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Abstract

Today’s world population has an unprecedented risk of dying from the consequences of being 

overweight and obese. Chronic diseases such as cardiovascular disease, type 2 diabetes, and cancer 

are often accelerated because of excessive adiposity. Various biological mechanisms are implicated 

in the obesity-cancer link, particularly local and systemic inflammation as well as altered growth 

factor signaling pathways. In order to combat obesity-induced inflammation and the resulting 

increases in cancer risk and progression, the identification of safe and effective mechanism-based 

interventions is imperative. Notably, long chain omega-3 polyunsaturated fatty acids (PUFAs) 

modulate the secretion of pro-inflammatory cytokines, prostaglandins and other inflammatory 

mediators, restore insulin sensitivity, and can prevent or delay tumorigenesis. Delineating the 

precise mechanisms by which omega-3 PUFAs suppress obesity-induced inflammation will help 

identify promising key mechanistic targets and intervention strategies to break the obesity-cancer 

link.
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1. Introduction

The prevalence of obesity has risen dramatically within the past 30 years. Today nearly 40% 

of adults in the United States (U.S.) are considered obese [1]. The World Health 

Organization (WHO) estimates that 1.9 billion of the world’s population is overweight, 

including nearly 700 million obese, and these numbers continue to increase [2]. Overweight 

and obesity are characterized by excessive fat accumulation and classified by a weight-for-

height index, commonly known as body mass index (BMI), with obesity defined as a BMI ≥ 

30 kg/m2. Must et al. [3] demonstrated a strong correlation between obesity and mortality 

risk that increases with advancing age. Given that life expectancy in the U.S. and other 

industrialized countries is on the rise, the now heavier and older population has a greater 

chance of experiencing the adverse health consequences of being overweight and obese [4].
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Obesity engenders a state of chronic, low-grade inflammation characterized by excessive 

secretion of inflammatory mediators by adipocytes, macrophages, and other cells, including 

the gut microbiota. These pro-inflammatory factors disrupt metabolic homeostasis and 

thereby promote insulin resistance, type 2 diabetes, cardiovascular disease, genome 

instability and cancer [5]. The disparity in mortality between obese individuals and their lean 

counterparts is attributed, at least in part, to this aberrant pro-inflammatory signaling and the 

resulting metabolic dysfunction [6]. Unfortunately, significant and sustained weight loss is 

difficult to achieve in obese individuals. Thus, anti-inflammatory interventions may be 

needed to reduce the inflammatory burden imposed with morbid adiposity levels. Numerous 

clinical and epidemiological studies have shown beneficial health effects with increased long 

chain omega-3 polyunsaturated fatty acids (PUFAs) consumption, including reductions in 

inflammation, hyperlipidemia and improved insulin signaling (Table 1) [7–9]. The anti-

inflammatory and metabolic reprogramming properties of omega-3 PUFAs have been shown 

to delay the onset of cancer in several animal models, negating the pro-tumorigenic effects 

of obesity. This review will discuss how omega-3 PUFAs suppress obesity-associated pro-

inflammatory adipokine secretion and growth factor signaling, as well as consider issues 

related to translating these mechanistic insights to decrease cancer development and 

progression.

1.1. Omega-3 polyunsaturated fatty acids

Omega-3 and omega-6 PUFAs are essential nutrients, meaning they cannot be synthesized in 

the body and must be obtained from the diet. The three main dietary forms of omega-3 

PUFAs are the marine-derived eicosapentaenoic acid (EPA) and docosahexaenoic acid 

(DHA), and the plant-derived alpha-linolenic acid (ALA). Omega-6 PUFAs include linoleic 

acid (LA), found in high concentrations in many vegetable oils. The ratio of omega-3 to 

omega-6 PUFAs is inversely associated with the pathogenesis of many diseases such as 

cardiovascular disease, rheumatoid arthritis, and many cancers [10]. Western diets have a 

particularly low omega-3:omega-6 PUFA ratio, thereby potentially increasing the risk of 

these chronic diseases. Clinical studies have shown that an omega-3:omega-6 PUFA ratio of 

4:1 was associated with a 70% decrease in total mortality of CVD patients, a ratio of 2.5:1 

suppressed cell proliferation in colon cancer, and a ratio of 2–3:1 decreased rheumatoid 

arthritis-associated inflammation [8].

