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Abstract

For many membrane proteins, the determination of their topology remains a challenge for methods 

like X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. Electron 

paramagnetic resonance (EPR) spectroscopy has evolved as an alternative technique to study 

structure and dynamics of membrane proteins. The present study demonstrates the feasibility of 

membrane protein topology determination using limited EPR distance and accessibility 

measurements. The BCL::MP-Fold algorithm assembles secondary structure elements (SSEs) in 

the membrane using a Monte Carlo Metropolis (MCM) approach. Sampled models are evaluated 

using knowledge-based potential functions and agreement with the EPR data and a knowledge-

based energy function. Twenty-nine membrane proteins of up to 696 residues are used to test the 

algorithm. The protein-size-normalized root-mean-square-deviation (RMSD100) value of the most 

accurate model is better than 8 Å for twenty-seven, better than 6 Å for twenty-two, and better than 

4 Å for fifteen out of twenty-nine proteins, demonstrating the algorithm’s ability to sample the 

native topology. The average enrichment could be improved from 1.3 to 2.5, showing the 

improved discrimination power by using EPR data.

1 Introduction

Membrane protein structure determination continues to be a challenge. About 22 % of all 

proteins are membrane proteins and an estimated 60 % of pharmaceutical therapies target 

membrane proteins.1 However, only 2.5 % of the proteins deposited in the Protein Data 

Bank (PDB) are classified as membrane proteins.2,3 Protein structures are typically 

determined to atomic detail using X-ray crystallography or NMR spectroscopy. However, 

membrane proteins provide challenges for both techniques.4 It is difficult to obtain quantities 

of purified membrane proteins sufficient for both X-ray crystallography and NMR 

spectroscopy. The two-dimensional nature of the membrane complicates crystallization in a 

three-dimensional crystal lattice. In order to obtain crystals, the target protein is often 

subjected to non-native-like environments and/or modifications such as stabilizing sequence 

mutations.5,6 Additional problems may evolve from post-translational modification such as 
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phosphorylation.7 Many membrane proteins continue to be too large for structure 

determination by NMR spectroscopy.8 Even if the target itself is not too large, the membrane 

mimic adds significant additional mass to the system.9 Despite wonderful successes in 

determining the structure of high-profile targets, it is critical that the structural features 

observed with one technique are confirmed with an orthogonal technique.10

EPR spectroscopy in conjunction with site-directed spin labeling (SDSL) provides such an 

orthogonal technique for probing structural aspects of membrane proteins.11–13 Advantages 

of EPR spectroscopy include that the protein can be studied in a native-like environment and 

that only a relatively small sample amount is required. In addition, EPR spectroscopy can be 

used to study large proteins. Although EPR is a versatile tool for probing membrane protein 

structure, it has its own challenges: at least one unpaired electron (spin label) needs to be 

introduced into the protein. Typically, this requires mutation of all cysteine residues to either 

alanine or serine, introduction of one or two cysteines at the desired labeling sites, coupling 

to the thiol-specific nitroxide spin label S-(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-

pyrrol-3-yl)methyl methanesulfonothioate (MTSL), and functional characterization of the 

protein. As a result, data sets from EPR spectroscopy are sparse containing only a fraction of 

measurements per residue in the target protein. EPR is not a high-throughput technique.

EPR provides two categories of structural information important to membrane protein 

topology: a) EPR can provide information about the local environment of the spin label.14–16 

The accessibility of the spin label to oxygen probe molecules indicates the degree of burial 

of the spin label within the protein in the transmembrane region. Accessibility measurements 

are typically performed in a sequence scanning fashion. This provides an accessibility 

profile over a large portion of the sequence.17,18 The accessibility profile tracks the 

periodicity of SSEs as individual measurements rise and fall according to the periodic 

exposure and burial of residues. The exposed face of a SSE can be determined,19 a task that 

is difficult within the hydrophobic environment of the membrane. b) When two spin labels 

are introduced, EPR can measure inter-spin label distances, routinely of up to 60 Å through 

the double electron-electron resonance (DEER) experiment.20,21 EPR distance 

measurements have been demonstrated on several large membrane proteins including 

MsbA,22 rhodopsin,23 and LeuT.24 Given the sparseness of data, EPR has been frequently 

used to probe different structural states of proteins.25,26 Changes in distances and 

accessibilities track regions of the protein that move when converting from one state into 

another. Such investigations rely upon an already determined experimental structure to 

define the protein topology and provide a scaffold to map changes observed via EPR 

spectroscopy.

One critical limitation for de novo protein structure prediction from EPR data is that 

measurements relate to the tip of the spin label side-chain where the unpaired electron is 

located whereas information of the placement of backbone atoms is needed to define the 

protein fold. For distance measurements, this introduces an uncertainty in relating the 

distance measured between the two spin labels to a distance between points in the backbone 

of the protein. This uncertainty, defined as the difference between the distance between the 

spin labels and the distance between the corresponding Cβ-atoms is up to 12 Å.27,28 To 

address this uncertainty we previously introduced a motion-on-a-cone (CONE) model, 
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which provides a knowledge-based probability distribution for the Cβ-atom distance given 

an EPR-measured spin label distance.27,29 Using the CONE model, just twenty-five or even 

eight EPR measured distances for T4-lysozyme, enabled Rosetta to provide models 

matching the experimentally determined structure to atomic detail including backbone and 

side-chain placement.27 Further success was reported by Yang et al.,30 who successfully 

determined the tertiary structure of a homodimer by using inter-chain restraints determined 

from NMR and EPR experiments. These studies demonstrate that de novo prediction 

methods can supplement EPR data sufficiently to allow structure elucidation of a protein.

