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Abstract

Knowledge of genetic origins of obstructive lung diseases has made inhaled gene therapy an 

attractive alternative to the current standards of care that are limited to managing disease 

symptoms. Initial lung gene therapy clinical trials occurred in the early 1990s following the 

discovery of the genetic defect responsible for cystic fibrosis (CF), a monogenic disorder. 

However, despite over two decades of intensive effort, gene therapy has yet to help patients with 

CF or any other obstructive lung disease. The slow progress is due in part to poor understanding of 

the biological barriers to inhaled gene therapy. Encouragingly, clinical trials have shown that 

inhaled gene therapy with various viral vectors and non-viral gene vectors is well tolerated by 

patients, and continued research has provided valuable lessons and resources that may lead to 

future success of this therapeutic strategy. In this review, we first introduce representative 

obstructive lung diseases and examine limitations of currently available therapeutic options. We 

then review key components for successful execution of inhaled gene therapy, including gene 

delivery systems, primary physiological barriers and strategies to overcome them, and advances in 

preclinical disease models with which the most promising systems may be identified for human 

clinical trials.
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1. Introduction

Obstructive lung diseases consist of a group of respiratory disorders characterized by airway 

obstruction in the lungs of affected patients. All included diseases entail severe respiratory 

morbidity that often results in pulmonary failure and disease-associated mortality. Current 

treatments generally improve patient quality of life. However, these options do not tackle the 

root of the disease [1], and patients are required to follow cumbersome therapeutic regimens 

throughout their lifetime [2]. Gene therapy has emerged as a promising alternative approach 

as a result of the growing number of identified genetic causes and modifiers of obstructive 

lung diseases. With advances in nucleic acid engineering, it is now conceivable to achieve 

gene transfer to specific cell types, including lung parenchymal cells [3–5], without affecting 

non-target cells [6]. In addition, persistent transgene expression during the life span of 

transfected cells can be achieved [7, 8].

Therapeutic delivery via inhalation provides direct access to the target of gene therapy for 

obstructive lung diseases, namely the cells lining the lung airways and airspace (i.e., 

alveoli), in a relatively non-invasive manner. The vast majority of preclinical and clinical 

studies of respiratory gene therapy have employed a pulmonary delivery strategy, including 

intratracheal/intranasal instillation and nebulization [9–11]. Nebulizers generate inhalable 

micron-sized liquid droplets that can carry hundreds of gene vectors per drop and reach 

virtually all areas of the lung [12]. However, despite encouraging safety and tolerability 

results, therapeutically effective inhaled gene therapy of obstructive lung diseases has not yet 

been achieved. Lack of clinical success is due to the limited ability of gene delivery vectors 

to overcome difficult biological barriers, which stems from a relatively poor understanding 

of the barriers. Improvement of this understanding may allow for more rational vector 

design strategies to tackle them. For example, accumulation of thickened airway mucus was 

recognized early on as a key pathological event of obstructive lung diseases, but overcoming 

it’s barrier properties has typically not been addressed in the design of inhaled therapeutic 

delivery systems. In addition, most clinical trials involving airway gene therapy have been 

pursued as a result of positive outcomes observed in animal models that lack key features of 

human obstructive lung diseases [13–16]. The disappointments in more than 25 prior gene 

therapy clinical trials for CF alone have refocused research efforts on deepening knowledge 
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of key issues that have prevented success of inhaled gene therapy. This review is focused on 

these critical issues, including clinically-relevant gene delivery vectors, important biological 

barriers to successful gene transfer in the lungs, and rationally-designed approaches to 

overcome the barriers. Finally, we review advances in the development of improved animal 

models to test advanced gene transfer strategies prior to their evaluation in clinic trials.

2. Obstructive lung diseases for inhaled gene therapy

2.1. Cystic fibrosis (CF)

CF is the most common inherited genetic disorder in the US, and more than 70,000 people 

are affected worldwide. CF is generally caused by one of many different possible mutations 

to a single gene that encodes cystic fibrosis transmembrane conductance regulator (CFTR). 

Alteration of the CFTR ion channel protein causes abnormal ion transport between lung 

airway epithelial cells and the airway surface liquid (ASL), as well as similar ion transport 

defects in the gastrointestinal and genital tracts [17]. Pulmonary complications are the 

primary cause of CF-related morbidity and mortality [18]. Aberrant ion regulation in CF, 

including impaired chloride secretion and dysregulated sodium absorption, leads to 

dehydration of the ASL. The result of dehydration is a thickened mucus gel in the airways 

that can impair mucociliary clearance (MCC) [19]. Altered biophysical properties of airway 

mucus, which impair mucus detachment, may also play a role in impaired MCC in CF [20]. 

Reduced rates of MCC cause mucus accumulation in the airways and provide a permissive 

environment for chronic bacterial infection and associated inflammation, which together can 

cause airway obstruction, fibrosis and, eventually, pulmonary failure [19, 21]. Airway 

dehydration, infection and inflammation are more pronounced in females with CF, which 

may be due to airway-related modulatory effects of estrogen [22]. As a result, females with 

CF have higher mortality compared to males with CF [22].

Common inhalable treatments for CF, including recombinant human DNase (Pulmozyme®), 

hypertonic saline and antibiotics (TOBI®), alleviate disease symptoms, but do not address 

the underlying root of the problem, CFTR dysfunction. In 2012, the FDA approved the first 

drug that directly addresses CFTR dysfunction, Ivacaftor (VX-770; Kalydeco®) [23]. 

Ivacaftor demonstrated significant improvements in lung function of CF patients [24, 25]. 

However, only patients with a specific class of mutations respond to Ivacaftor treatment, 

representing only a small subset of the patient population (~5%). Another drug, lumacaftor 

(VX-809), showed promising in vitro correction of the most prevalent CFTR mutation, 

ΔF508, which represents ~70% of CF patients [26]. This finding prompted its clinical 

evaluation, in combination with Ivacaftor [27], and the result was published in 2015 [28]. 

Although the trial demonstrated only modest improvement in pulmonary function compared 

to Ivacaftor in G551D patients [29], the combined formulation was recently approved by the 

FDA under the brand name of Orkambi®.

There are more than 1900 identified CFTR mutations, many of which are not expected to be 

responsive to currently available CFTR drugs [27]. Inhaled CFTR gene therapy, as a means 

to treat the underlying cause of the disease in the lungs, could benefit CF patients regardless 

of their specific CFTR mutation. However, over 25 clinical trials testing viral or non-viral 

gene vectors have failed to show clinical benefits, largely due to inefficient gene transfer to 
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target cells [9, 10], including serous cells in the submucosal glands and ciliated airway 

epithelial cells [30]. Some viral CF gene therapy trials have been discontinued due to the 

generation of host immune response that renders subsequent treatments ineffective [10, 31]. 

It should be noted that lifetime repeated treatment is likely required for CF, as therapeutic 

effects will eventually fade away due to the transient nature of episomal transgene 

expression [32] and/or the natural lifespan of transfected cells [7]. The UK CF Gene 

Therapy Consortium has recently completed the only CF gene therapy clinical trial that has 

been active in the past decade [33]. In this study, Alton et al. demonstrated, using a non-viral 

gene vector, a significant, yet modest, benefit compared to placebo control. They concluded 

that a more potent gene delivery vector is required to make gene therapy a viable option for 

treating CF [33].

Clinical trials for CF gene therapy have shown evidence of CFTR transgene expression 

based on measurements of CFTR mRNA and changes in nasal potential difference (NPD), 

but no significant improvement in lung function parameters has been reported [34, 35]. This 

suggests that the levels of gene transfer achieved in clinical trials have been insufficient to 

mediate functional cure in the CF airways. Nevertheless, optimism remains as several 

studies have suggested that a modest level of functional CFTR protein may be sufficient to 

improve lung function of CF patients. An early in vitro study suggested that only ~5% of 

airway epithelial cells need to produce functional CFTR proteins to restore chloride ion 

balance in the CF lung [36]. More recently, Pickles et al. used an in vitro model of human 

CF ciliated airway epithelium and found that at least 25% of cells may be required to 

express functional CFTR proteins in order to achieve mucus transport rates comparable to 

those in non-CF airways [37]. Interestingly, CF patients with certain mutations, which retain 

~10% of normal CFTR expression per cell, are generally not afflicted by CF lung diseases 

[38]. Based on these observations, modest levels of CFTR protein expression throughout the 

airway epithelium could normalize pulmonary function in CF lungs.

All CF gene therapy clinical trials to date have tested delivery of wild-type CFTR genes in 

order to provide functional proteins. However, approaches to rescue defective CFTR have 

been introduced in the literature, which involve miRNA [39], peptide nucleic acid [40], zinc-

finger nuclease [41] and CRISPR/Cas9 [42] technologies. These studies demonstrated in 
vitro and/or in vivo restoration of the ΔF508 CFTR function. Recently, the CF Modifier 

Consortium, which combines research efforts from groups in North America and France, 

completed a genome-wide association study to identify genetic loci relevant to CF 

pathophysiology [43]. In this study, samples from 6,365 CF patients with over 8 million 

genetic variants were analyzed and five genetic modifier loci associated with disease severity 

were discovered. This finding may provide additional genetic targets and enable 

individualized treatment of CF.

2.2. α-1 antitrypsin deficiency

α-1 antitrypsin deficiency (AATD) is another attractive target for gene therapy since it is 

also a monogenic disorder. AATD is caused by mutation in the gene encoding the serine 

protease inhibitor (α-1 antitrypsin; AAT). In normal conditions, AAT is synthesized 

predominantly in the liver, secreted directly into the bloodstream, and transported to the 
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lungs where it protects alveolar interstitial elastin from degradation by neutrophil elastase 

[44]. However, reduced AAT secretion in AATD leads to protease/anti-protease imbalance 

and airway inflammation in the lungs. As a result, patients with AATD develop emphysema 

and chronic obstructive pulmonary disease (COPD; discussed in section 2.3), which is often 

triggered by environmental factors such as acute infection and cigarette smoking [9]. A 

small subset of AATD patients (<10%) develops symptomatic liver disease. It is generally 

accepted that mutant AAT molecules polymerize and accumulate in the endoplasmic 

reticulum of hepatocytes, leading to the elevation of pro-inflammatory signaling [45].

Weekly intravenous infusion of AAT protein (i.e. augmentation therapy) is the only 

therapeutic option for AATD lung diseases that is currently approved by the FDA [44]. This 

protein-based augmentation therapy is well tolerated, effective in restoring AAT serum 

levels to the therapeutic threshold of 11 µM, and improves lung function [44, 46]. However, 

the therapy is expensive and requires frequent dosing in the clinic. Thus, a gene therapy 

product that allows sustained production of AAT over a longer period of time may offer a 

significant advantage over the current therapy.

There have been four clinical trials conducted for AATD gene therapy to date [47]. The first 

proof-of-concept clinical trial involved intranasal administration of non-viral gene vectors 

carrying the AAT gene [48]. In this study, one-third of the level after AAT protein therapy 

was achieved, but the effect was transient. In subsequent trials, viral gene vectors were 

intramuscularly dosed to AATD patients, since the site or type of cells that produce AAT is 

irrelevant [47]. However, in a recent Phase II clinical trial, viral gene vectors administered 

via this route mediated AAT production at only 3–5% of the therapeutic target, necessitating 

an improved gene transfer strategy [49].

Directly targeting the lungs via inhalation may provide a therapeutically-beneficial level of 

AAT production at the site of action. Although there is no active clinical trial evaluating 

inhaled AATD gene therapy, inhalable AAT protein-based augmentation therapy is in 

progress in AATD patients with emphysema [46]. Encouragingly, an inhaled AATD gene 

therapy trial demonstrated superior anti-inflammatory effects in the lungs compared to 

intravenous protein therapy [48]. Gene therapy approaches for AATD liver diseases include 

the use of short hairpin RNA (shRNA) or miRNA for the knockdown of mutant AAT in 

hepatocytes; detailed information is available elsewhere [44, 46, 47].

2.3. Chronic obstructive pulmonary disease

COPD is an incurable disease that is expected to be the third largest cause of death in the 

world by 2020 [50]. Cigarette smoking is generally accepted as the major cause of the 

disease, but exposure to environmental and/or work-related pollutants is also reported to be a 

significant factor [51, 52]. Abnormal inflammation and oxidative stress mediated by 

excessive inhalation of particulate matter and certain gases cause destruction of the 

extracellular matrix, leading to disease progression [51]. COPD is characterized by a 

progressive and irreversible airway limitation. This results from chronic bronchitis 

characterized by fibrosis, obstruction and remodeling of small airways [53]. Emphysema 

may also occur characterized by enlargement of airspace and destruction of lung 

parenchyma [53]. COPD patients with frequent exacerbations experience increased airway 
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inflammation, dynamic lung hyperinflation, elevated bacterial colonization in the lower 

airways and increased susceptibility to viral infection of the airways, rendering the lungs the 

major target for treatment [54].