Eicosanoids are the products of omega-3 and omega-6 PUFA cleavage from cell membrane 

phospholipids by phospholipase A2. The enzymes cyclooxygenase (COX) and lipoxygenase 

(LOX) metabolize PUFAs to produce these eicosanoids, which include pro-inflammatory 

prostaglandins, leukotrienes and thromboxanes as well as anti-inflammatory resolvins and 

protectins. COX and LOX produce proliferative and pro-inflammatory eicosanoid mediators 

from arachidonic acid (AA), an omega-6 PUFA and a derivative of LA, whereas anti-

inflammatory eicosanoid products are produced from the omega-3 PUFAs EPA and DHA, 

which can be derived from ALA. A difference between the effects of EPA and DHA has 

been shown with organ specificity. DHA is more readily incorporated in organs such as the 

brain, liver, and retina whereas EPA are seen at higher concentrations in red blood cells [10–

12].
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There may be an optimal omega-3:omega-6 PUFA ratio to be achieved in the blood and 

tissues in order to reduce enzymatic conversion of LA to AA and increase substrate 

availability of COX and LOX to act on EPA and DHA [13]. The absorption and 

incorporation of omega-3 PUFAs into phospholipid membranes serves to inhibit the COX 

and LOX pathway utilization of AA, thereby decreasing production of pro-inflammatory 

prostaglandin E2 (PGE2), thromboxane A2, and leukotriene B4 metabolites [14–16]. These 

anti-inflammatory actions are thought to be responsible for the beneficial health effects seen 

with higher omega-3 PUFA consumption, including a reduction in the risk of obesity-

associated cancer incidence and mortality.

1.2. Obesity-associated inflammation and cancer

1.2.1. Obesity and cancer—Obesity promotes an increased risk of many cancers and a 

worse cancer outcome after diagnosis. Obesity is an established risk factor for endometrial, 

colorectal, breast (postmenopausal), esophageal (adenocarcinoma subtype), liver, kidney, 

gallbladder, pancreatic, uterine, and ovarian cancer [17]. Obesity also worsens the prognosis 

of each these cancers as well several others, including prostate cancer, premenopausal breast 

cancer, thyroid cancer, and some leukemias. Morbid obesity (BMI > 40 kg/m2) is associated 

with a markedly higher risk of dying from cancer, increasing rates by 52% in men and 62% 

in women [18]. The exact mechanisms underlying the obesity-cancer link remain unclear, 

but abundant evidence suggests that they involve increased adipose tissue inflammation and 

metabolic dysfunction.

1.2.2. Adipose tissue inflammation—The local secretion of inflammatory 

adipocytokines from adipose tissue, including tumor necrosis factor-α (TNF-α), 

interleukin-6 (IL-6), interleukin-1β (IL-1β), resistin, and monocyte chemotactic protein-1 

(MCP-1), is increased in obese individuals compared to their normal weight counterparts 

[19–21]. These pro-inflammatory cascades stem from an overabundance of immature pre-

adipocytes, which recruit activated macrophages to the adipose tissue [22]. These adipose 

tissue macrophages (ATMs) are a primary source of pro-inflammatory cytokines, which are 

involved in paracrine and endocrine signaling and often have potent pro-tumor effects [22]. 

Cytokines promote tumor growth in the microenvironment by increasing angiogenesis and 

fostering an immunosuppressive environment, which works against the body’s anti-tumor 

immunity. IL-6 inhibits the maturation of dendritic cells, thus reducing the population of 

cytotoxic T-cells, which kill cancer cells [23]. IL-1β promotes tumor growth by inducing 

angiogenic factors, including vascular endothelial growth factor, which support the tumor 

with a nutrient rich blood supply [24].

Activation of the transcription factor nuclear factor (NF)-κB through the phosphorylation of 

its upstream activator IkB kinase-β (IKK-β) induces increased gene expression pro-

inflammatory cytokines such as IL-6, TNF-α, and IL-1β (Fig. 1).