De novo membrane protein structure prediction was demonstrated with Rosetta using twelve 

proteins with multiple transmembrane spanning helices.31 The method was generally 

successful for the membrane topology for small proteins up to 278 residues. The results of 

the study suggest that sampling of large membrane topologies requires methods that directly 

sample structural contacts between sequence distance regions of the protein.32

For this purpose, we developed an algorithm that assembles protein topologies from SSEs 

termed BCL::Fold.33 The omission of loop regions in the initial protein folding simulation 

allows sampling of structural contacts between regions distant in sequence and thereby 

rapidly enumerates all likely protein topologies. A knowledge-based potential guides the 

algorithm towards physically realistic topologies. The algorithm is particularly applicable 

for the determination of membrane protein topologies as transmembrane spans are 

dominated by regularly ordered SSEs.34 Loop regions and amino acid side-chains can be 

added in later stages of modeling structure. The algorithm was tested in conjunction with 

medium-resolution density maps35 achieving models accurate at atomic detail in favorable 

cases.36 The algorithm was also tested in conjunction with sparse NMR data.37

The present study combines EPR distance and accessibility restraints with the BCL::Fold 

SSE assembly methodology for the prediction of membrane protein topologies. In a first 

step, we introduce scores specific to EPR distances and accessibilities and demonstrate their 

ability to enrich for accurate models. In a second step, we describe the approach and results 

for assembling twenty-three monomeric and six multimeric membrane proteins guided by 

EPR distance and accessibility restraints. The results demonstrate that the inclusion of 

protein specific structural information improves the frequency with which accurate models 

are sampled and greatly improves the discrimination of incorrect models.

2 Materials and methods

2.1 Compilation of the benchmark set

Twenty-nine membrane proteins of known structure were used to demonstrate the ability of 

EPR specific scores to improve sampling during protein structure prediction as well as 

selecting the most accurate models. The proteins for the benchmark were chosen to cover a 

wide range of sequence length, number of SSEs, and percentage of residues within SSEs 

(Table 1 on the following page). Twenty-three of the proteins were monomers ranging in 

size from 91 to 568 residues. One protein (2L35) has two chains, with the second chain 

being a single transmembrane span. The remaining five proteins were symmetric multimeric 

proteins of two or three subunits containing up to 696 residues. 5000 independent structure 
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prediction trajectories were conducted for each protein without restraints, with distance 

restraints only, with accessibility restraints only, and with distance and accessibility 

restraints. In order to achieve results that are independent of one specific spin labelling 

pattern, ten different restraint sets were used for each protein. Those trajectories were 

conducted with SSEs predicted from sequence and, to test the influence of incorrectly 

predicted secondary structure, with the SSEs obtained from the experimentally determined 

structure. In addition, rhodopsin (PDB entry 1GZM) was added to the benchmark set to 

demonstrate the algorithm’s ability to work with experimentally determined restraints.

2.2 Simulation of EPR restraints

For 1GZM, EPR distance restraints were available,23 whereas for the other proteins EPR 

distance and accessibility restraints were simulated to obtain data sets for each of the 

twenty-nine proteins. Accessibility restraints were simulated by calculating the neighbor 

vector value38 for residues within SSEs of each protein. Unlike the neighbor count 

approximation of the solvent accessible surface area (SASA), the neighbor vector approach 

takes the relative placement of the neighbors with respect to the vector from the Cα-atom to 

the Cβ-atom into account. It thereby becomes a more accurate predictor of SASA.38 The 

resulting exposure value for each residue was considered an oxygen accessibility 

measurement. One restraint per two residues within the transmembrane segment of each 

SSE was simulated.

Distance restraints were simulated using a restraint selection algorithm,39 which distributes 

measurements across all SSEs (see Section 6.1.1 on page 20 for details). It also favors 

measurements between residues that are far apart in sequence. One restraint was generated 

per five residues within the transmembrane segment of an SSE, if not indicated otherwise. 

Distances are calculated between the Cβ-atoms; for glycine, the Hα2-atom is used. To 

simulate a likely distance observed in an actual EPR experiment, the distance is adjusted by 

an amount selected randomly from the probability distribution of observing a given 

difference between the spinspin distance (DSL) and the back bone distance (DBB).28 In order 

to reduce the possibility of bias arising from restraint selection and spin labelling patterns, 

ten independent restraint sets were generated. For the five symmetric multimeric proteins, 

the same protocol was used, but only distance restraints between the same residues in the 

different subunits were considered.

2.3 Translating EPR accessibilities into structural restraints

EPR accessibility measurements are typically made in a sequence scanning fashion over a 

portion of the target protein. Although each individual accessibility measurement is difficult 

to interpret, the pattern of accessibilities over a stretch of amino acids within an SSE 

indicates reliably, which phase of the SSE is exposed to solvent/membrane versus buried in 

the protein core. We found accessibility restraints to have a limited impact on structure 

prediction for soluble proteins.27 We concluded that this is the case as knowledge-based 

potentials on their own can distinguish the polar phase of an SSE that is exposed to an 

aqueous solvent from a hydrophobic phase buried in the protein core. However, we also 

hypothesized that the situation will be different for membrane proteins where it would be 
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harder to distinguish the membrane-exposed from the buried phase of an α-helix as both of 

these tend to be apolar.

