.

Overexpression of miR-140-5p up-regulates
anticancer drug-induced autophagy in
osteosarcoma cells

To determine the possible contribution of miR-140-5p to
autophagy in drug-treated osteosarcoma cells, miR-140-5p
expression was manipulated in Saos-2 cells via transfection with
miR-140-5p mimics or miRNA control. The level of autophagy
was determined in Saos-2 cells following miR-140-5p mimics
transfection. As shown in Figures 3(A) and 3(B), there were
more GFP-positive dots (LC3 punctas) in the Saos-2 cells that
had been transfected with miR-140-5p mimics when compared
with transfection with miRNA control (P < 0.05). The effect of
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Figure 4

miR-140-5p inhibited IP3k2 expression in osteosarcoma cells

(A) The binding sites and the corresponding mutated sequences within the ip3k2 3’-UTR for miR-140-5p were presented.
(B and €) Immunoblot analyses of the effect of transient transfection of miR-140-5p mimics on IP3k2 protein levels in
Saos-2 cells. (D) Quantitative RT-PCR analyses of the effect of transient transfection of miR-140-5p mimics on ip3k2 mRNA
levels in Saos-2 cells. (E) The effects of miR-140-5p mimics or miR-140-5p inhibitor on the activity of ip3k2 3'-UTR or ip3k2
3-UTR-Mut in transiently co-transfected Saos-2 cells. The reporter activities were determined at 48 h after transfection.
Data are presented as the means + S.E.M. from n = 3 replicates. *P < 0.05.

miR-140-5p overexpression was determined by real-time PCR
shown in Figure 3(C). In addition, significantly higher conversion
levels of LC3-I to LC3-II and decreased expression levels of p62
were also confirmed in the osteosarcoma cells transfected with
miR-140-5p mimics (P < 0.05 respectively; Figures 3D-3F).
These results confirm that overexpression of miR-140 contributes
to anticancer drug-induced autophagy in osteosarcoma cells.

miR-140-5p targets the IP3k2 protein to regulate
autophagy during osteosarcoma cell death

Our next goal was to identify targets of miR-140-5p that in-
fluence autophagy. We used the miRNA binding site predic-
tion programmes Pictar and Targetscan to identify candidate
miR-140-5p target genes. Of the 31 genes, IP3k2 is involved

in autophagy regulation. To investigate if ip3k2 3’-UTR se-
quences can mediate regulation by miR-140-5p, we examined
whether miR-140-5p directly reduces endogenous IP3k2 levels.
Saos-2 cells were transfected with either miR-control or miR-
140-5p mimics. IP3k2 protein levels were then directly as-
sayed by western blot. Forty-eight hours after transfection, IP3k2
protein levels were decreased significantly following transfec-
tion of miR-140-5p mimics as compared with negative control
(Figures 4B and 4C). In a separate experiment, ip3k2 mRNA
levels were directly assayed by real time PCR after miR-140-5p
mimics transfection. Forty-eight hours after transfection, ip3k2
mRNA levels were decreased significantly following transfection
(Figure 4D). Taken together, these results suggested that exo-
genous miR-140-5p likely inhibits IP3k2 expression via mRNA
destabilization.
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Figure 5 IP3K2 expression and Ca?* entry were up-regulated in osteosarcoma cells following treatment with chemo-

therapeutic drugs

(A and B) Analyses of IP3K2 mRNA and protein levels in Soas-2 cells after drug treatment. (C and D) Analyses of IP3K2
mRNA and protein levels in MG-63 cells after drug treatment. (E) Representative tracings of Fura-2 fluorescence ratio
in fluorescence spectrometry during and after Ca2+ depletion with subsequent thapsigargin (1 M) addition in Soas-2
cells without (white squares) and with presence of Dox (0.2 ug/ml, black squares) or Cis (20 nM, grey squares). (F and
G) Arithmetic means (+S.E.M., n = 5-6, each experiment 10-30 cells) of slope (C) and peak (D) increase in Fura-2
fluorescence ratio following Ca* readdition in the absence (white bars) and presence of drug (black or grey bars). *
(P < 0.05) indicate statistically significant difference from control.

miR-140-5p inhibits IP3k2 expression via predicted
3’-UTR target sites

To validate the functionality of the putative miR-140-5plip3k2
3’-UTR interaction, a reporter construct was prepared contain-
ing the full-length ip3k2 3'-UTR. This reporter was generated by
PCR-amplifying the ip3k2 3’-UTR from human genomic DNA
and inserting the amplicon downstream of a Renilla luciferase
CDS. A separate firefly luciferase CDS under independent tran-
scriptional control was also present in this construct to serve as an
internal control. Co-transfection of the reporter construct along
with miR-140-5p mimics in Saos-2 cells resulted in significantly
reduced Renilla activity relative to co-transfection with negative
control mimic or transfection of reporter construct alone (53 %
of negative control mimics) suggesting an inhibitory regulatory
interaction between miR-140-5p and the ip3k2 3'-UTR.