Smoking cessation is an important part of COPD treatment, however, many COPD patients 

continue to suffer from the disease due to irreversible functional and anatomical alterations 

[55]. Current treatments for COPD reduce symptoms only, and do not arrest or reverse 

deterioration in lung function and architecture that accompanies moderate to severe disease. 

Available pharmacological treatments include bronchodilators, such as β-agonists and 

muscarinic antagonists, and inhaled corticosteroids, each of which offer short-term 

management of disease symptoms [56]. Other medications include mucolytic agents [57] 

and antibiotics [58], both recommended for patients undergoing acute exacerbations.

COPD gene therapy research has been slow due to the highly variable disease etiology and 

lack of good animal models, each of which limit the pace of drug development [9]. While 

clinically-tested AATD gene therapies may also prove useful for treatment of COPD, 

mutations in the AAT gene are responsible for only ~1–3% of COPD cases [51]. Several 

genetic loci involved in protease/anti-protease, antioxidant, or anti-inflammatory activities 

have been identified to exhibit polymorphisms associated with COPD [51]. However, 

preclinical evaluation of genetic intervention has not been extensively pursued. For example, 

pro-inflammatory cytokines like IL-18 and IL-1β have been implicated in COPD 

pathogenesis, but their potential role as therapeutic targets remains to be explored [59].

Recent genetic, biochemical and histological evidence suggests altered transforming growth 

factor beta (TGF-β) signaling is associated with COPD development and progression [60–

62]. TGF-β levels are elevated in the conducting airway (i.e., bronchi and bronchioles) and 

airspace compartments of patients with COPD [63–65]. In addition, Podowski et al. have 

shown that angiotensin receptor blocker antagonizes TGF-β signaling and, as a result, 

attenuates smoke-induced lung injury and rescues lung airway and airspace architecture in a 

mouse model of COPD [66]. Knocking down TGF-β signaling in the airways and alveolar 

sacs via gene silencing technologies may provide similar therapeutic outcomes. 

Interestingly, cigarette smoking has been shown to reduce CFTR mRNA levels, CFTR 

protein levels and CFTR function, which contributes to mucus clearance defects in patients 

with COPD [67]. Thus, CFTR is another potential therapeutic target for COPD therapy.

2.4. Asthma

Allergic asthma is a global health problem caused by unregulated production of cytokines 

secreted by allergen-specific, type 2 helper T-cells (Th2 cells) [68]. Similar to COPD, both 

genetic predisposition and exposure to environmental irritants contribute to the development 

of asthma. Allergens presented to naïve T cells lead to expression of various cytokines, 

including IL-4, IL-5, IL-9 and IL-13, via the Th2 pathway, resulting in immunoglobulin E 

(IgE) production and mast cell recruitment [69]. Exposure of sensitized individuals to 

allergens induces release of histamine, leukotrienes and prostaglandins by mast cells in the 

lung airways, which promote vascular permeability, smooth muscle contraction and mucus 

production [69]. Subsequently, chemokines released by mast cells attract macrophages, 
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eosinophils, Th2 cells and basophils to the airways, triggering airway inflammation, tissue 

damage, and allergen hypersensitivity [69].

Anti-inflammatory medication, specifically inhaled corticosteroids, is the most frequently 

prescribed therapy for asthma patients [70]. β2-adrenergic receptor agonists are also 

frequently used to dampen the inflammatory response by relaxing the smooth muscle [71]. 

While effective for most of patients, corticosteroids and β2-adrenergic receptor agonists are 

not always effective in patients with severe disease experiencing exacerbation [72], and do 

not modify the course of the disease [73]. In addition, prolonged use of either medication 

elicits several side effects [74]. Gene therapy has emerged as a potential alternative or 

supplementary therapeutic approach that has been investigated in preclinical settings to date; 

gene silencing approaches are more common, but gene overexpression approaches are also 

being studied [69].

Unlike CF and AATD, but similar to COPD, there are multiple genetic loci involved in 

asthma development and progression. This opens many opportunities for gene therapies 

aimed at a host of target cells, including lung epithelial cells, smooth muscle cells, and 

immune and inflammatory cells [9]. Using non-viral gene delivery platforms, a broad range 

of targeted proteins could be simultaneously activated with a single administration, which 

may be an advantage compared to interventions with small molecules, such as 

oligonucleotide (ONT)-based knockdown approaches [75]. Repeated dosing with ONT-

based therapies failed to show sufficient therapeutic benefit over time [9, 74, 75]. In contrast, 

plasmid DNA-based strategies could provide long-term therapeutic effects with relatively 

infrequent administration.

Evidence suggests that airway remodelling results in the progressive loss of lung function in 

asthmatics [76]. Thus, in addition to the therapies for attenuating airway inflammation, 

intervention of asthma-associated structural changes in the lung, including smooth muscle 

hypertrophy, wall thickening and collagen deposition, could reduce the rate of loss of lung 

function. Recently, da Silva et al. reported a proof-of-concept study where they evaluated 

effect of the gene encoding an active form of thymulin peptide in a mouse model of asthma 

[77]. Thymulin peptide has been shown to mediate anti-inflammatory and anti-fibrotic 

effects in several disease models by modulating T cell differentiation [78]. They found that a 

single intratracheal administration of a polymer-based non-viral gene vector carrying 

thymulin plasmid DNA effectively prevented both the inflammatory and remodelling 

processes in the airways, thereby providing improved airway repair and lung mechanics in a 

mouse model of allergic asthma. Likewise, a viral gene vector carrying antisense against a 

cytokine that activates the Th2 pathway, IL-4, reduced airway remodelling in a rat model 

despite being systemically administered [79]. Overall, multiple targets may need to be 

tackled to cover the broad spectrum of the diseased population, but promising preclinical 

studies underscore that gene therapy is an attractive strategy for patients affected by severe 

asthma.
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3. Gene delivery platforms

3.1. Viral gene vectors

Viruses have evolved to infect and transfer genetic payloads to host cells, which makes them 

attractive candidates for gene therapy applications. The recent approval of adeno-associated 

virus (AAV) type 1 as a vector for gene therapy in patients with lipoprotein lipase deficiency 

in Europe (Glybera™) [80] has provided renewed optimism in virus-mediated gene therapy. 

Numerous clinical trials using adenovirus (AdV) or AAV as gene vectors to treat obstructive 

lung diseases have been completed, most of which have focused on CF due in part to its 

monogenic nature [81]. However, gene therapy clinical trials for CF using AdV and AAV2, 

dosed either intranasally or intratracheally, have failed to result in clinical benefits, and 

inefficient gene transfer to target cells has been cited as the primary reason [9, 10]. In 

addition, host immune responses to these vectors were found to limit gene expression after 

repeated administration of the vectors [10, 31]. However, it should be noted both AdV and 

AAV2 were well tolerated with limited adverse effects in these studies. Recent preclinical 

studies aim to more clearly define tissue tropism of the many available viral vectors and 

their alternative serotypes. In addition, sophisticated optimization of viral capsids and 

genomes (discussed in section 5.1) are further advancing the capabilities of next-generation 

viral gene vectors.

3.1.1. Adenovirus (AdV)—AdV was the first viral gene vector tested in inhaled gene 

therapy clinical trials. AdV is a non-enveloped, icosahedral capsid virion with diameter 

ranging from 70 – 100 nm. AdV has a genome capacity (36kb) that is much larger than 

typical viruses [82]. This allows full length CFTR, AATD, and other relatively large 

therapeutic nucleic acids to be packaged into AdV. AdV does not introduce its nucleic acid 

payload into the host genome, which results in transient transgene expression [83]. However, 

lack of DNA integration is a benefit in terms of safety since insertional mutagenesis has 

been observed with integrating viral vectors [84]. Importantly, the receptor that mediates 

AdV entry into airway epithelial cells, coxsakievirus-adenovirus receptor (CAR), resides on 

the basolateral side of the epithelium, which limits AdV’s potential efficacy in vivo for 

inhaled gene therapy [85, 86]. The innate immune responses, including generation of 

neutralizing antibodies against AdV, must also be addressed, as repeated administration of 

AdV will be required for most inhaled gene therapy applications [87, 88]. To begin to 

address this limitation, helper-dependent or “gutless” AdV (HD-AdV) have been produced 

wherein all viral DNA has been removed. Preclinical studies with HD-AdV have shown 

promise [89, 90]. Toeitta et al. showed that HD-AdV administration resulted in reduced 

inflammatory response and improved airway transduction in mice compared to AdV [91]. 

Importantly, Croyle et al. showed that gene transduction in mouse lungs with HD-AdV was 

maintained after a second administration conducted 28 days after the initial dosing [92]. 

Airway transduction with HD-AdV has also been demonstrated in larger animals, including 

the ferret [93] and pig [94], further supporting its potential for inhaled gene therapy 

applications.

3.1.2. Adeno-associated virus (AAV)—Recent viral gene therapy trials have shifted to 

the use of AAV, as it overcomes many limitations of AdV. For example, AAV provides broad 
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tissue tropism and more stable transgene expression with partial, site-specific integration 

into the host genome [10, 95, 96]. AAV is a non-enveloped, icosahedral, non-replicating 

capsid virus with a diameter of roughly 25 nm [97]. Infection of target cells with AAV is 

mediated by cell-surface associated glycans, such as sialic acids and/or heparan sulfate 

proteoglycans depending on the AAV serotype [98–100]. As AAV vectors have shown broad 

tissue tropism, debate remains over the best-suited AAV serotypes for pulmonary 

applications [10]. AAV2 was the first discovered serotype [95], and is the only serotype 

tested in clinical trials of inhaled gene therapy to date [101–103]. Although efficient gene 

transfer was evident in the nares of humans, lung function in CF patients was not improved 

[101, 102]. The disappointing outcomes with AAV2 mediated gene therapy In the lungs are 

likely partially due to the limited capacity of AAV2 to transduce airway epithelial cells via 

the apical membrane [10]. AAV2, similar to AdV, requires a receptor that is primarily 

expressed on the basolateral side of the airway epithelium, specifically the heparan sulfate 

proteoglycan receptor, in order to introduce nucleic acid payloads into airway epithelial cells 

[99]. A Phase II clinical trial for CF utilizing AAV2 was dropped in 2005 due to inadequate 

efficacy following repeated administration [103]. To this end, identification and/or 

engineering of AAV variants with enhanced infection capabilities via the apical membrane, 

lower immunogenicity, and desired tropism is likely required, especially given the therapy-

inactivating immunogenicity generated by repeated administration of AAV2. In Phase I and 

II clinical trials for AATD, AAV1 and AAV2 dosed intramuscularly did not reach their 

primary therapeutic endpoints, but rather showed transient and low production of wild-type 

AAT [47, 49]. Inhaled administration of next generation gene vectors, packaging AAT-

encoding DNA, will allow production of AAT proteins at the target of therapy, which may 

provide a greater therapeutic benefit to patients afflicted with AATD.

Investigations into alternative AAV serotypes, including AAV1, AAV5, and AAV6, have 

shown promising results, motivating their development for inhaled gene therapy. AAV5 

mediated 50-fold greater gene transfer efficiency than AAV2 in air-liquid interface (ALI) 

culture of primary human airway epithelium (HAE) in vitro in one study [104]. The inherent 

tropism of AAV5 for airway epithelium results from its interaction with α2,3 N-linked or O-

linked sialic acid receptors present on the apical surface of the airway epithelium [98]. 

Recently, a pseudotyped (hybrid) AAV gene vector, bearing AAV2 rep and AAV5 cap 

expression cassette (AAV2/5), achieved persistent gene transfer lasting up to 15 months in 

the airways and alveoli of mice following intratracheal administration (Figs. 1A, B) [105]. 

They also found that re-administration of AAV2/5 14 months after the initial administration 

did not significantly reduce the gene transfer efficacy, presumably due to the long dosing 

interval [105]. As a result of this dosing interval, neutralizing antibody levels were reduced 

by more than 50% compared to peak levels after the first administration [105]. The process 

and rationale of pseudotyping viral gene vectors is discussed in detail in section 5.1. Similar 

to AAV5, AAV1 and AAV6 require interactions with apically expressed receptors, α2,3 

and/or α2,6 N-linked sialic acids [100], respectively, in order to transduce airway epithelial 

cells [100]. An in vitro study with ALI culture of primary HAE revealed that AAV1 

exhibited orders of magnitude greater transduction efficiency than AAV2 and AAV5 when 

the vectors were administered to the apical side of the airway epithelium [106]. AAV1 also 

exhibited gene transfer efficacy following intratracheal administration in the airways of 
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chimpanzees that was 20-fold higher compared to that achieved with AAV5, presumably due 

to a weaker T-cell response to AAV1 [107]. More recently, AAV6 was found to transduce 

mouse and dog airway epithelium in vivo [108], and HAE in vitro [109], to a level 

surpassing that achieved with AAV1, AAV2 and AAV5. In addition to the identification of 

AAV serotypes with lung tropism, modification of AAV to overcome other key barriers and 

therapy-inactivating immunogenicity is needed prior to human testing of next generation 

AAV for inhaled applications.