Our approach for developing an EPR accessibility score takes advantage of the regular 

geometry within the SSE: The exposure moment of a window of amino acids is defined as 

, where 𝖭 is the number of residues in the window, en is the exposure 

value of residue n, and sn is the normalized vector from the Cα-atom to the Cβ-atom of 

residue n. This equation was inspired by the hydrophobic moment as previously defined.40 

The exposure moment calculated from solvent accessible surface area SASA has been 

previously demonstrated to approximate the moment calculated from EPR accessibility 

measurements.19

During de novo protein structure prediction, the protein is represented only by its backbone 

atoms hampering calculation of SASA. Further, calculation of SASA from an atomic detail 

model would be computationally prohibitive for a rapid scoring function in de novo protein 

structure prediction. Therefore, the neighbor vector approximation for SASA is used.38 The 

exposure moment is calculated for overlapping windows of length seven for α-helices and 

four for β-strands. The score is computed as 𝖲orient = −0.5 · cos(θ) where θ is the torsion 

angle between the exposure moments. This procedure assigns a score of −1 if θ = 0° and a 

score of 0 if θ = 180° (Figure 1 on the preceding page).

It has previously been demonstrated that the burial of sequence segments relative to other 

segments can be determined from the average accessibility values measured for that stretch 

of sequence.41 To capture this information, the magnitude of the exposure moment for 

overlapping residue windows is determined from the model structure and from the measured 

accessibility. The Pearson correlation is then calculated between the rank order magnitudes 

of the structural versus experimental moments. This gives a value between −1, which 

indicates the structural and exposure magnitudes are oppositely ordered, and 1, which means 

the structural and exposure magnitudes are ordered equivalently. The score Smagn is obtained 

by negating the resulting Pearson correlation value so that matching ordering will get a 

negative score and be considered favorable.

2.4 Translating EPR distances into structural restraints

The CONE model27 yields a predicted distribution for the difference between DSL and DBB. 

This distribution was converted into a knowledge-based potential function, which is used to 

score the agreement of models with experimentally determined EPR distance restraints.28 

This score spans a range of DSL − DBB between −12 Å and 12 Å. DSL is the EPR measured 

distance between the two spin labels; DBB is the distance between the corresponding Cβ- or 

Hα2-atoms on the residues of interest; DSL − DBB is the difference between these two 

distances (Figure 1 on the previous page).

In addition, we found it beneficial to add an attractive potential on either side of the range 

spanned by the scoring function to provide an incentive for the MCM minimization to bring 

structures within the defined range of the scoring function. These attractive potentials use a 

cosine function to transition between a most unfavorable score of 0 and a most favorable 
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score of −1. The attractive potential is positive for 30 Å ≥|DSL −DBB|≥ 12 Å. It levels to 0 

when the difference between DBB and DSL approaches 12 Å (Figure 1 on the preceding 

page).

2.5 Summary of the folding protocol

The protein structure prediction protocol (Figure 2 on the next page) is based on the protocol 

of BCL::Fold for soluble proteins.33 The method assembles SSEs in the three-dimensional 

space, drawing from a pool of predicted SSEs. A MC energy minimization with the 

Metropolis criteria is used to search for models with favorable energies. Models are scored 

after each MC step using knowledge-based potentials describing optimal SSE packing, 

radius of gyration, amino acid exposure, and amino acid pairing, loop closure geometry, 

secondary structure length and content, and penalties for clashes.42

The algorithm was adapted for membrane protein folding by altering the amino acid 

exposure potential according to an implicit membrane environment.34 Additional scores are 

used, which favor orthogonal placement of SSEs relative to the membrane and penalizing 

models with loops going through the membrane. All moves introduced for soluble proteins 

are used.33 In addition, we include perturbations that optimize the placement of the protein 

in the membrane such as translation of individual SSEs in the membrane as well as rigid 

body translation and rotation of the entire protein.

The assembly of the protein structure is broken down into five stages of sampling with large 

structural perturbation moves that can alter the topology of the protein. Each of the five 

stages lasts for a maximum of 2000 MC steps. If an energetically improved structure has not 

been generated within the previous 400 MC steps, the minimization for that stage will cease. 

Over the course of the five assembly stages, the weight of clashing penalties in the total 

score is ramped as 0, 125, 250, 375 and 500.

Following the five stages of protein assembly, a structural refinement stage takes place. This 

stage lasts for a maximum of 2000 MC steps and will terminate sooner if an energetically 

improved model is not sampled within the previous 400 steps. The refinement stage consists 

of small structural perturbations, which will not drastically alter the topology of the protein 

model.

After 5000 models have been generated for each protein, the models are filtered according to 

EPR distance score. The top 10 % or 500 models resulting from the structure prediction 

protocol are selected for a second round of energy minimization. The second round occurs 

as described above, the only difference being that the minimization uses the SSE placements 

of a given protein as a starting point. For each starting structure, 10 models are created, 

resulting in 5000 models. This boot strapping approach, which re-optimizes structures that 

are in good agreement with the EPR restraints and with the knowledge-based potential was 

beneficial when combining BCL::MP-Fold with limited NMR data and is not applied when 

no experimental data are used.37
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2.6 Summary of the benchmark setup

To test the influence of EPR restraints, each protein besides 1GZM was folded in the 

absence of restraints, with just distance restraints, with just accessibility restraints, and with 

distance and accessibility restraints. To test the influence of secondary structure prediction 

accuracy (see section 6.1 on page 20), the experiment was repeated with optimal SSEs 

derived from the experimentally determined structure. 1GZM was only folded without 

restraints and with the experimentally determined distance restraints. 5000 models were 

created for each of the benchmark proteins in independent MCM folding trajectories. EPR 

distance and accessibility scores are used during the five assembly and one refinement stages 

of structure prediction protocol. The EPR distance scores have a weight of 40 during all 

assembly and refinement stages using either pool.