To confirm that the inhibitory effect of miR-140-5p on ip3k2 3'-
UTR reporter expression was mediated specifically via predicted
miR-140-5p target sites located in the ip3k2 3’-UTR, mutations
were introduced in the seed sequences of both target sites in the
reporter construct (Figure 4A). Perfect complementarity at the
seed sequence is critical for functional miRNA interactions, and
mutation at this position should eliminate effective interaction
between miRNA and target site. These mutant reporter constructs
were then co-transfected along with miR-140-5p mimic into Saos-
2 cells and reporter expression compared with wild-type reporter

(Figure 4E). Mutation of target site partially eliminated the in-
hibitory effect of miR-140-5p mimics on reporter expression
(Figure 4E). Therefore, miR-140-5p mediates its inhibitory ef-
fect on ip3k2 3'-UTR reporter expression by interacting with at
least one of predicted target sites in the ip3k2 3'-UTR.

Next, we tested whether the predicted target of miR-140-5p
was down-regulated in response to drug treatment. The result
of real-time PCR showed that the expression level of ip3k2
mRNA was significantly lower after Dox and Cis treatment in
Soas-2 and MG-63 cells (P <0.05, Figures SA and 5C). And
Western blot analysis revealed that IP3K2 protein levels were
significantly lower in the drug treatment group than those con-
trol cells (Figures 5B and 5D). Furthermore, Fura-2 fluorescence
was employed in order to test whether the differences in IP3K2
protein abundance were paralleled by corresponding differences
in SOCE. As illustrated in Figure 5, both peak and slope of
SOCE were significantly higher after Dox (0.2 ng/ml) and Cis
(20 nM) pretreatment than in control cells. The Dox pretreatment
increased the peak Ca’* increase from 0.13 +0.016 arbitrary
units (n = 6) to 0.23 £ 0.028 arbitrary units (n = 5) in Saos-2
cells. The Cis pretreatment increased the peak Ca’™ increase
from 0.13 +0.016 arbitrary units (n = 6) to 0.21 +0.023 arbit-
rary units (n = 5) (Figures SE-5G). These results showed that the
decreased expression of IP3K2 was paralleled by corresponding
differences in SOCE in response to drug treatment.
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Figure 6 IP3k2 regulates autophagy in anticancer drug treatment
(A) LC3 punctas under fluorescence microscopy in Saos-2 cells following 0.1 ug/ml Dox or 10 uM Cis treatment and
IP3k2 siRNA or control siRNA transfection. (B) Quantitative analysis of the punctate GFP-LC3 dots. (C) Western blotting
of LC3-I/1l and p62 in IP3k2 siRNA or control siRNA-transfected Saos-2 cells. (D) Relative expression of LC3-ll to LC3-l in
IP3k2 siRNA or control siRNA-transfected Saos-2 cells. (E) Relative expression of p62 to GAPDH in IP3k2 siRNA or control
siRNA-transfected Saos-2 cells. Independent experiments were performed in triplicate. *P < 0.05 compared with control.

Inhibiting IP3k2 protein expression promotes sion was inhibited in Saos-2 cells via transfection with IP3k2
autophagy in response to anticancer drug siRNA or control siRNA. The effect of inhibiting was determ-
treatment ined by western blot shown in Figure 6(C). The level of autophagy
To determine the possible contribution of IP3k2 protein to auto- was determined in Saos-2 cells following IP3k2 siRNA transfec-
phagy in drug-treated osteosarcoma cells, IP3k2 protein expres- tion. There were more GFP-positive dots (LC3 punctas) in the
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Saos-2 cells that had been transfected with IP3k2 siRNA when
compared with transfection with control siRNA (Figures 6A and
6B, P < 0.05). In addition, significantly higher conversion levels
of LC3-I to LC3-II and decreased expression levels of p62 were
also confirmed in the osteosarcoma cells transfected with IP3k2
siRNA (P <0.05, Figures 6C-6E). These results confirm that
overexpression of IP3k2 contributes to anticancer drug-induced
autophagy in osteosarcoma cells.