A limitation of AAV is its relatively small packaging capacity for DNA payload (4.7 kb) 

[97]. All CF gene therapy trials to date have used the full-length, wild-type CFTR gene to 

produce functional CFTR protein. The relatively large size of CFTR cDNA (4.5 kb) has, as a 

result, greatly limited the selection of important regulatory elements in plasmid design, 

including promoter and enhancer components. [110]. Thus, clinical trials that have tested 

AAV-mediated CFTR gene transfer have utilized a weak promoter derived from inverted 

terminal repeat (ITR) [110]. ITR is a key element required for packaging therapeutic nucleic 

acid payloads into the AAV capsid [111]. Several approaches have been developed seeking 

to circumvent this issue. Yan et al. utilized human bocavirus virus-1 (HBoV1) capsids to 

create a hybrid AAV virus with a larger packaging capacity (5.5 kb) [112]. In order to 

incorporate stronger promoters into AAV, shorter versions of therapeutic genes have also 

been engineered with a specific focus on CF gene therapy [113]. Specifically, truncated 

CFTR genes that rescue defective CFTR, rather than synthesize the protein de novo, have 

been developed [114, 115]. Cebotaru et al. demonstrated that a truncated CFTR, Δ27–264 

CFTR, delivered via AAV2/5, provided Δ508 CFTR restoration in vitro in polarized HAE 

with chloride currents approaching that of wild-type CFTR [115]. In an earlier report, they 

also showed that expression of another truncated CFTR, Δ264 CFTR, led to an increased 

level of wild-type CFTR production in the lungs of monkeys [116]. Another strategy to 

overcome the packaging size limitation inherent to AAV is to split the genome between two 

AAV vectors. This is achieved by either packaging overlapping genomes, which reconstruct 

the full length gene through homologous recombination after viral entry, or by evenly 

splitting the genome between two vector genomes that then combine after infection through 

trans-splicing via heterodimerization [117]. Using the former approach, intranasal 

administration of dual AAV6 vectors, carrying overlapping fragments of a reporter gene, 

resulted in production of the encoded protein in the mouse lung to a level comparable to 

what achieved by a single AAV6 carrying the intact gene [118]. This finding suggests that 

the additional recombination step may not significantly impact the efficacy of transgene 

expression.

3.1.3. Retro- and lentivirus—Retroviruses have also been investigated as viral vectors 

for use in inhaled gene therapy. Unlike AdV and AAV, retroviruses are capable of fully 

integrating nucleic acid payloads into the host genome via reverse transcription [119], 

thereby potentially providing longer and more stable transgene expression. However, 

insertion must be tightly controlled in order to avoid insertional mutagenesis that may result 

from random incorporation into host chromosomal DNA [84]. In a prior clinical trial for X-

linked severe combined immunodeficiency, 2 of 4 patients who were successfully treated 

with retroviral gene vectors carrying the γc gene developed treatment-related leukemia 
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[120]. Another limitation of retroviral vectors is their inability to infect non-dividing cells 

[121], which limits their use for inhaled gene therapy applications given the slow turnover 

rate of airway epithelium [7].

Other integrating viral gene vectors of interest are lentiviral gene vectors, including 

recombinant human (HIV) and feline (FIV) immunodeficiency viruses. In contrast to 

retrovirus, lentiviruses are capable of transfecting post-mitotic cells [122, 123], including 

fully differentiated lung parenchymal cells. Lentiviral vectors have a packaging capacity 

large enough (8 kb) to accommodate full-length genes, such as CFTR [124]. However, 

lentiviruses have limited tissue tropism and, thus, capsid engineering is required to enable 

their use in gene therapy applications [124]. Initial preclinical studies have demonstrated 

efficient, persistent pseudotyped lentivirus-mediated gene expression in the lung [125–131]. 

For example, a recent study using pseudotyped lentivirus delivered intranasally showed gene 

expression in the lungs of mice that lasted up to 22 months after initial dosing without signs 

of toxicity or insertional mutagenesis (Figs. 1C, D) [131]. The modifications used to 

introduce lung tropism to lentivirus-based gene vectors are discussed in detail in section 5.1. 

Further investigation into lentivirus-mediated lung gene therapy is warranted given the 

promising results thus far. However, whether lentiviruses can efficiently overcome 

physiological barriers unique to inhaled gene therapy of obstructive lung diseases (discussed 

in section 4) remains to be investigated.

3.2. Non-viral gene vectors

The majority of inhaled gene therapy clinical trials for obstructive lung diseases to date have 

evaluated virus-based gene vectors. However, intrinsic limitations to their use for gene 

therapy over the lifetime of a patient, including therapy-inactivating immunogenicity and 

insufficient gene transfer in human airways to elicit clinical benefits, have spurred interests 

in development of synthetic systems [132, 133]. Synthetic systems, often referred to as non-

viral vectors, are generally formed by multivalent electrostatic interactions between 

positively charged carrier materials and negatively charged nucleic acids. Unlike some viral 

vectors, non-viral vectors possess virtually unlimited nucleic acid packaging capacity [137], 

enabling the delivery of large, multiple and/or diverse nucleic acid payloads. Scale-up of 

non-viral vectors is relatively straight-forward compared to the complex procedures required 

for mass production of viral vectors [138]. Non-viral vectors can be altered to impart desired 

functionalities, such as the ability to penetrate through extracellular barriers [134], target 

specific cell types [135] and enhance intracellular delivery [136]. It is widely claimed that 

the primary disadvantage of non-viral vectors is that they provide lower gene transfer 

efficacy compared to viral vectors [139]. However, few studies have been conducted where 

advanced non-viral vectors have been directly compared with viruses in vivo, where 

physiological barriers such as the presence of thick mucus and the immune response may 

significantly contribute to their performance.

3.2.1. Lipid-based gene vectors—The earliest preclinical evaluation of inhaled non-

viral vectors for gene therapy of the airways was conducted with lipid-based systems [140–

142]. A seminal study reported by Stribling et al. reported results obtained from nebulized 

lipid-based gene vectors for inhaled gene therapy [142]. In their paper, aerosolization of a 
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system based on N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride 

(DOTMA)/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) safely mediated 

transgene expression in the majority of airway epithelial cells and alveolar lining cells at 

least for 21 days without signs of toxicity [142]. The promise provided by this and other 

early work [13, 143–147] enabled the prompt translation of the approach to clinical 

evaluation for inhaled gene therapy, with a specific focus on monogenic disorders, including 

CF and AATD. There have been 11 clinical trials with non-viral gene vectors for inhaled 

gene therapy of obstructive lung diseases to date, and all but one involved lipid-based 

formulations [148]. Based on promising observations in transgenic CF mouse models [13, 

149], dimethylaminoethane-carbamoyl-cholesterol (DC-Chol)/DOPE was the first lipid-

based system to be clinically evaluated [150]. These studies provided proof-of-concept for 

lipid-based inhaled gene transfer by showing partial NPD correction and a sign of CFTR 

transgene expression in several CF patients [11, 150]. However, similar to results with viral 

vectors tested in CF patients to date, the effects were modest and transient. Thus, the team 

tested whether repeated administration might provide more sustainable transgene expression 

[151]. Although clinical benefit was not achieved, the three doses of DC-Chol/DOPE 

carrying wild-type CFTR were well-tolerated by CF patients without any evidence of 

immunologic side effects [151]. In addition, gene transfer efficacy was not attenuated by 

repeated administration [151], unlike viral vectors [10, 31]. Other lipid-based systems, 

including N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP) 

[152] and p-ethyl-dimyristoylphosphatidyl choline cholesterol (EDMPC-Chol), have been 

tested in humans for inhaled gene therapy of CF. Unfortunately, the results were similar at 

best to the earlier single dose DC-Chol/DOPE studies [11, 150]. In the first and only clinical 

evaluation of the inhaled gene therapy of AATD using non-viral vectors, Brigham et al. 

compared nasally instilled DOTMA/DOPE carrying AAT-encoding plasmid DNA to the 

standard-of-care for AATD, weekly intravenous injection of AAT protein [48]. The 

concentration of AAT in nasal lavage fluids of patients who received the inhaled AAT gene 

therapy was about a third of the normal value that is achieved by AAT protein therapy. 

However, unlike the protein therapy, inhaled gene therapy reduced the levels of IL-8, a pro-

inflammatory cytokine that is elevated in AATD patients [48].

The Genzyme lipid 67 (GL67) is by far the most extensively studied lipid-based gene vector 

for inhaled gene therapy of obstructive lung diseases. GL67 provided 100-fold greater 

transgene expression compared to DC-Chol/DOPE [147], which was the first system tested 

clinically [150]. However, intranasal instillation of GL67, while achieving transgene 

expression on par with AdV, resulted in significant acute lung toxicity due to the need for 

high doses [147, 153]. Eastman et al. reported delivery of GL67 via aerosol significantly 

reduced the toxicity, but empirically determined that very high concentrations were required, 

which caused undesirable vector precipitation [142, 154, 155]. To address this, they 

modified the system with a fraction of dioleoulphosphatidylethanolamine covalently coupled 

with 5 kDa polyethylene glycol (PEG) [155], yielding a formulation named GL67A. Surface 

stabilization with PEG was later confirmed by in vitro studies showing that exposure to 

physiological concentrations of CF mucus components, including albumin, mucin, and 

linear DNA, did not undermine the gene transfer efficacy of GL67A [156]. Clinical studies 

with GL67A showed signs of CFTR transgene expression, but flu-like symptoms were 
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observed in treated patients [11, 157]. To potentially improve the safety profile, Hyde et al. 

investigated the effect of unmethylated CpG on GL67A-mediated in vivo gene transfer 

[158]. They demonstrated that while the presence of a single CpG in plasmid DNA was 

sufficient to elicit a pro-inflammatory response, CpG-free plasmid DNA delivered via 

GL67A provided sustained transgene expression at least for 56 days without causing lung 

inflammation. In the meantime, GL67A was compared for in vivo gene transfer efficacy 

with other non-viral systems, including 25 kDa polyethylenimine (PEI)-based systems and 

clinically-tested PEGylated poly-L-lysine (PLL) (see section 3.2.1; [159])-based systems 

[14]. Among these, GL67A exhibited the highest levels of CFTR transgene expression in 

sheep lungs (Fig. 2A, B) [14]. However, it should be noted that the doses were not matched 

in this study. Recently, a clinical trial testing repeated administration of GL67A carrying 

CpG-free CFTR-encoding plasmid DNA was completed [160]. In this multi-dose trial, 

GL67A provided a significant, but moderate, improvement in the lung function of CF 

patients, suggesting that an improved gene delivery system is likely required to achieve 

therapeutically relevant outcomes [33]. Notably, monthly administration of the gene vectors 

to these patients was well tolerated over the course of the 12-month treatment without any 

detectable adverse effect [33].

3.2.1. Polymer-based gene vectors—Cationic polymers have also been explored as a 

means to produce non-viral gene vectors for gene therapy. Among polymer-based systems, 

PEI is the most extensively studied in the preclinical setting. Linear and branched PEI with 

molecular weights over 20 kDa have been used most frequently due to their high charge 

density that enables efficient complexation of nucleic acid payloads [161] and strong 

buffering capacity that may help the gene vectors escape acidic vesicles inside the cell [162]. 

Multiple groups have investigated PEI complexes with nucleic acids for inhaled gene 

therapy [14, 163–169]. Densmore et al. demonstrated that PEI-based gene vectors nebulized 

into mouse lungs produced a 10 – 100-fold greater pulmonary transgene expression 

compared to various lipid-based systems, including GL67/DOPE, DOTAP/DOPE and DC-

Chol/DOPE [164]. Importantly, repeated administration at a dose interval of 56 days of 25 

kDa branched PEI complexed with CpG-free plasmid DNA further boosted the transgene 

expression in the mouse lungs [163], suggesting that the effectiveness of repeated treatments 

was not limited by vector-induced immunogenicity. Nevertheless, clinical use of PEI alone 

as the condensing polymer in a non-viral vector system has been discouraged by some due 

to toxicity observed in animals caused by its high positive charge density and 

nonbiodegradable nature [170, 171].

Interestingly, Boeckle et al. demonstrated that removal of residual free PEI polymers 

(polymers in a formulation that are not complexed to DNA) by size exclusion 

chromatography resulted in significantly reduced toxicity and increased transgene 

expression of gene vectors based on 22 kDa linear PEI [176]. Likewise, removing free PEI 

by ultracentrifugation resulted in significantly greater pulmonary transgene expression with 

negligible toxicity in mouse and sheep lungs following aerosolized administration of 25 kDa 

branched PEI-based gene vectors [169]. These findings suggest that the toxicity of PEI-

based systems is largely attributed to uncomplexed polymers, and that complete removal of 

free PEI from formulations will be a necessary step in future clinical evaluations. 
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Furthermore, since low molecular weight PEI is less toxic than high molecular weight PEI, 

several groups have developed PEI derivatives capable of degrading into smaller subunits in 

physiological conditions, such as in aqueous, acidic and/or reducing environments [172–

175]. Of note, albeit not for inhaled gene therapy, PEI has been tested in clinical trials for 

other gene therapy applications [177, 178].