2.7 Structure prediction protocol

For each protein, two sets of SSE pools are generated for use during structure assembly. The 

first SSE pool consists of the transmembrane spanning helices as predicted by obtainer of 

correct topologies for uncharacterized sequences (OCTOPUS). The second SSE pool 

contains elements predicted by OCTOPUS as well as SSEs predicted from sequence by 

Jufo9D (see Section 6.1.2 on page 20 for details). Using these two SSE pools, the structure 

prediction protocol is independently conducted twice: a) once using the SSE pool containing 

predictions from OCTOPUS and Jufo9D (“full pool”) and b) once emphasizing the 

predictions by OCTOPUS (“OCTOPUS pool”). Emphasis is placed on OCTOPUS 

predictions by using only the OCTOPUS generated SSE pool during the first two stages of 

assembly. During last three stages of structure assembly, the SSEs predicted from Jufo9D 

are added to the pool. This allows for better coverage of SSEs within the structure, since 

OCTOPUS only predicts transmembrane spanning helices.

EPR specific scores are used during the five assembly and one refinement stages of structure 

prediction (see Section 6.1.2 on page 20 for details). The EPR distance scores have a weight 

of 40 over the course of the assembly and refinement stages.

2.8 Calculating EPR score enrichments

The enrichment value is used to evaluate how well a scoring function is able to select the 

most accurate models from a given set of models. The models of a given set are sorted by 

their RMSD100 values. The 10 % of the models with the lowest RMSD100 values put into 

the set 𝖯 (positive) the rest of the models will be put into the set 𝖭 (negative). The models of 

𝖲 are then also sorted by their assigned scoring value and the 10 % of the models with the 

lowest (most favorable) score are put into the set 𝖳. The models, which are in 𝖯 and in 𝖳 are 

the models, which are correctly selected by the scoring function and their number will be 

referred to as TP (true positives). The number of models, which are in 𝖯 but not in 𝖳 are the 

models, which are not selected by scoring function despite being among the most accurate 

ones. They will be referred to as FN (false negative). The enrichment will then be calculated 

as . The positive models are in this case considered the 10 % of the 

models with the lowest RMSD100 values. Therefore,  is a constant value of 10.0. 
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No enrichment would be a value of 1.0 and an enrichment value between 0.0 and 1.0 

indicates that the score selects against accurate models.

3 Results

3.1 Using EPR specific scores during membrane protein structure prediction improves 
sampling accuracy

For each protein, the ten models sampled with the best RMSD10043 values are used to 

determine ability to sample accurate models by taking their RMSD100 value average, μ10. 

Using the best ten models by RMSD100 provides a more consistent measure of sampling 

accuracy compared to looking at the single best because of the random nature of the 

structure prediction protocol. Additionally, the percentages of models with an RMSD100 

less than 4 Å and less than 8 Å, τ4 and τ8, were calculated.

By using EPR distance and accessibility scores, not only is the frequency increased with 

which higher accuracy models are sampled, but the best models achieve an accuracy not 

sampled in the absence of EPR data (Table 3 on page 22). Across all proteins, μ10 is, on 

average, 6.0 Å when EPR distance and accessibility scores are not used. When adding 

restraints for distances and then both distances and accessibilities, the average μ10 value 

drops to 5.1 Å and 5.0 Å, respectively (Table 3 on page 22). By only adding EPR 

accessibility restraints the average μ10 over all proteins improves only slightly to 5.8 Å. This 

demonstrates that the accuracy of the models is primarily improved by using EPR distance 

restraints in the structure prediction process. With the exception of 1KPL and 2XUT, all 

proteins achieve a μ10 value of less than 8.0 Å. This indicates the placement of the 

transmembrane spanning regions follow the experimentally determined structures and the 

correct fold could be predicted. Figure 3 on the next page compares the RMSD100 values of 

the average of the 1 % most accurate models with and without the usage of EPR distance 

restraints — an average improvement of 0.8 Å over the benchmark set is observed. The shift 

to lower RMSD100 values in distributions for selected benchmark proteins is shown in 

figure 3 on the following page. The average τ4 and τ8 values improve from 3 % and 13 %, 

when folding without EPR restraints, and to 6 % and 19 % when using EPR restraints, 

respectively.

The six multimeric proteins achieve an average μ10 value of 5.0 Å when the structure 

prediction was conducted without using EPR restraints. By using EPR distance and 

accessibility restraints μ10 could be improved to 2.9 Å. The τ4 and τ8 values could be 

improved from 13 % and 24 % to 21 % and 41 % when using EPR distance and accessibility 

restraints in the structure prediction process.

3.2 EPR accessibility scores are important for improving contact recovery

EPR accessibility scores were previously used in conjunction with the Rosetta protein 

structure prediction algorithm.27 The scores were applied in a benchmark to predict the 

structures of the small soluble proteins T4-lysozyme and αA-crystallin. The improvement in 

sampling models that are more accurate was compared between prediction trajectories using 

an EPR distance score and trajectories using an EPR distance score coupled with an 

Fischer et al. Page 8

Proteins. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



accessibility score. For T4-lysozyme and αA-crystallin, using the accessibility score did not 

result in a significant improvement in the accuracy of models sampled. This was attributed 

to the simple rule of exposure that is well captured by the knowledge-based potentials: polar 

residues tend to be exposed to solvent; apolar residues tend to be buried in the core of the 

protein.

Membrane proteins are subjected to a more complex set of possible environments. Any 

given residue can reside buried in the core of the protein or exposed to different 

environments ranging from the membrane center to a transition region to an aqueous 

solvent. If the protein fold contains a pore, a residue can be solvent-exposed deep in the 

membrane.44 Such a complex interplay of environments will not be as easily distinguished 

by knowledge-based potentials. Here it has been demonstrated that using EPR accessibility 

information consistently improves the contact recovery for highest accurate models.