DISCUSSION

The molecular mechanism of the sensitivity or resistance of can-
cers to chemotherapy is complex, involving multiple processes
such as drug transport, drug metabolism, DNA repair, apoptosis
and autophagy. Traditionally, DNA, mRNA and proteins have
been most focused on as the targets and modulators of therapy.
Therefore, mutations, copy number changes and epigenetic vari-
ables at the DNA level and expression changes at the mRNA
and protein levels have been widely studied to probe mechan-
isms that determine the pharmacologic response [39—41]. Up-
regulated autophagy has been found in various cancer cells facing
therapeutic stress and contributes to the chemotherapy resistance
[42,43]. Autophagy blocking in cancer cells is emerging as a
novel approach to enhance the sensitivity of chemotherapy in
cancers [44,45].

Tight control of autophagy is essential for normal or tumour
cells to survive, and recent advances in this field have begun to
unveil the molecular mechanisms underlying autophagy regula-
tion [46]. A connection between inositol-1,4,5-triphosphate (IP3)
and autophagosome formation has been also proposed [47,48].
IP3 is fundamental for Ca’>* homoeostasis since coupling its
receptor (IP3R) functions as an actual gateway for every Ca>*
pulse originated from the ER [49]. Increases in [Ca’™ ], medi-
ate autophagy in mammalian cells [50] and compounds acting
via this pathway (e.g. vitamin D, ATP and ionomycin) are able
to promote it quite efficiently. Ca’* -mediated autophagy seems
to principally occur via Ca?*/calmodulin-dependent kinase-8
(CaMKKp)-dependent activation of AMPK thus leading to an
efficient inhibition of mTORC]. Increases in the [Ca’* ], can
also activate death associated protein kinases and calpain pro-
teases (both Ca?* -dependent enzymes) that have been linked to
the regulation of the autophagic process [51]. In this study, we
found that inhibiting IP3k2 up-regulates anticancer drug-induced
but not basal level of autophagy, to promote tumour cell survival
in exposure to anticancer drugs in osteosarcoma cancers. To the
best of our knowledge, this is the first time to implicate the IP3-
kinase is involved in control of autophagy in osteosarcoma cells.

Notably, miRNAs can regulate a multitude of targets and biolo-
gical networks in autophagy [52,53]. A previous study indicated
clear roles of miRNAs in autophagy induction, autophagic ves-
icle nucleation, autophagic vesicle elongation and vesicle fusion
to lysosomes [52]. The present study confirmed that during treat-
ment with Dox or Cis in osteosarcoma cells, miR-140-5p expres-
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sion was strongly induced. The increased miR-140-5p expression
facilitated tumour cell proliferation via up-regulating autophagy,
thus, facilitated the resistance of osteosarcoma cells to Dox or
Cis. In conclusion, the present study has demonstrated that an-
ticancer drug treatment up-regulates miR-140-5p expression in
osteosarcoma cells. Overexpression of miR-140-5p induces the
activation of autophagy, which promotes tumour cell survival
and chemoresistance. These observations reveal a novel role for
miR-140-5p in chemotherapy resistance during the treatment of
osteosarcoma.

The role of autophagy in the tumour cell’s sensitivity or resist-
ance to chemotherapy is complex. In osteosarcoma, as shown in
other tumours, autophagy plays a dual role either by promoting
cell survival and tumour cell resistance to chemotherapy or by
acting as one of the mechanisms responsible for chemotherapy-
induced cell death. Better understanding of the molecular path-
ways that govern the process of autophagy will allow identifica-
tion of a mode to modulate these pathways in order to enhance
the activity of chemotherapy. The present study has demonstrated
that anticancer drug treatment up-regulates miR-140-5p expres-
sion in osteosarcoma cells. Overexpression of miR-140-5p in-
duces the activation of autophagy, which promotes tumour cell
survival and chemoresistance. These observations reveal a novel
role for miR-140-5p in chemotherapy resistance during the treat-
ment of osteosarcoma.

In summary, our study shows that miR-140-5p targeted IP3k2
and inhibited the IP3k2-mediated autophagy in osteosarcoma
cells during the chemotherapy, and sensitized the osteosarcoma
cells to anticancer drugs by inhibiting cell proliferation. These
findings identified the novel tumour stimulative role of miR-140-
5pinIP3k2-mediated autophagic chemotherapy resistance during
the treatment of osteosarcoma.
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