TNF-α is known to increase tumor cell proliferation, tumor stage, and systemic metastatic 

growth [25,26]. In addition, TNF-α and IKK-β activate c-Jun NH2-terminal kinase (JNK), 

which promotes proliferation and survival of tumor cells [27,28]. TNF-α also contributes to 

insulin resistance by increasing insulin receptor substrate 1 (IRS-1) phosphorylation at 
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serine 307, which impairs its ability to initiate downstream signaling and consequently 

blocks the biological actions of insulin [29]. Like TNF-α, IL-6 also affects insulin signaling 

by inhibiting the gene transcription of IRS-1 and glucose transporter type 4 (GLUT-4), 

resulting in decreased insulin sensitivity [30]. Moreover, this increased secretion of 

cytokines from adipose tissue can lead to genomic instability through the shortening of 

telomeres. Telomere shortening is widely accepted as a biological occurrence of accelerating 

aging and aging-related diseases such as cancer. This is mediated through increased 

oxidative stress, DNA damage, and telomere shortening activation of p53 and p21 that 

upregulates secretion of TNF-α and IL-6 further leading to insulin resistance [31].

Various animal studies have shown that omega-3 PUFA supplementation can inhibit IKK-

βphosphorylation via lipopolysaccharide (LPS) and transforming growth factor beta-

activated kinase 1 (TAK1), an upstream activator of IKK-β and JNK, stimulation and 

decrease NF-κB activity, which in turn decreases cytokine production (Fig. 1) [32–35]. 

Omega-3 PUFAs can also act directly on cytokine synthesis, which is elevated in obese 

individuals. In particular, in vivo and in vitro experiments have shown decreased TNF-α, 

IL-6, and IL-1β production from macrophages and peripheral-blood mononuclear cells with 

omega-3 PUFA treatment [36–38]. Decreased cytokine production and synthesis due to 

omega-3 PUFA supplementation can be a critical component to reducing obesity-associated 

telomere shortening and clinically relevant for identifiable at risk populations.

1.2.3. Role of secretory adipokines, leptin and adiponectin—The adipokines 

leptin and adiponectin are primarily thought of as regulators of calorie intake and energy 

expenditure, however they are also involved in modulating inflammation and insulin 

resistance. Leptin signaling promotes satiety, thereby decreasing food intake. However, the 

onset of obesity causes individuals to become leptin resistant despite excess leptin 

production by the adipose tissue. In many obese individuals, leptin acts directly on 

macrophages to stimulate the synthesis of pro-inflammatory cytokines like TNF-α and IL-6. 

Adiponectin acts as an antagonist to leptin’s pro-inflammatory effects in part by activating 

AMP-dependent protein kinase (AMPK), which increases fatty acid oxidation and glucose 

uptake in skeletal muscle and decreased hepatic gluconeogenesis [39]. However, TNF-α, 

IL-6 and other pro-inflammatory mediators suppress adiponectin secretion from adipocytes, 

and the obese population typically has low adiponectin levels [39].

Leptin secretion from adipocytes has been shown to induce tumor growth as well as cancer 

cell invasion and angiogenesis, suggesting the role of adipose tissue as a catalyst to cancer 

development and progression. Interestingly, leptin antagonist treatment reduces the growth 

of triple negative breast tumors in mice through decreased VEGF, pSTAT3, and cyclin D1 

levels, highlighting leptin’s pro-carcinogenic potential. Alternatively, clinical studies have 

shown circulating levels of adiponectin are inversely correlated with obesity-related 

malignancies such as breast cancer. Adiponectin functions to decrease endothelial cell 

proliferation and migration, induce apoptosis, and decrease tumor vascularization. 

Clinically, the leptin:adiponectin ratio (L:A) is increasingly accepted as a biomarker for 

metabolic syndrome [40]. Additionally, in colorectal cancer patients the L:A ratio is as much 

as eight fold greater (1.090) compared to cancer-free controls (0.065) and also serves as an 

independent predictor for adverse outcomes in colorectal cancer [41].
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Omega-3 PUFAs have been shown to correlate with adiponectin levels, but this relationship 

has proven modifiable in both rodent models of obesity and human obese subjects. EPA 

supplementation consistently increases adiponectin secretion through blockage of 

inflammatory TNF-α signaling, despite established macrophage infiltration into the adipose 

tissue (Fig. 1). In vitro, omega-3 PUFAs have shown to upregulate secretion of adiponectin 

in murine and human adipocytes through decreased expression of cytokines and macrophage 

adipose tissue infiltration [42,43]. Furthermore, in vivo initiating a high dose EPA/DHA 

(12% of dietary lipids) in obese mice decreased plasma leptin levels compared to their non-

supplemented counterparts [44].

1.2.4. Insulin signaling in obesity—High BMI levels are associated with increased 

insulin secretion, leading to hyperinsulinemia. This metabolic dysfunction contributes to the 

decreased insulin sensitivity that is also induced by obesity-associated chronic inflammation. 