Poly-L-lysine (PLL) is another well-studied studied cationic polymer for gene delivery 

applications. While PLL alone has been associated with limited transfection efficiency and 

cytotoxicity [160, 179], a specific PLL-PEG based gene vector, namely CK30PEG10k, has 

been found safe when administered to human nares. CK30PEG10k consists of a 30-mer PLL 

(30 lysine residues) covalently linked to 10 kDa PEG via a cysteine residue. CK30PEG10k 

has been shown to transfect airway epithelial cells in the lungs of mice (Figs. 2C, D) [181], 

perhaps owing to its ability to interact with nucleolin on the surface of airway epithelial cells 

[182], without eliciting significant toxicity [183]. In addition, CK30PEG10K was shown to 

effectively complex plasmid DNA with sizes up to 20 kb [184] and to transfect post-mitotic 

cells [180]. The promise in the preclinical studies resulted in its evaluation in 12 CF patients 

who received CK30PEG10K complexed with human CFTR-encoding plasmid DNA 

administered intranasally [159]. A majority of treated patients exhibited partial to complete 

NPD correction without any noted side effects [159]. The level of gene transfer to the upper 

airway achieved by CK30PEG10k was comparable to the levels observed in trials of AAV2 at 

the highest titer [102, 159, 185].

4. Physiological barriers to inhaled gene therapy

4.1. Barriers in conducting airways

4.1.1. Mucus gel layer—Initial efforts to improve lung gene transfer focused primarily on 

efficiently overcoming cellular barriers to DNA delivery [188–190]. More recently, mucus 

covering the airway epithelium has been recognized as one of the greatest obstacles to 

overcome [191–195]. Airway mucus is primarily composed of a dense mesh of gel-forming 

mucin fibers, large macromolecules containing a high density of negatively charged glycans 

interspersed with periodic hydrophobic regions [196]. Thus, inhaled foreign materials, 

including gene vectors, are most often immobilized in the mucus blanket via multivalent 

adhesive interactions (e.g. electrostatic interactions, hydrophobic forces and hydrogen 

bonding) and/or steric obstruction. Gene vectors trapped in the mucus gel are cleared from 

the lung via mucociliary clearance (MCC) (3.6 mm/min [197]), which precludes them from 

efficiently reaching underlying target cells. In the lungs of people with obstructive lung 

diseases, including CF, COPD and asthma, mucus metaplasia and hypersecretion leads to 

mucus accumulation and impaired MCC, providing a permissible environment for chronic 

infection and inflammation [19, 21, 198–200]. Particularly in the CF airways, elevated levels 

of endogenous DNA and actin filaments released from necrotic neutrophils further 

contribute to the dense mesh structure of the airway secretions [191, 201].

The average pore size of CF mucus is 140 ± 50 nm (range: 60 – 300 nm) [202], which is 

markedly smaller than the average pore size of human cervicovaginal mucus secretions (340 

± 70 nm) [203]. Recently, Fahy et al. reported that elevation of oxidative stress in the lungs 

of CF patients increases disulfide cross-links between mucin fibers that increases mucus 
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elasticity [204]. The increase in mucin crosslinking density also most likely causes the 

mucus mesh spacing to tighten further, thereby reinforcing airway mucus as a steric barrier. 

It is conceivable that other obstructive lung diseases characterized by elevated oxidative 

stress, including COPD and asthma [205], may share this feature. The viscous drag on gene 

delivery vectors in the pores alone is not likely to pose a significant diffusion barrier, since 

the viscosity of the fluid in that fills these pores in normal airway mucus [206] or CF mucus 

[207] is only moderately higher than that of water. Of note, Coakley et al. have reported that 

estrogen reduces airway surface liquid height on the CF airway epithelium, which is restored 

by estrogen antagonist, tamoxifen [208]. Thus, mucus barrier properties may be more 

pronounced in females. Cigarette smoke coupled with progesterone exposure has also been 

reported to significantly elevate mucus cell metaplasia and accumulation of eosinophils in an 

asthma model, while progesterone alone does not [209]. MCC is likely impaired in both 

cases, which contributes to infection and inflammation in the airway, thereby increasing 

mucus barrier properties.

Gene vectors that have been used in CF clinical trials recently have been shown to be 

incapable of efficiently penetrating CF mucus, including AdV [210], various serotypes of 

AAV including AAV1, 2 and 5 [210, 211], and CK30PEG10K [212, 213]. Likewise, non-viral 

gene vectors based on the most widely explored cationic polymers, including PEI [214] and 

polyamidoamine (PAMAM) dendrimers [215], are unable to penetrate CF mucus, most 

likely due to the their positively charged surfaces that readily interact with negatively 

charged mucus constituents. It has also been shown that in vitro gene transfer mediated by 

lipid- and polymer-based gene vectors and AdV was significantly reduced by CF mucus, 

underscoring its barrier property [216, 217]. Braeckmans et al. have demonstrated that 

negatively charged, hydrophobic polystyrene nanoparticles strongly adhere to the CF mucus 

mesh network (Fig. 3A) [207]. Thus, the limited success with gene delivery systems in 

clinical trials to date may be at least partly attributed to their inability to overcome the 

mucus barrier. Given the similar pathophysiological events in the airways of patients with 

other obstructive lung diseases, the mucus blanket is likely to pose a similarly critical barrier 

to inhaled gene transfer. Indeed, diffusion of nanoparticles in COPD mucus has been shown 

to be hindered to a similar extent as in CF mucus [201].

Antibody trapping and/or neutralization can also contribute to inefficient gene transfer, 

specifically for viral gene vectors. Although antibodies diffuse in human mucus relatively 

unimpeded due to their small molecular size [218], the Fc region of antibodies make low 

affinity adhesive interactions with mucus [219]. As antibodies accumulate on the surface of 

pathogen, multivalent antibody interactions with the mucus mesh can trap the pathogen, 

thereby preventing their penetration to the underlying tissue. For example, Wang et al. 

recently reported that HSV serotype 1 (HSV-1) readily penetrated fresh neutralized human 

cervicovaginal mucus, but was trapped therein in presence of anti-HSV-1 immunoglobulin G 

(IgG), which protected mice against vaginal infection [220]. A significant fraction of CF 

patients harbor active antibodies against AAV2 (32%) and AdV (55%) [221], which may 

further enhance adhesive entrapment in CF mucus and/or inactivate their capacity to 

transduce target cells. Further, neutralizing antibodies against AAV1, 2, 5, 6, 7, and 8 are 

often found in the airways of healthy people and people with CF [222, 223]. Neutralizing 

antibodies are also produced in response to administration of viral vectors, and their levels 
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are elevated upon repeat dosing [10]. Thus, it is critical to determine if the presence of 

antibodies affects the mucus penetration rates of AAV in these patient populations.

In addition to its role as a barrier that prevents penetration of gene vectors, mucus may 

impair the colloidal stability of gene vectors due to the presence of various soluble 

macromolecules, proteins, lipids, surfactants and ions in the airways. For example, non-viral 

gene vectors based on cationic polymers and lipids readily interact with negatively charged 

mucus constituents, resulting in large aggregates. Cationic gene vectors have been shown to 

aggregate in presence of albumin (the most abundant protein in airway secretions [224]), 

DNA or mucin [156, 225, 226]. Viruses that possess positively charged surfaces, including 

HSV [227] and HIV [228], may share similar fates in the mucus gel. The aggregation of 

gene vectors may reduce gene transfer efficacy by further hindering diffusion in mucus, 

especially if the aggregates become larger than mucus mesh spacings [229]. Alton et al. 

showed that even mucus diluted 100-fold markedly reduced gene transfer by AdV and lipid-

based gene vectors [230], which is partly attributed to the altered physicochemical properties 

of gene vectors mediated by soluble mucus constituents [195]. Negatively charged soluble 

materials in mucus may also compromise non-viral gene vectors by de-stabilizing 

complexation of DNA with cationic carrier materials. DNA molecules released from their 

vector are susceptible to degradation by endogenous nucleases present in the airways [231, 

232].

4.1.2. Periciliary layer (PCL)—Gene vectors trapped in the mucus gel layer of the 

airways are cleared by MCC or cough-driven clearance [233, 234]. In contrast, gene vectors 

that rapidly penetrates through the gel layer and into the periciliary layer (PCL) may be 

retained significantly longer in the lung, as the PCL is believed to be nearly stationary [235–

237]. Button et al. found that the PCL presents a significant steric barrier to vector 

penetration [238]. Using ALI culture of primary human bronchial epithelial cells, they 

showed that fluorescent dextran probes larger than 40 nm were excluded from the PCL, 

while smaller probes partitioned into the PCL and penetrated further toward the epithelium 

as size decreased [238]. These studies demonstrated that the PCL has a fine mesh structure, 

as opposed to being just a watery layer as was previously suggested [239], and that nano-

sized objects must pay a free energy price to penetrate the PCL [238]. Similar to the mucus 

gel layer, the PCL may also serve as an adhesive barrier since the meshwork is primarily 

composed of cell-tethered mucins [238]. Kesimer et al. showed that the PCL excluded AdV 

(~100 nm in diameter), but not AAV (~30 nm in diameter; serotype not specified; Fig. 3B) 

[240]. In CF lungs, dehydration of the PCL mediated by dysregulation of epithelial sodium 

channels (ENaC) on the airway epithelium can cause an osmotically-driven collapse of the 

PCL [238, 241]. Collapse of the PCL likely further increases the barrier function to inhaled 

gene vectors by making the PCL mesh tighter. Despite being relatively less explored, airway 

dehydration appears to be a common concern for other obstructive lung diseases, including 

COPD [242] and asthma [243]. Overall, gene vectors capable of penetrating the mucus gel 

layer but not the PCL would most likely be cleared via MCC [214] or by macrophages 

[244].
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4.2. Barriers in airspace

4.2.1. Pulmonary surfactant—Mucus is not present in the alveolar sacs of the lungs. 

However, inhaled gene vectors that make it to the alveoli must retain their stability and 

function in presence of surfactants that are abundant in the airspace. Pulmonary surfactant is 

a surface-active lipoprotein complex, synthesized by type II alveolar epithelial cells, that is 

composed of various phospholipids, cholesterols and surfactant proteins, including SP-A, B, 

C and D. To date, studies exploring the effect of pulmonary surfactants on lung gene transfer 

have primarily involved non-viral gene vectors [170, 245–251]. Gene transfer mediated by 

cationic lipid-based gene vectors was significantly reduced by pulmonary surfactants [248–

251]. The stability of lipid-based gene vectors in the presence of various surfactants, 

including Alveofact (an extract from bovine lung lavage) and Exosurf (a synthetic 

surfactant) and individual components of pulmonary surfactant was investigated. Negatively 

charged phospholipids [248–251] and/or SP-B or C [250] were found to facilitate 

aggregation of, or DNA release from, lipid-based gene vectors, indicative of impaired 

colloidal stability or disruption of DNA-lipid complexation, respectively. While to lesser 

extents, Alveofact has been shown to reduce gene transfer efficacy of gene vectors 

formulated with cationic polymers, including PEI and PAMAM dendrimer [170, 248].

Studies have also demonstrated surfactant-mediated aggregation of polymeric gene vectors 

[245, 246], however, DNA complexation was maintained with cationic polymer-based gene 

vectors, unlike lipid-based vectors, in the presence of pulmonary surfactants [248]. This 

carrier material-dependent effect is likely due to the difference in the nature of complexation 

by cationic lipids and polymers that influences vector stability in pulmonary surfactants. In 

addition to the disruption of complexation by negatively charged surfactants, hydrophobic 

lipid-surfactant interactions may render lipid-based vectors more susceptible to 

destabilization. Interestingly, incubation of polymeric gene vectors with pulmonary 

surfactants has been shown to enhance gene delivery efficiency in vitro due to improved 

cellular uptake and/or increased cell membrane permeability [246, 247]. Similarly, 

surfactants have been found to enhance AdV-mediated gene transfer to peripheral lung cells 

in vitro and in vivo [252, 253]; lipid recycling in pulmonary epithelial cells was suggested as 

a potential mechanism [253]. These findings suggest that the effect of pulmonary surfactant 

on respiratory gene transfer may be multimodal and may vary depending on gene vector 

type.

4.2.2. Alveolar macrophages—Alveolar macrophages are phagocytes residing in the 

airspace that play a critical role in homeostasis, host defense and tissue remodeling [254]. 