Although improvements regarding sampling accuracy and selection of the most accurate 

models by RMSD100 is mainly achieved by using EPR distance restraints, EPR accessibility 

restraints help determining the correct rotation state of SSEs and therefore improves the 

number of recovered contacts (Figure 3 on the previous page). A contact is defined as being 

between amino acids, which are separated by at least six residues and have a maximum 

Euclidean distance of 8 Å. We are measuring the percentage of the contacts in the 

experimentally determined protein structure, which could be recovered in the models. In 

order to be independent of huge deviations occurring when only looking at the best model 

sampled, we quantify the average contact recovery of the ten models with the highest contact 

recovery (ϕ10) and the percentage of models, which have more than 20 % and 40 % of the 

contacts recovered (γ20 and γ40).

For folding without EPR restraints, the average ϕ10 value over all twenty-three monomeric 

proteins was 23 % whereas with accessibility restraints it was 31 % (Table 4 on page 23). 

Using distance restraints additionally to the accessibility restraints ϕ10 remains at 31 %. This 

is demonstrating that improvements in contact recovery are mainly achieved by using EPR 

accessibility restraints in the structure prediction process. The average γ20 and γ40 values 

over all twentynine proteins for structure prediction without EPR restraints were 5 % and 

3 %. By using EPR accessibility restraints, the values could be improved to 12 % and 16 %, 

respectively.

For the six multimeric proteins, improvements in contact recovery by the usage of EPR 

accessibility restraints are observed as ϕ10, γ20, and γ40 values could be increased to 46 %, 

25 % and 16 % from the previous values of 38 %, 17 % and 14 % when performing protein 

structure prediction without EPR data. By complementing the accessibility with distance 

restraints ϕ10, γ20, and γ40 values can be improved to 50 %, 30 % and 16 %.

3.3 EPR specific scores select for accurate models of membrane proteins

The ability of EPR specific scores to select for accurate models is tested by calculating 

enrichment values for structure prediction trials of twenty-nine membrane proteins (Table 5 

on page 24). The enrichment of a scoring function indicates how well the score identifies a 

protein model that is accurate by a good score. It computed as the cardinality of the 
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intersection 𝖨 = HS∩𝖯 with 𝖯 being the set of the accurate models and HS being the set of 

the 10 % of the models with the most favorable score (see section 2.5 on page 7).42 Accurate 

is defined as the 10 % of the models with the lowest RMSD100 when compared to the 

experimentally determined structure. Therefore, if a score correctly identifies all accurate 

models as being accurate, a perfect enrichment would result in a value of 10.0.

Enrichment values are computed for the protein models created without experimental 

restraints. For protein structure prediction without EPR data, the average enrichment value 

for just the knowledge-based potentials over all twenty-nine proteins is 1.3. By using EPR 

distance and accessibility data, the average enrichment is improved to 2.5. The enrichment 

for using EPR distance and accessibility restraints ranges from 1.1 to 6.2. In seventeen out of 

twenty-nine cases, the enrichment is greater than 2.0. In twenty-three out of twenty-nine 

cases the enrichment could be improved by at least 0.5 (Table 5 on page 24). By using EPR 

accessibility data only the average enrichment over all proteins is 1.6, demonstrating that 

improvements regarding the selection of the most accurate models are mainly caused by 

EPR distance restraints.

3.4 The number of restraints determines the significance of improvements in sampling 
accuracy

For four proteins, the influence of varying numbers of restraints was examined. In addition 

to the one restraint per five residues within SSEs setup used for all benchmark cases, the 

tertiary structure of 1OCC, 1PV6, 1PY6, and 1RHZ was predicted using one restraint per ten 

residues, one restraint per three residues, and one restraint per two residues within SSEs. For 

1PY6, the sampling accuracy could be steadily improved with an increasing number of 

restraints demonstrated by τ8 values increasing from 15 % to 20 % to 24 % to 28 % to 33 % 

and μ10 values improving from 4.4 Å to 4.2 Å to 3.6 Å to 3.5 Å to 3.3 Å for structure 

prediction without restraints, one restraint per ten residues, one restraint per five residues, 

one restraint per three residues and one restraint per two residues (see table 2 and figure 6 on 

page 26). For 1OCC, 1PV6, and 1RHZ, a significant improvement in sampling accuracy is 

observed for using one restraint per three residues instead of one restraint per ten residues 

within SSEs, which is demonstrated by improvements in τ8 values from 42 % to 53 %, from 

8 % to 36 %, and from 6 % to 22 % and by improvements in μ10 values from 3.2 Å to 1.9 Å, 

from 5.3 Å to 4.3 Å, and from 4.7 Å to 3.3 Å, respectively. Increasing the number of 

restraints to one restraint per two residues within SSEs fails to further improve the sampling 

accuracy. We attribute this observation to significant bends in some of the SSEs that are 

currently not sampled sufficiently dense by BCL::MP-Fold.

3.5 Using experimentally obtained EPR distance restraints for rhodopsin

The benchmark was extended to also contain rhodopsin (PDB entry 1GZM) for which EPR 

distance measurements were available.23 Although only sixteen EPR distance restraints were 

available, which amounts to less than one restraint per ten residues within SSEs, the 

sampling accuracy as well as the enrichment improve significantly. The μ10 values improved 

from 4.9 Å for folding without restraints to 4.4 Å when using restraints. The enrichment 

values could be improved from 0.6 to 1.2 demonstrating that even a small number of 

restraints improves discrimination of incorrect models.