Elevated levels of insulin have been associated with cancer progression through insulin-like 

growth factor (IGF) signaling. Increased circulating levels of IGF-1 have been correlated 

with increased risk of prostate, breast, and colorectal cancer [45]. Insulin itself is thought to 

have anti-inflammatory effects in healthy individuals, as it can decrease reactive oxygen 

species (ROS) in mononuclear cells and suppress MCP-1 and plasminogen activator 

inhibitor-1 (PAI-1) levels and intranuclear NF-κB binding [46–50]. Thus, adequate insulin 

signaling is needed to repair the inflammatory state of obesity, otherwise continuous 

secretion of TNF-α, IL-6, and C-reactive protein (CRP) will occur [51]. Omega-3 PUFAs 

can serve as therapeutic agents to help restore the insulin signaling pathway. A study 

published by Oh et al. [52] determined that omega-3 PUFAs improve insulin sensitivity 

through a G protein-coupled receptor 120 (GPR120)-mediated anti-inflammatory pathway 

(Fig. 1). This mechanism involved decreasing pro-inflammatory macrophage (M1) 

production of TNF-α, IL-6, and IL-1β and increasing anti-inflammatory macrophage (M2) 

production of IL-10, arginase, macrophage galactose-type C-type lectin 1 (MGL1), and 

macrophage mannose receptor (MMR) in adipose tissue [52]. Clinically, omega-3 PUFAs 

have been able to significantly improve insulin sensitivity after eight weeks of 

supplementation and reduce circulating levels of CRP and IL-6 in twelve healthy men and 

women 60–75 years of age by 64% and 39%, respectively [51].

1.3. Omega-3 PUFAs and their anticancer effects

1.3.1. Pre-clinical studies—Pre-clinical data suggest omega-3 PUFAs possess the ability 

to blunt the pro-tumorigenic effects of obesity. In mouse models of postmenopausal triple-

negative breast cancer, Ford et al. [53] found that omega-3 PUFA supplementation reduced 

pro-inflammatory eicosanoid concentrations in the mammary tumors of obese mice to levels 

similar to normal weight control mice. Omega-3 PUFAs also suppressed mammary tumor 

growth to the same levels seen in control mice and normalized several metabolic hormones 

[53]. Similarly, Chung et al. [54] found decreased expression of pro-inflammatory genes 

MCP-1 and TNF-α in omega-3 PUFA supplemented mice as well as a significant 28% 

reduction in mammary tumor burden compared to non-supplemented obese mice. In vitro 
experiments have shown that omega-3 PUFAs inhibit Py230 mammary tumor cell growth by 

stimulating apoptosis [54]. Omega-3 PUFAs were also able to increase gene expression of 

the tumor suppressor gene BRCA1 by 60%, leading to decreased mammary tumorigenesis in 
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rats [55]. Furthermore, omega-3 PUFAs can cooperate with selective estrogen receptor 

modulators (SERMs) to suppress rat mammary carcinogenesis. Normal dosing of the 

SERMs tamoxifen and raloxifene resulted in similar chemoprotective effects in rats as 

observed with a reduced SERM dose supplemented with omega-3 PUFAs. These findings 

may present an important opportunity to reduce the toxicity associated with SERM 

treatment [56].

Omega-3 PUFA supplementation has also been effective in reducing tumor burden in models 

of other cancer types. In a rat model of colon carcinogenesis, supplementation of a high-fat 

diet with omega-3 PUFAs led to a lower incidence of colon adenocarcinomas in comparison 

to both the non-supplemented high-fat and control group [57]. Another animal study has 

shown similar results when a high-fat diet is supplemented with omega-3 PUFAs, with 

decreases in colon cancer progression relative to high-fat diets alone through a reduction of 

PGE2 levels in colon mucosa [58]. The benefits of omega-3 supplementation also extend to 

prostrate cancer, the most frequently diagnosed cancer among men [59]. In a prostrate 

PTEN-knockout mice model, the addition of omega-3 PUFAs to a high-fat diet decreased 

prostrate tumor growth and increased overall tumor-free survival [60].