There are 12 –14 macrophages in each alveolus [255], which is increased in individuals who 

smoke regularly [256]. Alveolar macrophages engulf inhaled foreign substances directly or 

via an opsonin-dependent mechanism. Particles in the size range of 250 nm to 3 µm are 

readily phagocytosed by macrophages [257], with increasing phagocytic uptake with 

increase in the particle size within this range [258]. In contrast, particles smaller than 250 

nm are taken up less efficiently by macrophages [257], including alveolar macrophages 

[259]. These findings suggest that alveolar macrophages may not pose a significant hurdle 

for gene vectors, since widely explored viral and non-viral gene vectors are generally 

smaller than 250 nm. However, aggregation of gene vectors in the presence of pulmonary 
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surfactants may render them more susceptible to clearance by alveolar macrophages due to 

their increased size. For example, 20 and 110 nm silver nanoparticles delivered via aerosol 

to rat lungs were found as large aggregates that were engulfed by macrophages collected 

from broncheoalveolar lavage fluid (BALF; Fig. 3C) [260].

Other properties of gene vectors, including surface charge, composition and particle 

geometry, play a critical role in phagocytosis [261]. In the case of polymeric nanoparticles, 

studies have shown that particles with hydrophobic surfaces are more readily internalized by 

macrophages than those with hydrophilic surfaces, while surface charge did not appear to 

significantly alter the phagocytosis [261, 262]. Surfactant proteins such as SP-A and SP-D 

can opsonize inhaled gene vectors [263], which may facilitate opsonin-dependent 

phagocytosis by alveolar macrophages. Immunoglobulin (i.e. antibody) and complement are 

primary opsonins present in the lungs [264]. It has also been found that some viral vectors, 

including retrovirus and AdV, can be rapidly internalized by alveolar macrophages [265, 

266]. It is possible that viral vectors are recognized by alveolar macrophages via Fc 

receptors on the surface of macrophages that bind to antibodies attached to the virus. 

Although it is a different organ, transient depletion of Kupffer cells, resident macrophages in 

the liver, enhanced AdV-mediated gene transfer in vivo [267]. In addition, it has been shown 

that complement cleavage fragment C3α and C3β opsonize non-viral gene vectors 

composed of cationic polymers or lipids [268], which may facilitate macrophage uptake via 

complement receptors.

Vector-mediated inflammation through recruitment of neutrophils and macrophages [269] 

may further reduce gene transfer efficiency upon repeated administration. Alveolar 

macrophages may pose a more challenging barrier in the lungs of patients afflicted by 

diseases characterized by chronic infection and inflammation, such as CF [270] and COPD 

[271], where alveolar macrophages are activated. It has been shown that alveolar 

macrophages significantly reduce retrovirus-mediated gene transfer to human bronchial 

epithelial cells; the inhibitory effect is elevated by lipopolysaccharide-induced macrophage 

activation [265].

4.3. Cellular barriers

Gene vectors that overcame the aforementioned extracellular barriers must then be taken up 

by target cells to introduce nucleic acid payloads to the intracellular gene expression 

machinery. Airway epithelial cells are a primary target for treatment of CF, and are of 

general importance to most obstructive lung diseases. The epithelial surface of the airways 

poses an additional barrier to inhaled gene therapy that is due to low efficiency of 

endocytosis across the apical membrane [188] and tight junctions between cells that prevent 

access of gene vectors to the basolateral side [272] (Fig. 3D). This is a particularly 

formidable challenge for AdV since its receptor, CAR, is selectively localized on the 

basolateral membrane of airway epithelium [86]. Preclinical studies of lentivirus-mediated 

gene therapy in the lungs have also shown limited transduction through the apical membrane 

[273].

It has been reported that the barrier property of the airway epithelium is altered by 

obstructive lung diseases, primarily due to structural perturbations of tight junctions [274–
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279]. In asthma, the barrier function of the airway epithelium is impaired through defective 

tight junction formation [274]. Likewise, cigarette smoke exposure, the major risk factor for 

COPD, disrupts tight junctions and increases epithelial permeability [275]. In contrast, it has 

been hypothesized that tight junction proliferation in CF results in increased epithelial 

resistance [276]. The transepithelial electrical resistance (TEER) is higher and the 

paracellular permeability is lower in CF airway epithelial cell cultures compared to cultures 

expressing wild-type CFTR [277]. However, pro-inflammatory cytokines [278] and bacterial 

toxins [279] reduce the permeability of tight junctions, suggesting that the barrier property 

of the airway epithelium may vary with disease state. Tight junction proteins in the alveolar 

epithelium, including claudins [280], also limit access of inhaled gene vectors to the 

basolateral surface.

Once taken up by target cells, gene vectors must overcome several intracellular barriers, 

including but not limited to acidic vesicles (i.e. endosomes and lysosomes), the molecularly 

crowded cytoplasm, and the nuclear envelope. These barriers are shared in numerous organs 

and tissues in addition to the lungs and, thus, are widely reviewed elsewhere [281, 282].

5. Strategies to overcome the barriers to inhaled gene therapy

5.1. Modification of gene vectors

Tuning gene vectors to overcome one or more important physiological barriers can enhance 

the efficacy of pulmonary gene therapy. Inhaled gene vectors deposited on conducting 

airways first encounter the luminal mucus gel layer that serves as a highly adhesive and 

steric barrier, as described in section 4.1.1. Thus, gene vectors must be small enough to 

traverse through the mesh spacing of airway mucus, while possessing particle surface 

resistant to muco-adhesion [133]. It has been reported that nanoparticles as large as 200 nm 

efficiently diffuse in human airway mucus freshly collected from individuals with [211] or 

without [206] obstructive lung diseases, but only if particle surfaces are densely passivated 

with hydrophilic and neutrally charged PEG polymers. Of note, high PEG densities that 

yield brush conformations, as opposed to mushroom shapes, provides muco-inert particle 

surfaces [229, 283].

Based on these findings, polymer-based gene vectors capable of efficiently penetrating 

human airway mucus, namely mucus-penetrating DNA nanoparticles (DNA-MPP), have 

been introduced [214, 215, 284]. Suk et al. demonstrated that DNA-MPP based on PEI and 

PLL, unlike the otherwise identical counterparts without dense surface PEG coatings, 

efficiently percolated through pathological human airway mucus ex vivo [214], followed by 

a similar observation with DNA-MPP formulated with biodegradable poly(β–amino ester) 

(PBAE) (Figs. 4A, B) [284]. Likewise, the dense surface coatings with PEG corona may 

improve the penetration of inhaled gene vectors through another mucin-based meshwork 

found in PCL, if the particle diameters are small enough to fit through the PCL pores [240, 

285]. The PEG surface coating may also minimize the particle aggregation in physiological 

environments [229], thereby providing another means of improving penetration through the 

steric barriers, including the mucus gel layer and PCL. Importantly, rapid ex vivo diffusion 

of DNA-MPP in airway mucus was translated to widespread distribution (Figs. 4C, D) 

and/or prolonged retention [214] in the mouse lungs, leading to approximately 25-fold 
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greater in vivo pulmonary transgene expression compared to leading non-viral gene vectors 

without dense surface PEG coatings, including PEI- and CK30PEG10k –based systems [284].

Given that several viral vectors possess muco-adhesive surfaces [210, 211], their diffusion 

within the airway mucus is likely enhanced by a dense surface shielding with PEG, similar 

to the findings with non-viral gene vectors. The enhanced lung gene transfer efficacy of 

AdV by surface PEG conjugation has been previously reported [286, 287]; however, the 

benefit of PEG in these studies was experimentally determined to be either reduced 

immunogenicity or resistance to the neutralization by pre-existing antibody. Thus, the effect 

of PEG on the ability of viral vectors to overcome key physiological barriers to inhaled gene 

therapy is yet to be determined. It should be noted though that interference of PEG with 

antibody binding will reduce Fc-mediated trapping of viral vectors in airway mucus. Other 

than the PEGylation approach, Schuster et al. have recently shown that AAV2 mutant 

possessing the capsid with reduced heparin binding exhibit significantly enhanced diffusion 

in human CF mucus compared to that of native AAV2 [211]. This is most likely attributed to 

the decrease in heparan sulfate-mediated adhesion of AAV2 to CF airway mucus rich in 

these proteoglycans [211].

Targeting cells of interest via specific ligands is certainly a viable approach to enhance gene 

transfer to the lung. Although the majority of studies involves cancer targeting due to 

numerous well-established pathways upregulated in cancers [288], several groups have 

reported feasibility of specifically targeting parenchymal cells in the lung, including airway 

and alveolar epithelial cells. Most of the relevant studies involve identifying targeting 

ligands for airway epithelial cells, reflecting the dominance of CF-related research. 

Following the confirmation of urokinase plasminogen activator receptor (uPAR) expression 

on the apical surface of differentiated HAE, Drapkin et al., coupled a 7-mer peptide derived 

from a respective ligand to the surface of AdV via PEG [289]. They found that the targeting 

AdV provide 10-fold greater gene transfer to airway epithelium in vitro compared to native 

and PEGylated AdV. Employing the phage display technology, Jost et al, identified a 7-mer 

peptide, THALWHT, that targets human epithelial cell lines [290]. Subsequently, an 

independent group genetically engineered AAV2 decorated with THALWHT and found that 

this mutant provided a significantly greater in vitro transgene expression both in 

undifferentiated and polarized (i.e. differentiated) HAE [291]. However, they were unable to 

identify any ligand harboring the sequence that targets polarized HAE and the mutant did 

not provide significantly increased transgene expression in vivo, implying that the sequence 

may not be airway-specific or may be species-dependent. Tagalakis et al. evaluated in vivo 
gene transfer efficacy of a lipid-based gene vector decorated with a peptide sequence 

previously identified to target intracellular adhesion molecule-1 (ICAM-1), a receptor for 

rhinovirus which causes the common cold [292]. They demonstrated that while their 

ICAM-1 targeting formulation provided 99% of airways with evidence of bronchial 

epithelial cell transfection, 73% and 38% of airways showed epithelial expression with 22 

kDa PEI and GL67, respectively, following intratracheal administration [292]. Similarly, 

lactoferrin [293] and lactose [294] have been shown to enhance the transgene expression of 

PEI- and PLL-based gene vectors, respectively, in the HAE. However, both studies were 

conducted using immortalized cells, and thus the validity of the approach should be 

confirmed with ALI culture of primary HAE. There are relatively few studies describing the 
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targeted gene transfer to alveolar epithelial cells. In one study, β2-adrenoceptor agonist, 

clenbuterol (Clen), which is used as bronchodilator for COPD and asthma treatment, was 

incorporated onto the surface of PEI-based gene vectors [295]. The Clen-decorated system 

provided 14- and 3-fold higher transfection efficiency compared to non-targeted counterpart 

in alveolar epithelial cells in vitro and in mouse lung in vivo, respectively.

In addition to incorporating specific ligands to the surface by covalent conjugation [289] or 

genetic engineering [291], other approaches have been widely explored to endow viral 

vectors with ability to be internalized by cells of interest. Directed evolution approaches 

have been used to generate libraries of alternative viral capsid types and screened for tropism 

based on transduction efficiency in vitro or in vivo [296–298]. Rational design, specifically 

capsid pseudotyping, has also been used where viral capsids are replaced by those from 

other virus types or serotypes known to efficiently infect cells in the lung to provide or 

enhance lung tropism. Given the promising preclinical and clinical results, AAV has been 

the most extensively engineered viral vector to date using both directed evolution and 

rational design approaches [296–298]. The rational design approach has also been used to 

engineer novel AdV and lentiviral vectors for inhaled gene delivery applications [299–301].

Libraries of mutant AAV variants have been generated using a variety of methods, including 

error-prone polymerase chain reaction, DNA shuffling or random insertion/deletion of 

peptide-encoding sequences [302]. Specifically for inhaled gene therapy applications, AAV 

mutant vector libraries can be screened in vitro using ALI cultures of HAE and/or in vivo 
with suitable animal models to determine which variants successfully mediate gene transfer. 

After multiple rounds of selection in ALI cultures of HAE, a mutant vector with shuffled cap 

genes from both AAV2 and AAV5 was identified with enhanced airway tropism and 

mediated 100 and 10-fold greater in vitro transgene expression as compared to native AAV2 

and AAV5, respectively [303]. Using a similar approach, a mutant AAV vector containing 

shuffled cap genes from AAV1, AAV6, and AAV9 was identified by screening in polarized 

HAE and showed 3-fold greater in vitro production of CFTR mRNA transcripts than native 

AAV6 and ~25% restoration of CFTR as compared to healthy controls [304]. By mutating 

single amino acids in the heparin binding domain of AAV6 capsid, Limberis et al. 

discovered a novel AAV6 mutant gene vector, AAV6.2, outperforming other native and 

mutant AAV at mediating gene transfer in mouse airways (Figs. 4E, F) and polarized HAE 

cultures (Figs. 4G, H) [109].