Fischer et al. Page 10

Proteins. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4 Discussion

EPR distance and accessibility restraints can aid the prediction of membrane protein 

structure. For this purpose, EPR specific scores were coupled with the protein structure 

prediction method BCL::MP-Fold. BCL::MP-Fold assembles predicted SSEs in space 

without explicitly modeling the SSE connecting loop regions. This allows for rapid sampling 

of complex topology that is not easily achieved when an intact protein backbone must be 

maintained. By adding EPR specific scores to the knowledge-based scoring function, 

sampling of accurate structures is increased. Additionally the selection of the most accurate 

models could be improved significantly.

However, it has to be clearly stated that — with the exception of bovine rhodopsin (PDB 

entry 1GZM) — all EPR restraints used in this study were simulated using the CONE 

model. Therefore, the relevance of our findings depends on how well the CONE model 

describes the nature of experimental DEER measurements and in particular the mobility of 

the spin label.

4.1 EPR distance scores improve the accuracy of topologies predicted for membrane 
proteins

EPR distance measurements are associated with large uncertainties in relating the measured 

spin label – spin label distance into backbone distances. In spite of this, EPR distance 

measurements provide important data on membrane protein structures.23,24,45 In the present 

study, it has been demonstrated that EPR distance data can significantly increase the 

frequency with which the correct topology of a membrane protein is sampled (Figure 3 on 

page 11 and figure 4 on the next page). This is important because as the correct topologies 

are sampled with higher accuracy, models start to reach the point where they can be 

subjected to atomic detail refinement to further increase their accuracy.46

It is crucial to distinguish between the two major challenges in de novo structure prediction 

— sampling and scoring: The average improvement in sampling accuracy — i.e. the best 

model built among 5000 independent folding trajectories — of 0.8 Å is moderate but 

significant. However, inclusion of the EPR data does not only allow folding of models that 

are more accurate, it greatly improves discrimination of incorrect models with a scoring 

function that combines BCL knowledge-based potentials and EPR restraints. Without using 

EPR restraints the average enrichment is 1.3, i.e. 13 % of the most accurate models are in a 

sample of 10 % best scoring models, which is close to chance. By using EPR data in 

addition to the knowledge-based score enrichment increases to 2.5, i.e. one out of four 

models in the 10 % best scoring models also has the correct fold. This is important as it 

greatly improves the chance to identify correctly folded models, e.g. through clustering of 

good-scoring models. The combination of improved sampling and discrimination thereby 

significantly improves the reliability with which were able to predict the tertiary structure of 

a protein.

The EPR distance data used for the present study is simulated from known experimental 

structures. It will be interesting to repeat this benchmark once sufficiently dense 

experimental data sets for several membrane proteins become available. For now, 
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considerable effort was put forth to ensure that the simulated data mimics what would be 

obtained from a true EPR experiment, so that any results are unbiased by the simulated data. 

The previously published method for selecting distance restraints was used to create ten 

different data sets per protein.39 This ensures results are not biased by a particularly selected 

data set. Previously, the uncertainty in the difference between spin label distances and the 

corresponding Cβ distance (DSL − DBB) was accounted for in simulated distance restraints 

by adding a random value between 12.5 Å and −2.5 Å.39 Here, the probability of observing 

a given DSL − DBB is used to determine the amount that should be added to the Cβ − Cβ 
distance measured from the experimental structure.

Using a method developed for soluble proteins to select restraints for membrane proteins is 

not necessarily ideal. The constraints already imposed upon membrane proteins by the 

membrane geometry suggest that optimized methods for selecting restraints for membrane 

proteins should be developed. One such strategy could be to measure distances between 

transmembrane segments on the same side of the membrane, with the assumption that 

transmembrane helices are mostly rigid, parallel structures. Further, additional work is 

needed to account for topologically important SSEs that do not span the membrane, as well 

take into account the deviations of transmembrane segments from ideal geometries.

The improved sampling accuracy in the protein structure prediction process is primarily 

caused by the distance restraints. Whereas by using EPR accessibility restraints the average 

μ10 value over all twenty-nine proteins drops from 6.0 Å to 5.8 Å, by using EPR distance 

restraints the average μ10 value could be improved to 5.1 Å.

4.2 Why not use the membrane depth parameter as additional restraint?

Of note is that EPR-derived accessibility measurements have been also used to the determine 

membrane depth parameter Φ.47–49 For this purpose, the accessibility ∏ of a single residue 

to two paramagnetic reagents are compared, the water-soluble (nickel-(II)-

ethylenediaminediacetate — NiEDDA) and the membrane-soluble (molecular oxygen — 

O2). The ratio of both values is used to compute the membrane depth parameter: Φn = 

ln(∏O2/∏NiEDDA). The present approach does not test effectiveness of a score that relies on 

the membrane depth parameter for membrane protein structure prediction for several 

reasons: a) we hypothesize that knowledge-based potentials will be capable of placing 

transmembrane SSEs at the right depth for this placement should again be dominated by 

polarity which is well captured in such potentials (read above), and b) the membrane depth 

parameter Φn is affiliated with a larger error margin for NiEDDA accessibilities become 

very small in the core of the membrane and they omit averaging over multiple residues. 

Nevertheless, testing if a membrane depth related score can improve BCL::MP-Fold could 

be a goal in a future experiment.