1.3.2. Clinical studies—Findings from clinical research suggest that obesity is associated 

with lower levels of plasma omega-3 PUFAs [61]. The ratio of omega-3 to omega-6 PUFAs 

consumed is inversely associated with breast cancer risk [62]. Thus, supplementation within 

the obesogenic diet may be able to offset the reduced plasma levels of omega-3 PUFAs 

associated with obesity and subsequently decrease the risk of cancer development and 

progression. Supporting this premise is a study showing the effect of an energy restricted 

dietary intervention with daily supplementation of 9,000 mg omega-3 PUFAs in men and 

women age 20–40 years old with a BMI of 27.5–32.5 [63]. The individuals that received the 

supplement experienced significantly greater weight loss and decreases in waist 

circumference within 8 weeks in comparison to the energy restricted diet without 

supplementation [63].

In a randomized trial, individuals diagnosed with hyperlipidemia and supplemented with 

omega-3 PUFAs displayed a reduction in CRP levels, a surrogate for systemic inflammation, 

which has been linked with increased risk of breast and lung cancer [64–66]. Additionally, 

high dose omega-3 PUFAs supplementation (3,360 mg) over a six month period normalized 

adiponectin concentrations and decreased serum TNF-α and breast MCP-1 levels in 

postmenopausal women at risk of hyperplasia of the breast due to family history and/or an 

abnormal breast biopsy [67]. Omega-3 PUFA supplementation has also displayed potential 

in combating colon and prostate cancer. For example, omega-3 PUFAs decreased rectal 

mucosal cell proliferation in colonic crypts (a marker of colon carcinogenesis) after two 

weeks of supplementation [68]. In addition, high levels of serum omega-3 PUFAs correlated 

with reduced risk of prostate cancer after a ten-year follow-up in a case-control study 

consisting of 476 men between the ages of 40–84 years [69].

Furthermore, telomere shortening attributed to obesity-induced cytokine secretion 

contributes to genome instability that may in part lead to increased cancer risk. However, 

omega-3 PUFAs can help to combat tumor carcinogenesis and progression. In particular, a 
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study conducted by Farzaneh-Far et al. [70] indicates that a diet containing omega-3 PUFAs 

is associated with a reduced rate of telomere shortening, whereas a lack of omega-3 PUFAs 

correlates with an increased rate of telomere attrition in study participants. Moreover, Shen 

et al. [71] followed omega-3 PUFA levels in blood and telomere length in at-risk women of 

breast cancer over a 5-year period. The results illustrated an inverse correlation of omega-3 

PUFAs and telomere length, suggesting that omega-3 PUFAs reduce the rate of telomere 

shortening. Similarly, the women participants of the study who consumed a diet lacking 

omega-3 PUFAs had shorter telomeres and a moderate risk for development of breast cancer. 

However, those that had a diet enriched with omega-3 PUFAs had longer telomeres and 

decreased risk of breast cancer [71] Thus, these results indicate the possible genomic 

stability associated with omega-3 PUFA supplementation.

Multiple studies have captured the increased anti-inflammatory effects of omega-3 PUFA 

supplementation in obese compared to normal weight individuals. It is plausible that the 

chronic-low grade inflammation observed in obesity sets the stage for a successful anti-

inflammatory intervention. Alternatively, in normal weight individuals where low grade 

inflammation is generally absent, benefits of an anti-inflammatory intervention may be more 

subtle. A prospective intervention study investigated the effects of omega-3 PUFA 

supplementation on reproductive hormones utilizing the drug Lovaza, a purified and 

concentrated source of ethyl esters (EPA 55.4%/DHA 44.6%). Researchers found that 18–42 

year old women given 4.0 g Lovaza daily had lower levels of follicle stimulating hormone 

(FSH) only if they were normal weight. However, serum cytokines IL-1β and TNF-α were 

reduced only in the obese women on study (by 72% and 56% respectively) [72]. A 

preclinical study also utilizing Lovaza in normal weight and obese mice found decreased 

mammary tumor growth in obese mice supplemented with the drug, whereas no differences 

in mammary tumor growth were observed between normal weight mice with or without 

supplementation [53]. Another clinical study illustrated a BMI-dependent effect of omega-3 

PUFA supplementation on markers of breast cancer risk. Subjects aged >18 years with a 

high risk of breast cancer assessed by family background, atypical hyperplasia, and/or 

genetic susceptibility were randomly assigned to receive omega-3 PUFAs at doses of 0.84, 

2.52, 5.04, or 7.56 g daily for six months. Breast tissue samples obtained by fine needle 

aspiration and serum collected at three and six months after initiation of supplementation 

showed significant increases over baseline in omega-3 PUFA content for the three highest 

doses [73]. However, a randomized clinical trial focusing on 266 postmenopausal women 

with high breast density (BD), an established risk factor for breast cancer, was only changed 

by omega-3 PUFA supplementation in the women who had a BMI > 29. These results 

suggest that omega-3 PUFA’s beneficial effects may only mitigate biological perturbations 

present in overweight or obese individuals, and thus potentially less relevant to those at a 

healthy weight [74].