Using the pseudotyping approach, hybrid viral vectors have been engineered that contain 

envelope or capsid proteins from other viruses with alternative tissue tropisms to change 

gene transfer properties [296–298, 301]. AdV and AAV hybrid vectors have been generated 

with capsid proteins from alternative viral serotypes that use receptors expressed on the 

apical surface of airway epithelium for entry. For example, a pseudotyped AdV vector was 

engineered to incorporate AdV35 fibers into the AdV5 capsid, redirecting tissue tropism 

towards airway epithelium with viral entry mediated by CD46 receptors expressed on the 

apical membrane [305]. A pseudotyped AAV vector containing an AAV2 genome packaged 

in AAV5 capsid proteins (i.e. AAV2/5) allowed for targeting of apically-expressed sialic acid 

receptors [116]. Using aerosolized AAV2/5, Fischer et al. demonstrated efficient gene 
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transfer to the airways of monkeys to a level 20-fold greater than what achieved in historical 

AAV2 studies [116].

Incorporating components from the capsid of other respiratory viruses, such as bocavirus 

[112], baculovirus [9] and sendai virus (SeV) [9, 130, 306], is also a common strategy to 

introduce lung tropism. In addition to improving the packaging capacity, AAV2 pseudotyped 

with human bocavirus-1 (HBoV1) capsid demonstrated 5.6- and 70-fold greater efficiency at 

transducing polarized HAE culture in vitro compared to native AAV1 and AAV2, 

respectively [112]. They were able to transduce via the apical surface of primary HAE 

isolated from a ΔF508/ΔF508 homozygous CF patient, resulting in ~30% restoration of 

CFTR-mediated chloride currents [112]. Initial inhaled gene transfer studies with lentivirus 

focused on vectors pseudotyped with vesicular stomatitis virus G glycoprotein (VSV-G) 

[125–129]. However, this approach was generally developed to broaden the tropism of 

lentivirus rather than to specifically design a system for inhaled gene therapy applications 

[124]. It was later found for VSV-G-pseudotyped lentivirus that pre-treatment with 

compounds disrupting tight junction is required for gene transfer to the airway epithelium, 

suggesting that the transduction was achieved through the basolateral surface [125, 129]. To 

bypass the need for adjuvant treatments, hybrid lentiviral vectors were engineered by 

incorporating envelope proteins from SeV or baculovirus that have demonstrated tropism for 

the apical surface of airway epithelium [9]. Alton et al. were able to apically transduce in 
vitro in polarized primary CF HAE cultures and in vivo in CF mouse nasal epithelium using 

SeV-pseudotyped SIV [130]. The transgene expression in mouse nasal epithelium lasted up 

to 1 year after a single administration with no sign of immune response (Figs. 1C, D). This 

approach has significantly advanced the use of lentiviral vectors for inhaled gene therapy 

applications.

5.2. Modulation of biological barriers

Adjuvant agents that reduce airway and/or cellular barrier properties provide a relatively 

simple means to enhance the efficacy of inhaled gene therapy, potentially without the need 

of modifying gene vectors. However, it is crucial to ensure that any adjuvant approaches do 

not cause significant toxicity or disrupt normal lung function. This is of even greater concern 

for patients afflicted with obstructive lung diseases having impaired lung function. To our 

knowledge, specific strategies to reduce the barrier properties of the airspace are yet to be 

introduced, and as described in section 5.1, gene vector modification serves as the primary 

method to address this issue.

The most widely explored approach in this category is the use of mucolytic agents that 

degrade primary macromolecular components of airway mucus. Two primary compounds of 

selection may be recombinant human DNase (rhDNase, dornase alfa, Pulmozyme®) and N-

acetyl cysteine (NAC, Mucomyst®), which are currently or previously utilized in the clinic 

to help CF patients clearing accumulated mucus in their airways. NAC’s mode of action is to 

cleave disulfide intermolecular crosslinks between mucin fibers, which can significantly 

reduce the viscoelasticity of airway mucus [307]. As previously discussed, airway secretions 

in patients with obstructive diseases can also carry high levels of DNA, further enhancing its 
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barrier properties. Enzymatic degradation of DNA by rhDNase reduces entanglements 

within the mucus gel to further decrease the viscoelasticity [307, 308].

In the context of inhaled gene therapy, NAC and rhDNase can enlarge the mesh spacings of 

airway mucus, reducing the physical obstruction of inhaled gene vectors. For example, NAC 

was shown to increase the average pore size of CF mucus from 145 ± 50 nm to 230 ± 50 nm 

(Figs. 5A, B) [309]. It has been reported that pre-treatment with NAC leads to more rapid 

diffusion of leading gene vectors, including AAV1 [211] and CK30PEG10k –based system 

[213], through CF mucus. Accordingly, NAC significantly improved CK30PEG10k –

mediated gene transfer in the lungs of a lipopolysaccharide-induced mouse model of mucus 

hypersecretion [213]. Likewise, a NAC derivative was shown to enhance gene transfer 

efficacy of AdV [310] and non-viral gene vectors [216], including EDMPC-Chol and PEI-

based systems, in the mouse lung in vivo and in an ex vivo sheep trachea model, 

respectively. Suk et al. previously demonstrated that diffusion of nanoparticles as large as 

200 nm in CF mucus was significantly improved by NAC, but the effect was greater when 

nanoparticles possessed muco-inert surface coatings [309]. This finding suggests that 

simultaneously modulating gene vectors and the mucus barrier may synergistically improve 

mucus penetration and thus the efficacy of inhaled gene therapy. In addition to clinically 

used agents, Yuan et al. showed methyl 6-thio-6-deoxy-α-D-galactopyranoside reduced 

levels of reactive oxygen species in CF mucus and provided a greater reduction of disulfide 

crosslinks in CF mucus compared to NAC [204]. A novel alginate oligosaccharide 

compound, currently in a Phase IIb clinical trial for CF, was also shown to widen the pores 

within CF mucus by disrupting mucin-DNA interactions [311]. While safety must be 

confirmed, these newly developed mucolytic agents may also be useful as adjuvants for 

improving the penetration of gene vectors through the airway mucus barrier.

Osmotic agents are another type of agent that may effectively reduce the barrier property of 

the airway mucus blanket. In particular, hypertonic saline is a clinically used osmotic agent 

to rehydrate the airways of CF patients and improve MCC [312]. Although it is yet to be 

tested, hypertonic saline may be used as an adjuvant to inhaled gene therapy, as it can 

potentially reduce the barrier property of airway mucus by diluting this gel layer. Improved 

MCC is likely achieved by the restoration of the collapsed PCL in the CF airways (Figs. 5C, 

D) [238], and thus inhaled hypertonic saline treatment may also render the PCL more 

permeable to inhaled gene vectors. Graeber et al. demonstrated that 3% and 7% hypertonic 

saline administered via aerosol greatly reduced mucus accumulation in the airways of a 

ENaC-overexpressing transgenic mouse model of obstructive lung diseases (to be discussed 

in section 6.1) [313], presumably by increasing airway hydration and improving MCC. 

Mannitol (Bronchitol™) is another hypertonic osmotic agent that hydrates airways [314] 

and thus may also be useful as an adjuvant to inhaled gene therapy. The kinetics of hydration 

by inhaled hypertonic agents must be carefully evaluated in relevant preclinical or clinical 

settings in order to determine an adequate time interval between the pre-treatment and gene 

vector administration. Administration of gene vectors in hypotonic solution as a vehicle may 

also improve gene vector penetration through the mucus barrier via convective flow 

generated by the osmotic gradient established between the airway lumen and epithelial cells. 

Ensign et al. demonstrated that by using hypotonic solution as delivery vehicle, muco-inert 

(i.e. densely PEGylated) nanoparticles were able to rapidly penetrate the luminal mucus 
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layer and reached the immediate surfaces of vaginal [315] and colorectal [316] epithelium in 
vivo. However, the effect and safety of this approach is yet to be established for delivery of 

inhaled therapeutics, including gene vectors.

Use of hypotonic vehicle solution has shown potential of reducing the cellular barrier to 

inhaled gene therapy as well. Huang et al. demonstrated that hypotonic shock enhanced 

uptake of plasmid DNA by nasal epithelium in vivo via the regulatory volume decrease 

(RVD) mechanism [317]. Specifically, they showed that sodium- and sucrose-based 

hypotonic vehicles provided enhanced transgene expression in the mouse nasal epithelium 

compared to isotonic vehicles with the greater effect observed with lower osmolality. 

Similarly, other studies have shown that fluorescently labeled compounds administered to 

airway epithelium in hypotonic vehicles were efficiently internalized by cells, whereas the 

same molecules in isotonic vehicle were not [318–320]. In addition to the observations in 

conducting airways, Sawa et al. showed an enhanced transgene expression in the lung 

airspace of rats when plasmid DNA was intratracheally instilled in hypotonic, rather than 

isotonic, vehicle solution [321]. RVD occurs after cell swelling driven by hypotonic shock 

[322], stimulating the fusion of numerous intracellular vesicles with the plasma membrane 

to prevent cell lysis [323, 324]. The response involves release of intracellular ions and 

subsequent water loss by osmosis [325], leading to the internalization of excess apical and 

basolateral membrane to reform the lost intracellular vesicles. During this endocytic process, 

particulates, including inhaled gene vectors, in the vicinity of the apical membrane can be 

taken up by epithelial cells. The RVD effect has been shown to last up to 30 minutes [317, 

319]. Potential safety concern resulting from hypotonic shock would need to be addressed 

before clinical implementation of this approach.

As discussed earlier, several viral vectors possess natural tropism towards the basolateral 

surface of airway epithelium [85]. Thus, transient disruption of epithelial tight junctions may 

enhance transgene expression mediated by these vectors. Further, both viral and non-viral 

gene vectors may benefit from this approach due to the low rates of endocytosis across the 

apical membrane [188]. It has been shown that pre-treatment with fatty acid surfactants, 

including polidocanol (PDOC), sodium caprate (C10) and lysophosphatidylcholine (LPC), 

can increase paracellular permeability by transiently opening the epithelial tight junctions 

(Figs. 5E, F). Transduction by AdV was greatly enhanced in vivo in mouse nasal and airway 

epithelium pre-treated with PDOC [326] and C10 [327]. Likewise, pre-treatment with LPC 

has been shown to enhance VSV-G-pseudotyped lentivirus transduction in vitro in polarized 

HAE culture [273] and in vivo in marmoset [125] and ferret [129] airways. Calcium-

chelating agents, such as ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic 

acid (EGTA), can also be used as adjuvants to reduce the intracellular concentration of 

calcium ions, thereby disrupting calcium-dependent formation of tight junction protein 

complexes [328]. Pre-treatment with EGTA has been shown to enhance efficacy of AdV and 

retrovirus gene transfer in vitro in polarized HAE cultures and in vivo in rabbit tracheal 

epithelium [329]. However, there have been concerns over the safety of this approach and 

potential adverse effects. To investigate this, Johnson et al. evaluated the safety of EGTA, 

C10 and sodium laurate (C12), in vitro in primary HAE cultures and in vivo in the lungs of 

mice where they found evidence of causing a minimal to mild inflammatory response, based 

on histopathological analysis [330]. However, this study revealed that EGTA increased cell 
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counts and the levels of pro-inflammatory cytokines in BALF, while C10 and C12 altered 

airway responsiveness after methacholine stimulation in vivo in the lungs of mice [330]. 

LPC has been used most extensively as an adjuvant to VSV-G-pseudotyped lentivirus-

mediated inhaled gene therapy to enhance gene transfer with minimal adverse effects 

reported [125, 129].

6. Preclinical models

As discussed in previous sections, we have now learned through past successes and failures 

of preclinical and clinical studies the potential hurdles towards achieving therapeutically 

relevant inhaled gene therapy of obstructive lung diseases. Relevant preclinical models are 

needed in order to reliably evaluate newly developed strategies to better predict their 

performances in clinical trials. First, those models should replicate the physiological barriers 

found in the lungs of respective diseases to confirm whether the approaches of interest 

provide the benefits as designed. In addition, general pathology of respective human diseases 

should be reproduced in the animal models for assessing the pharmacodynamics (i.e. 

therapeutic gene transfer efficacy). In this section, we discuss the most advanced animal and 

tissue culture models available for evaluating gene delivery strategies.

6.1 Cystic Fibrosis

Development of genetic animal models has greatly enhanced our understanding of CF lung 

pathophysiology. The CFTR-null (i.e. knockout) mouse was the first type of CF animal 

model established that results in a complete loss of functional CFTR [331–333]. This was 

followed by development of transgenic mouse models that produce low levels of CFTR 

[334, 335] and specific-mutant CFTR including but not limited to ΔF508 [336], G551D 

[337] and G480C [338]. However, spontaneous generation of CF lung phenotype with 

mucus accumulation as well as chronic infection and inflammation is rare in knockout and 

transgenic mouse models with only one reported case [339]. This may in part be due to the 

lack of submucosal glands in the lower airways beyond the trachea of mouse lungs [340, 

341]. Of note, submucosal glands are the primary source of the airway mucus secretion in 

the human lungs [200] and plays critical roles in innate immunity by secreting 

antimicrobials [342]. A recent study also found an alternative chloride channel is present in 

the mouse lung that can compensate for the lack of CFTR activity [93].