4.3 Improved secondary structure predictions will improve the accuracy of predicted 
structures

The SSE pools are created in order to reduce the possibility of missing a SSE, which is 

generally a successful approach as demonstrated previously for soluble proteins.33 The 

helical transmembrane span prediction software OCTOPUS50 is used in conjunction with 

Fischer et al. Page 12

Proteins. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Jufo9D.51 Jufo9D provides predictions for SSEs that do not necessarily span the membrane 

and therefore will not be predicted by OCTOPUS. Improved secondary structure prediction 

methods will benefit membrane protein structure prediction. In addition, it has been 

demonstrated that the pattern of accessibility values for measurements along a sequence 

follow the periodicity of the SSE on which they are measured.17,22,45 Measured accessibility 

profiles could therefore be used to inform the pool of SSEs used for structure prediction.

The pool of SSEs used to assemble the membrane protein topologies is the most important 

determinant in successfully predicting the membrane proteins’ structure. This is seen for 

1U19 and 2BL2. With predicted SSEs, the structure of the two proteins can be sampled to 

μ10 values of 5.9 Å and 6.2 Å, respectively (Table 3 on page 22). By using SSE definitions 

extracted from the experimentally determined structure, the proteins can be sampled at μ10 

values of 4.4 Å and 2.6 Å, respectively. This is caused by secondary structure prediction 

methods breaking up transmembrane helices into several short helices making it harder to 

assemble the tertiary structure that does not have loop going through the membrane. The 

experiment was repeated with SSE definitions obtained from the experimentally determined 

structures of the proteins. Whereas with predicted SSEs average μ10, τ4, and τ8 values of 5.0 

Å, 6 %, and 19 % are achieved over all twenty-nine proteins, by using the SSE definitions 

from the experimentally determined structure we could improve them to 4.5 Å, 8 %, and 

25 %. In twenty-one out of twenty-nine cases the average accuracy of the ten best models by 

RMSD100 could be improved by using SSE definitions obtained from the experimentally 

determined structure (Figure 3 on page 11). This demonstrates that further improvements of 

the secondary structure prediction will also lead to an improved sampling accuracy of 

BCL::Fold.

4.4 Limitations of the CONE model knowledge-based potential

The unknown label conformation is taken into account by the CONE model, which yields a 

DSL − DBB distribution. This wide probability distribution accounts for two inherently 

different aspects — a structural and a dynamical: The structural effect looks at the relative 

position of the unpaired electron with respect to the protein backbone. This positioning is 

dependent on the protein structure, specifically the direction in which the Cα − Cβ vector 

project into space with respect to the Cα − Cα vector that links the two labeling site. As the 

CONE model is applied in a model-independent fashion, it does not consider these 

geometric features but expresses the resulting ambiguity as part of the probability 

distribution. Second, chemical environment and exposure cause variable levels of spin label 

dynamics. These result in distance distributions of variable tightness in EPR experiments. 

This information is currently not considered as parameter in the CONE model but absorbed 

by using a very wide DSL − DBB probability distribution. This approach has the advantage 

that it is very robust with respect to uncertainties within the EPR experimental parameters 

and very fast to compute. At the same time, the CONE model knowledge-based potential 

neglects important geometric parameters. Developing and testing approaches that take these 

parameters into account and lead to tighter distance distributions without losing the 

advantages of speed and robustness is an active area of our research.
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Not considering geometrical features hinders the selection of accurate models for 1U19. 

EPR distance restraints improved the sampling accuracy, but it is still not possible to reliably 

select accurate models (Figure 5). Although the distances observed in EPR experiments are 

typically long and therefore allow a broad range of topologically different models to fulfill 

them, inaccuracies in the translation from DSL to DBB also contribute to the selection 

problem. In the case of 1U19 the experimentally determined structure, which served as the 

template for the simulation of the EPR distance restraints, shows a worse agreement with the 

restraints than the best scoring models. The spin-spin distance between residue 7 and residue 

170 is 43.6 Å, whereas the distance between the Cβ-atoms is 35.7 Å resulting in an 

agreement score of 0.3 on a scale from 0 to 1. Following the EPR potential, a Cβ − Cβ 
distance of 41.1 Å is favorable, which is accomplished by the sampled models with the best 

score leading to the selection of models, which deviate significantly from the experimentally 

determined structure. Both spin labeling sites are exposed, indicating they are at the outside 

of the protein. The projection angle between the Cα − Cβ vectors is greater than 160°, 

making it more likely that the spin labels are pointing away from each other. Those two 

properties allow the inference that we would expect a larger difference between DSL and 

DBB than 2.5 Å. By using a knowledge-based potential, which also takes the exposure of the 

spin labeling sites and additional geometrical information into account a better ranking of 

the sampled models would be possible.

4.5 Ambiguities in the ranking of models remain

Although the usage of restraints obtained from EPR experiments significantly improves the 

discrimination of incorrect models, ambiguities in the ranking of the models remain for 

multiple proteins in the benchmark set. This observation was especially pronounced for the 

proteins 1J4N, 1PV6, 1PY6, and 1U19 (Figure 4 on page 15). In those cases, the best 10 % 

of the models by BCL score cover a wide range of topologies. For 1PV6, the best 10 % of 

the models by BCL score cover an RMSD100 range of 8 Å when compared to the 

experimentally determined structure. Multiple factors are contributing to this observation. 

First, the BCL::Fold scoring function is an inaccurate approximation of free energy, which 

limits its discriminative power.42 Although adding a term that measures agreement with 

experimental data will improve its discriminative power, it appears that sparse restraints 

from EPR data are sometimes insufficient to remove all ambiguities. This is also because, 

second, the translation of spin label distance distributions into a backbone structural restraint 

introduces a substantial uncertainty and therefore allows sometimes multiple topologies to 

fulfill the restraint. One side effect of these approximations is that — as shown in figure 4 on 

page 15 — the native structure is not always in the global minimum of the BCL scoring 

function. Relaxing the experimentally determined protein structures in the BCL force field 

indicate that the closest minimum in the scoring function is between 1.5 Å and 4.1 Å in 

RMSD100 separate relative to the experimentally determined structures.