It has been found that defective CFTR leads to hyperabsorption of sodium through 

dysregulated ENaC channels present on the apical surface of CF airway epithelium [343–

345], and has been implicated as an initiating pathological event in the CF lung. Based on 

these findings, Livraghi-Butrico et al. have shown that transgenic mice overexpressing β-

subunit of ENaC spontaneously established CF-like lung disease, which resembles the 

pathological features of human CF lungs, including airway inflammation and dehydration as 

well as mucus obstruction [346–348]. Chronic lung infection, a hallmark of CF, has been 

established in normal mice and transgenic mouse model with specific CFTR mutation, 

including R117H, S489X, Y122X and ΔF508, using Pseudomonas aeruginosa-laden agarose 

beads to prolong the bacterial residence time within the lung [349, 350]. Interestingly, 

inflammatory response to P. aeruginosa infection did not appear to depend on mutation type 
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of the CF transgenic mouse models included in the study [349]. Mice intranasally 

challenged with endotoxin derived from P. aeruginosa have been shown to establish lung 

inflammation, mucus cell metaplasia and mucus hypersecretion [213], providing another 

relevant mouse model that mimics common features of the CF lung.

Larger genetic animal models have been developed using pig [351, 352], ferret [353–355] 

and rat [356] as background species, offering physiological features better reflecting the 

lungs of human CF patients [357–359]. It has been shown that pigs with mutated CFTR 

and/or CFTR knockout develop lung defects resembling those found in human CF lungs, 

including inflammation, impaired bacterial clearance, airway remodeling, and mucus 

hypersecretion (Figs. 6A, B) [351, 352]. A CFTR-null ferret model also shares features 

similar to humans with CF, showing altered airway chloride transport, mucus hypersecretion 

and propensity for lung infection [353–355]. These larger animal models are ideal for testing 

inhaled gene therapy, as they better recapitulate the physiological barriers and pathological 

events established in the human CF lungs. However, larger animal models are relatively 

costly, and accompany greater ethical challenges, and thus may be best suited for the later 

stages of preclinical development. A recent development of CFTR-knockout rats provides a 

model with more extensive development of submucosal glands in the trachea which may 

lend itself towards development of CF-like lung phenotype [356], thereby potentially serving 

as an alternative to aforementioned models.

6.2 α-1 antitrypsin deficiency

The most widely employed animal models for AATD to date were established in the 1980’s 

[360–366]. These models are transgenic mice constitutively expressing a mutated version of 

an essential anti-protease, human AAT (hAAT), with a glutamate-to-lysine mutation at 

position 342 of the hAAT [367]. The mouse models harboring mutant hAAT exhibit low 

levels of hAAT in serum, caused by accumulation of the mutant protein in the endoplasmic 

reticulum of hepatocytes, similar to what is found in AATD patients [363]. However, none of 

these studies clearly demonstrated the development of emphysema, a key pathological 

characteristic in the lungs of human AATD patients. Thus, an advanced preclinical model 

that more closely mimics AATD lung phenotype is needed to reliably evaluate therapeutic 

outcomes of inhaled gene therapy. For example, emphysema can be established in mouse 

and rat lungs by disrupting the protease/anti-protease balance via an instillation of different 

types of proteases into the lungs, including, but not limited to, papain, human neutrophil 

elastase, porcine pancreatic elastase and galactosamine [368–371]. It should also be noted 

that imbalance in protease activity is a common characteristic of a broader disease, COPD 

[372]. However, the lack of significant inflammation and airway changes [373] limit their 

use for studies that require general pathology of COPD, including chronic bronchitis. Other 

clinically relevant COPD animal models are discussed in section 6.3.

6.3. Chronic Obstructive Pulmonary Disease

There are a number of mouse-based COPD models, including cigarette-smoke (CS), 

protease-induced models, and genetic models. The most widely utilized models are 

generated by exposing rodents including mice and guinea pigs to CS [372, 374]. CS is 

exposed daily either only to the nose or whole body [375] for an extended period of time, 
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usually weeks to months, to establish COPD-like pathology, including elevated oxidative 

stress [376], chronic inflammation [377], small airway remodeling and/or emphysema (i.e. 

enlargement of the airspace compartment; Figs. 6C, D) [378]. The nose-only administration 

allows for more direct control of amount of CS exposure compared to whole body exposure, 

but mandates prolonged restraint of the animals, which may cause stress. Using either 

administration modality, the effects of CS exposure can be closely monitored based on levels 

of CS exposure markers such as carbon monoxide-hemoglobin complexes (i.e. 

carboxyhemoglobin) and nicotine metabolites (e.g. cotinine) present in serum [375].

Using nose-only CS exposure, Beckett et al. recently demonstrated that an 8-week exposure 

of CS to mice twice per day and 5 times a week resulted in COPD-like pathology, including 

airway inflammation, emphysema and impaired lung function (determined by forced 

oscillation and forced maneuver techniques), which was not resolved during the following 4 

weeks of CS cessation [379]. The lungs of this model also became susceptible to acute 

bacterial infection, as evidenced by decreased clearance of Streptococcus pneumoniae and 

influenza virus by 2-fold in comparison with wild-type mice [379], presumably replicating 

pulmonary exacerbation often observed with COPD patients [380]. However, mucus 

accumulation and airway obstruction are not established in this model, despite the presence 

of goblet cell metaplasia and airway remodeling [379]. As a result, this model may be 

limited in evaluating therapeutic intervention of the chronic bronchitis phenotype.

CS models have been also generated using other larger species such as guinea pigs [381, 

382]. Guinea pig-based CS models have been favored by several groups due to its unique 

advantages, including relatively close resemblance to human lung physiology and anatomy 

[383–385] as well as lung alveolarization at birth which may be beneficial for pre- and 

neonatal studies [386]. In addition, hallmark features of COPD including inflammation [387, 

388], goblet cell metaplasia [389, 390], small airway remodeling [391, 392], airway 

obstruction [393] and emphysema [394], have been successfully demonstrated in guinea 

pigs. COPD has been extensively studied over the years with the use of various CS-induced 

animal models reported by numerous groups, but development of a standard CS exposure 

protocol seems necessary as it is currently difficult to directly compare studies by different 

groups.

The COPD animal models based on genetic variations include natural mutant, transgenic 

and knockout models. Some of these models may offer the advantage of consistency, 

however they do not always reflect the COPD pathogenesis specific to the lungs and may 

adversely affect other organs [373]. Interestingly, some naturally occurring mutant strains of 

C57BL/6 mice, such as tight skin and pallid mouse models, are known to have abnormally 

large airspace, lower serum level of AAT and impaired alveolar septa [369, 395]. Tight skin 

mouse model is characterized by a mutation in the fibrillin-1 gene, which affects formation 

of elastic fibers, leading to abnormal airspace development and progressive alveolar 

enlargement with age [396, 397]. Pallid mouse model is known to have lower level of AAT 

in serum and gradually develops mild emphysema late in life [369]. The pallid mouse model 

may also be utilized for AATD studies [398]. Transgenic and knockout models may be more 

useful for studying a particular pathway of the COPD pathogenesis, as exact roles of specific 

genes can be elucidated in these models.
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6.4 Asthma

The ovalbumin (OVA)-challenged mouse model is by far the most widely utilized preclinical 

model for allergic asthma, exhibiting the characteristic Th2-type immune response [399]. 

The models are generally established by intraperitoneal sensitization with OVA, followed by 

repeated intratracheal OVA challenges, but exact dosing schedule varies among individual 

studies [400]. The model reliably recapitulates asthma-like pathophysiology, including 

recruitment of eosinophils, elevated levels of OVA-specific IgE and Th2 cytokines, mucus 

accumulation by mucous and goblet cell hyperplasia, airway hyperresponsiveness and 

airway remodeling (Fig. 6E) [401, 402]. Although the OVA mouse model is the most widely 

used, there are questions regarding its clinical relevance as OVA is not a naturally occurring 

allergen. Hence, it may not properly mimic how asthmatic patients become sensitized to 

allergens [403]. Numerous groups using this model have reported that chronic asthmatic 

symptoms do not exacerbate over time; the symptoms are actually ameliorated by natural 

development of tolerance and/or termination of OVA challenge [404, 405]. More recently, 

the development of tolerance to repeated challenges has been addressed by optimizing 

amount and frequency of OVA administration [77, 400]. Although not as frequently used, 

rats and guinea pigs are also utilized as background species of OVA models. Rat models 

share similar immunological cascade as the mouse model when sensitized with OVA and 

may perhaps be used as an alternative [406]. Guinea pigs, while closely resembling the 

human lung anatomy and physiology, have been reported that IgG is the primary antibody 

produced post-sensitization and the baseline level of eosinophils is high, which may 

somewhat limit their use [406, 407].

Mouse models have been also developed using naturally occurring allergens such as house 

dust mite (HDM) [408]. Many groups favor HDM models over OVA models as it yields 

pathophysiology similar to that exhibited by the more widely-studied OVA-sensitized model, 

while also having greater environmental/clinical relevance [409]. For example, Johnson et al. 

administered HDM intranasally for 5 days per week for up to 7 weeks and observed 

eosinophilic inflammation, elevated levels of Th2 cytokines, as well as airway 

hyperresponsiveness and remodeling [401, 409]. Additionally, in contrast to OVA-

challenged animal models, re-exposure of HDM to mice resulted in sustained inflammatory 

response, including elevated eosinophil and Th2 effector cell counts, suggesting that 

tolerance to HDM did not develop [409]. However, after cessation of HDM exposure, airway 

inflammatory response fully recovered, while alterations in airway remodeling and 

hyperreactivity persisted [409]. HDM consists of a mixture of allergen subtypes including 

Der p I and Der p II and other biomolecules such as endotoxins, proteases, proteins and 

peptides, making it difficult to identify the component(s) responsible for specific allergic 

responses [401, 410, 411]. Moreover, many commercially available HDM extracts are 

different in composition and proteolytic activities [412], and thus direct comparison of 

various HDM studies can be difficult.

Use of transgenic mice overexpressing GATA3 transcription factor may be considered. 

GATA3 is known to play significant roles in Th2 cell differentiation and activation by 

controlling Th2-driven cytokine production [413]. Several groups demonstrated that mice 

with GATA3 overexpression, in comparison to its normal counterparts, showed upregulation 
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of Th2 cytokines, airway remodeling, airway smooth muscle hyperplasia, eosinophilic 

inflammation and subepithelial fibrosis, upon sensitization and challenge with allergens 

[414–417]. Overexpression of GATA3 alone induces production of Th2 cytokines and leads 

to lung inflammation and mucus hypersecretion, but not to the extent exhibited after allergen 

challenge [413]. Sensitization of GATA3-overexpressing transgenic mice with even 

relatively low amount of OVA or HDM cause further increases in airway inflammation, 

while no significant inflammation was observed in wild-type C57BL/6 mice [413]. In 

another study, Ano et al. sensitized and subsequently challenged GATA3-overexpressing 

transgenic mice with OVA and were able to observe enhanced airway inflammation and 

goblet cell hyperplasia [414]. A Phase IIa trial of an inhaled DNAzyme targeting GATA3 

mRNA have been recently initiated for Th2-driven asthma [418], underscoring the relevance 

of these transgenic mouse models.

Larger animal models based on non-human primates, ponies, and Basenji greyhounds have 

been developed since they develop natural allergies as well as persistent respiratory allergic 

responses; however, they have not been widely explored primarily due to cost issues [419].

6.5 Human Tissue Culture Models

Therapeutic efficacy and safety of novel delivery strategies must be ultimately demonstrated 

in preclinical animal models prior to their clinical evaluation. However, recent studies have 

shown species-specific differences in tropism of AAV by comparing transduction in vitro in 

ALI cultures of human lung epithelium to those of mouse [420], monkey [359], ferret [359] 

and pig [421] lung epithelium. These findings underscore the importance of confirming the 

efficacy in relevant human cell-based models as compared to preclinical models. Studies in 

human tissue culture models are also beneficial for high-throughput screening of gene vector 

candidates and further optimization of vector design. Human lung epithelial cells grown in 

ALI cultures have the ability to differentiate into polarized epithelial layers, developing key 

physiological barriers including tight junctions between neighboring cells and mucus 

secreted from the apical surface within ~4 weeks [422, 423]. Ussing chamber experiments 

can be conducted to confirm the presence of intact tight junctions determined by the 

measured TEER [422, 423] and also to assess CFTR correction via quantifying the chloride 

conductance [26, 115, 277].