5 Conclusion

The determination of membrane protein folds from EPR distance and accessibility data is 

within reach if these restraints aid protein folding protocols such as BCL::MP-Fold. The 

ability of EPR data to improve the sampling of native-like topologies and the importance of 
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EPR accessibility data for obtaining highest contact recovery values was demonstrated. 

Further, the EPR specific scores allow the selection of close-to-native models, thereby 

overcoming a major obstacle in de novo protein structure prediction. Refining EPR distance 

potentials to also take the exposure of the spin labeling sites as well as relative orientation of 

the Cα − Cβ vector might provide a more accurate translation from spin-spin distance into 

backbone distance, thereby further increasing model quality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Translation from EPR data into structural restraints
EPR distance measurements measure distances between residues in a protein indirectly. 

Whereas the experiment determined the spin-spin distance (DSL), a distance between the 

backbone atoms (DBB) is needed during the de novo protein structure prediction process. 

Therefore a translation from 𝖣SL to 𝖣BB is necessary. BCL::Fold uses a knowledge-based 

potential to evaluate the agreement of the distance between the Cβ-atoms in the model with 

the experimentally determined spin-spin distances (B). EPR accessibility data is translated 

into structural restraints by summing up the hydrophobic moment vectors (Cα-atom to Cβ-
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atom) of four consequtive residues (C). This is done twice: first the normalized Cα-Cβ 
vectors are multiplied with the accessibility determined in the EPR experiment, the second 

time they are multiplied with the neighbor count of the residue in the model. The vectors are 

summed up for each approach and the projection angle between the two resulting vectors is 

scored, with an angle of 0° being the best and 180° being the worst agreement (D).
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Figure 2. Structure prediction protocol for using EPR data
(A) SSEs are predicted using machine learning. (B) BCL::Fold arranges predicted glsplsse 

using an Monte Carlo (MC) algorithm in conjunction with knowledge-based potentials (C) 

and Metropolis criterion (D).
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Figure 3. Sampling accuracy, contact recovery, and enrichment results when using EPR data
By using EPR distance and accessibility data in the structure prediction process the sampling 

accuracy can be improved significantly for monomeric (circles) as well as oligomeric 

(squares) proteins (A). The sampling accuracy could be improved in twenty-five out of 

twenty-nine cases by using EPR distance and accessibility data, which is demonstrated by 

comparing the average RMSD100 values of the 1 % most accurate models predicted without 

(x-axis) and with EPR data (y-axis) in (A). Adding protein specific structural information in 

the form of EPR distance and accessibility restraints also improves our ability to select the 
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most accurate models among the sample ones. In each of the twenty-nine cases EPR 

distance and accessibility restraints enable us to select more accurate models when 

compared to structure prediction without EPR data available. Shown are the average (line) 

and best (dot/square) RMSD100 values of the best 1 % models by BCL score with (y-axis) 

and without (x-axis) EPR restraints (B). By using EPR accessibility data only (y-axis) the 

Contact Recovery could be improved in twenty-two out of twenty-nine cases (C) when 

compared to structure prediction without EPR accessibility restraints (x-axis). Improvements 

in SSE prediction methods would also lead to improved sampling accuracies (D, see also 

table 6 on page 25). In twenty-one out of twenty-nine cases the average RMSD100 of the ten 

most accurate models could be improved by using SSE definitions obtained from the 

experimentally determined structure (y-axis) compared to using predicted SSEs.
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Figure 4. Gallery of the structure prediction results when using EPR data
By using EPR distance and accessibility restraints, the sampling accuracy is significantly 

improved as the selection ability regarding accurate models. For selected proteins, a 

comparison of the RMSD100 (column A) and Contact Recovery (column B) distributions 

for sampling with (red) and without (black) EPR restraints is shown. The y-axis of column A 

shows the cumulative density of models with respect to the RMSD100. The y-axis of 

column B shows the cumulative density of models with respect to their contact recovery. 

Column C shows the correlation between the BCL score and the RMSD100 for the models 
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sampled with EPR restraints (black dots) and the experimentally determined structure (red 

dot). The y-axis is the pseudo-energy score the algorithm assigned to the structure; the x-

axis is the RMSD100 relative to the experimentally determined structure. The 

superimpositions show the best models by RMSD100 for folding with EPR restraints 

(column D), the best model by pseudo-energy score for folding with EPR restraints (column 

E), and the best model by pseudo-energy score for folding without EPR restraints (column 

F) superimposed with the experimentally determined structure (grey).
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Figure 5. Limitations of the CONE model
For 1U19, the most accurate model cannot be reliably selected (A). One reason for that is, 

that the translation from the observed spin-spin distance to the backbone distance is 

inaccurate resulting in models which deviate topologically from the experimentally 

determined structure achieving a better agreement with the EPR distance restraints than the 

experimentally determined structure (B). This is demonstrated by the plot showing the 

correlation between the agreement with the EPR distance restraints (y-axis) and the 

RMSD100 relative to the experimentally determined structure (x-axis). The EPR potential 

does not take the exposure of the spin labeling site and the orientation of the Cα − Cβ 
vectors into account leading to inaccuracies when translating DSL into DBB for the residues 

7 and 170 of 1U19. Both spin labels are at the outside of the protein and on different sides of 

the structure leading to greater difference between DSL and DBB.
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