ALI cultures have been generated from lung epithelial-derived cell lines, including Calu-3, 

CFBE, NuFi-1, and CuFi-1 (for complete list of available cell lines, see [424]). However, 

concerns arise around the use of ALI cultures established with a single cell type, as there are 

several different cells present in the lung (i.e. ciliated epithelial cells, goblet cells, etc.) [424–

426]. Mucus production and PCL development may also vary greatly depending on the cell 

lines used [424–426]. Thus, the properties of relevant delivery barriers encountered by gene 

vectors may not fully recapitulate their characteristics in the human lung. Primary ALI 

cultures are an attractive alternative as they are established with airway cells directly 

collected from human lung explants and thus retain many features of the physiological 

human lung epithelium [238, 241, 427–430]. Another benefit is that epithelial cells can be 

harvested directly from specific patients of interest for screening gene delivery strategies, 

potentially enabling personalized medicine. Shortcomings of primary ALI cultures include 
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limited availability of fresh explants, short cell lifespan, and variability among patient 

donors. It should be also noted that submucosal glands, an important target tissue in 

obstructive lung diseases, are not present in ALI cultures regardless of the source of 

constituting cells.

Recent developments in nasal brushing-derived primary lung epithelial ALI cultures could 

provide a more readily accessible tissue source [431]. However, there are concerns over its 

use as a surrogate tissue source as studies have shown marked differences in genomic 

profiles of primary human nasal and bronchial epithelial cells [432, 433]. Primary human 

organoids differentiated from patient-derived stem cells are also an attractive in vitro model 

for high-throughput screening [434]. Specifically for CF, the organoid’s degree of swelling 

in response to the treatment with a well-documented CFTR activator, forskolin, was found to 

correlate with CFTR function, providing a means to assess CFTR activity and/or correction 

[435]. The organoid systems remain viable after long periods of storage in liquid nitrogen 

and could be passaged up to 40 times, beneficial for long-term studies. More recently, this 

approach was expanded to human lung organoid systems consisting of proximal lung 

epithelium surrounded by mesenchymal smooth muscle tissue and have been shown to 

generate airway-like features with both club and ciliated cell development [436]. However, 

the barrier properties of organoid systems have not been thoroughly characterized and may 

differ from those observed in the human lung.

7. Conclusion

Over two decades of preclinical and clinical evaluations of inhaled gene therapy have 

provided valuable lessons building towards the ultimate goal of developing curative 

treatments for patients with obstructive lung diseases. We have now established better 

understanding of disease pathology, genetic targets and physiological barriers. The 

accumulated knowledge has driven the development of advanced gene delivery systems, 

nucleic acid engineering tools and human disease-like preclinical models by scientists, 

engineers and clinicians in various settings. A recently completed clinical trial of inhaled CF 

gene therapy has left some questions to be addressed, but has certainly rejuvenated the field 

with more clinical evaluations anticipated in the near future. Through this review, we hope to 

provide a comprehensive overview of the knowledge gained and encourage collaborative 

efforts for realizing therapeutically effective gene therapy of obstructive lung diseases. We 

began our review by overviewing the types of obstructive lung diseases and potential genetic 

targets for respective diseases. We then highlighted gene delivery systems, primarily those 

tested in clinical trials of inhaled gene therapy, followed by challenging physiological 

barriers that have hampered translation into the clinic. We next introduced strategies to 

overcome those hurdles and preclinical disease models resembling the pathological lung 

environments of diseased human patients. Future preclinical studies of the next-generation 

of gene vectors in animal models that present all these critical features will help better 

predict therapeutic outcomes and thus facilitate clinical development of inhaled gene 

therapy.
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Figure 1. Viral vectors for inhaled gene therapy
(A, B) A recombinant AAV2/5 (AAV2 rep gene, AAV5 cap gene) delivered by intratracheal 

instillation demonstrates long-lasting gene expression (up to 15 months) in both conducting 

airways and alveoli of mice. (A) Immunohistological staining of β-galactosidase (β-gal) 

expression in alveoli and conducting airways 1 month post-administration. (B) 
Bioluminescence imaging of firefly luciferase expression in the lung and nose of mice at 1, 

3, 6, 12, and 15 months post-administration. Reprinted from [105] with permission of Mary 

Ann Liebert, Inc. (C, D) A simian immuno-deficiency virus pseudotyped with the 

respiratory pathogen Sendai virus (F/HN-SIV) demonstrates sustained transgene expression 

in the nose and lungs of mice after intranasal administration, lasting 22 months 

postadministration. (C) Fluorescent microscopy images of GFP expression mediated by 

F/HN-SIV in mouse lungs. (D) Bioluminescence imaging of firefly luciferase expression in 

the mouse lungs and noses at 2 and 22 months post-administration. Reprinted from [131] 

with permission of the American Thoracic Society. Copyright © 2016 American Thoracic 

Society.
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Figure 2. Non-viral gene vectors for inhaled gene therapy
(A, B) Localization of gene expression in sheep lungs treated with GL67A carrying human 

CFTR (hCFTR)-expressing plasmid DNA. (A) Dual labeling of two hCFTR epitopes (G449, 

Texas red; MATG1061, FITC) of lung sections. Arrows indicate epithelial cells that are 

positive with both antibodies. (B) Dual labeling of cytokeratin and G449 (anti-cytokeratin 

antibody, red; G449, FITC). Reprinted from [14] with permission of Macmillan Publishers 

Ltd. (C, D) Localization of gene expression in the (C) medium (20× maginification) and (D) 
small airways (40× magnification) in the mouse lungs. Lungs harvested from animals that 

received 100 µg of β-gal expressing plasmid DNA compacted with CK30 PEG10k were fixed, 

sectioned, and immunohistochemically stained for the bacterial β-galactosidase protein 2 

days after intratracheal administration. Reprinted from [181] with permission of Macmillan 

Publishers Ltd.
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Figure 3. Primary physiological barriers to inhaled gene therapy
(A) Mucus: A confocal image showing 89-nm polystyrene nanoparticles (PS NP) trapped 

via adhesive interactions within CF mucus. Reprinted from [207] with permission from 

Elsevier. (B) The periciliary layer (PCL): Adenovirus (AdV, blue arrows) is excluded from 

the PCL while adeno-associated virus (AAV, red arrows) penetrates into PCL and reaches 

underlying epithelium. Reprinted from [240] by permission from Macmillan Publishers Ltd. 

(C) Alveolar macrophages: an SEM image showing aerosolized 110 nm silver nanoparticles 

(Ag NP) accumulating in macrophages collected from broncheoalveolar lavage fluid 

(BALF) after being administered to rats. Reprinted from [260] by permission from Oxford 

University Press. (D) Epithelial cell tight junctions: A confocal image (top: xy view, bottom: 

xz view) showing AdV restricted to the apical side of human airway epithelium due to the 
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presence of tight junctions which prevents the access to receptors required for cell entry. 

Reprinted from [272] with permission of the American Thoracic Society. Copyright © 2016 

American Thoracic Society.
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Figure 4. Modification of gene vectors to overcome physiological barriers
Representative trajectories of (A) conventional DNA nanoparticles (DNA-CP) and (B) 
mucus-penetrating DNA nanoparticles (DNA-MPP) based on biodegradable PBAE 

polymers in freshly expectorated CF mucus. Representative images of gene vector 

distribution in large airways following intratracheal administration of (C) DNA-CP and (D) 
DNA-MPP. Reprinted from [284] with permission from PNAS. Copyright © 2016 National 

Academy of Sciences, USA. (E, F) In vivo and (G, H) in vitro transduction of AAV6 and a 

mutant variants, AAV6.2, engineered with a single amino acid substitution in the heparin 
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binding domain. Comparison of intratracheally administered (E) AAV6 and (F) AAV6.2 

showing a stronger β-gal transgene expression in the mouse lung with AAV6.2. Comparison 

of (G) AAV6- and (H) AAV6.2–mediated GFP expression in ALI cultures of primary HAE. 

AAV6.2 treated cultures show stronger GFP expression as well as transduction of both 

ciliated and nonciliated cells (H, inset). Reprinted from [109] by permission from 

Macmillan Publishers Ltd.
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Figure 5. Modulating physiological barriers to inhaled gene therapy
(A, B) N-acetyl cysteine (NAC) treatment increases mucus mesh spacing, thereby 

facilitating gene vector penetration through airway mucus. Reprinted from [309] with 

permission from Nanomedicine as agreed by Future Medicine Ltd. (C, D) Reducing the 

osmotic pressure (OP) of mucus that can be achieved inhaled hypertonic saline rehydrates 

and restores the collapsed PCL. Reprinted from [238] with permission from AAAS. (E, F) 
Sodium caprate (C10) disrupts tight junctions in epithelial layer allowing gene vectors to 

access the basolateral compartment where specific receptors required for viral gene 
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transduction are present. Reprinted from [272] with permission of the American Thoracic 

Society. Copyright © 2016 American Thoracic Society. The American Journal of 
Respiratory Cell and Molecular Biology is an official journal of the American Thoracic 

Society.
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Figure 6. Animal models of obstructive lung diseases
Airway obstruction develops in CF pig due to highly viscoelastic mucus (A; white arrow) in 

the airway where mucus cytology further revealed presence of neutrophils, macrophages, 

and bacteria (B). Reproduced from [351] with permission from AAAS. Airspace in (C) 
healthy guinea pigs and (D) guinea pigs exposed to cigarette smoke (CS) for 6 months that 

show airway enlargement characteristic of emphysema in COPD. Reproduced from [374] 

with permission from APS. (E) Mucous cell hyperplasia, subepithelial fibrosis, and smooth 
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muscle hypertrophy in ovalbumin (OVA)-induced allergic asthma mouse model. Reproduced 

from [77] with permission from Elsevier.
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Table 1

Gene vector platforms for obstructive lung diseases

Gene vector type Advantages Disadvantages Clinical Development Stage

Adenovirus (AdV) Large nucleic acid packaging
capacity (36 kb) compared to AAV
[81]
Non-integrating; no concerns over
insertional mutagenesis [82]

Transient transgene expression
[82]
Requires basolaterally-expressed
receptors for cell entry [84,85]
Immune response limits efficacy
upon re-administration [9]

Clinical trials for CF [9]

Adeno-
associated virus
(AAV)

Non-pathogenic [10]
Multiple serotypes (e.g. AAV1, 5 and
6) able to enter airway epithelial cells
via apical cell surface receptors [94]
More stable gene expression
compared to AdV [94,95]

Limited nucleic acid packaging
capacity (4.7kb) [96]
Immune response limits efficacy
upon re-administration [10]

Clinical trials for CF [100–102]
and AATD [46,48]

Lentivirus Long-term, stable gene expression
[118]; lower dosing frequencies are
achievable [130]
Capable of transfecting post-mitotic
cells [121,122], unlike retrovirus [120]

Safety concerns over insertional
mutagenesis [119]
Requires vector engineering for
lung applications [123]

Pre-clinical [124–130]

Lipid- and
Polymer-based

Facile chemical modification [137]
Minimal constraint in packaging
capacity [151, 184]
Large-scale production [186]
Variety of FDA-approved drug
delivery formulations [187]
Controlled release is achievable
[139]

Cytotoxicity [153, 173]
No intrinsic tropism [139]
(Lipid) Occasional stability issue
[137]

(Lipid) Clinical trials for CF and
AATD [148]
(Polymer) Clinical trials for CF
[35]
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Table 2

Physiological barriers to inhaled gene therapy of obstructive lung diseases and strategies to overcome them

Regions of Lung Primary Barriers Gene Vector Modification Strategies Barrier Modulation Strategies

Conducting Airway Adhesive and/or steric trapping
of inhaled gene vectors by

mucus [202] and PCL [238]

Engineer gene vectors with surface
coatings to reduce adhesive

interactions with mucus (e.g. PEG
[214, 215, 284], mutant AAV2 [211])

Sizes below characteristic mucus
(≤150 nm) [202] and PCL (≤40 nm)

[238] mesh pore size

Mucus-altering agents (e.g.
rhDNase [307, 308], NAC [309])

to increase mucus mesh pore
size

Osmotic agents (e.g. hypertonic
saline [312], mannitol [314]) to

increase mucus and/or PCL
mesh pore size by hydration

Airspace De-stabilization of inhaled gene
vectors by pulmonary
surfactants [248–251]

Uptake of inhaled gene vectors
by alveolar macrophages [257–

267]

Engineer gene vectors with surface
coatings (e.g. PEG [214, 215, 284])
to enhance particle stability and/or

to reduce macrophage uptake

None reported

Cellular Low endocytic rate on apical
surface [188]

Restricted access to basolateral
surface due to the presence of
tight junctions [86, 273, 280]

Introduce targeting ligands to
enhance apical transfection [288–

295]
Engineer viral gene vectors to

endow apical epithelial tropism (e.g.
pseudotyping [296–298, 301],

directed evolution [302])

Tight-junction disrupting agents
(e.g. C10 [327, 330], C12 [330],

EGTA [328, 330], LPC [125, 129,
273], PDOC [326]) to provide an
access to the basolateral surface
Hypotonic vehicles to enhance
uptake by the RVD mechanism

[317–324]
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