1.4. Proposed risk of omega-3 PUFA oversupplementation

While omega-3 PUFAs can potentially reduce obesity-associated chronic inflammation and 

cancer development, these fatty acids can also contribute to adverse health effects. 

Unfortunately, there is very little data in humans on this topic, and the limited preclinical 

data suggests additional work is warranted. Daenen et al. [75] note in their preclinical mouse 
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studies that omega-3 supplementation during chemotherapy resulted in chemoresistance and 

reduced cancer survival. It is imperative that the impact of omega-3 PUFAs on 

chemotherapy response be further examined, as this may have critical implications for 

treatment efficacy. Likewise, immunomodulation has also been linked to excessive omega-3 

PUFA intake. Overuse of omega-3 PUFAs was associated with impairment of lymphocyte 

and innate immune responses [76]. Animal studies have linked increased use to decreased 

bacterial and viral clearance from the body, resulting in infection-induced inflammation and 

increased susceptibility to pathogens, which can subsequently lead to cancer [77–81]. In a 

SMAD3 colitis mouse model infected with Helicobacter hepaticus, a high-dose DHA 

supplementation (6% in the diet) was found to exacerbate levels of inflammation and 

dysplasia compared to the control diets [82]. Four weeks after H. hepaticus infection, mice 

consuming DHA had a significantly higher mortality rate and increased lean body mass loss. 

This was correlated with impaired immune function due to altered CD8+ cell populations, 

CD69+ activation, and increased expression of FoxP3 and L-selectin. However, low dose 

DHA (0.75%) did not significantly reduce colitis progression compared to the control diets 

[82]. Thus, these studies highlight the importance of determining the correct dosage for 

omega-3 PUFA supplementation in preventing cancer mortality and immune susceptibility.

1.5. The need to identify individual variations in response

Single nucleotide polymorphisms (SNPs), which occur when a single nucleotide is 

interchanged on a DNA strand, can alter an individual’s response to various nutrition-related 

factors, including omega-3 PUFA supplementation. Consequently, identification of specific 

SNPs may help researchers predict patients’ response to omega-3 PUFA supplementation as 

well as their cancer mortality risk, furthering physicians’ efforts to provide personalized 

therapies to patients at risk of cancer and those who are already diagnosed. For example, the 

Singapore Chinese Health Study found a positive association between marine omega-3 

PUFA intake and rectal cancer risk for those who carry the PARP codon 762 Ala allele [83]. 

Similarly, another study highlights the effects of glutathione S-transferase polymorphisms 

on postmenopausal breast cancer risk in the Singapore Chinese Health Study. A case-control 

comparison was made between 258 breast cancer patients and 670 cohort controls. The 

researchers concluded that marine omega-3 PUFAs had a greater protective effect in women 

with genetic polymorphisms causing minimal enzymatic activity of GSTM1, GSTT1 and/or 

GSTP1 [84]. Lenihan-Geels et al. [85] notes that SNPs associated with the cytochrome c 

oxidase and arachidonate lipoxygenase genes alter the levels of eicosanoids produced from 

AA and EPA. Thus, heterogeneity in these metabolizing genes may be a critical determinant 

of differential anticancer responses to omega-3 PUFAs.

2. Conclusions

Animal and human studies have repeatedly demonstrated that omega-3 PUFA 

supplementation blunts many of the hallmarks of cancer (Fig. 2).

Omega-3 PUFA supplementation in obese individuals normalizes serum levels of several 

metabolic hormones, including insulin, leptin and adiponectin, and reduces cytokine 

production to levels seen in normal weight counterparts. This improved metabolic and 
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inflammatory profile suppresses angiogenesis via VEGF inhibition and decreases ROS 

production. Reduced leptin signaling and cytokine-induced NF-κB activation also promotes 

apoptosis and inhibits cyclin D1 expression, respectively, which prevents sustained cellular 

proliferation. In addition, omega-3 PUFAs have the potential to decrease tumor invasion and 

metastasis by increasing LKB1, a tumor suppressor gene. This leads to AMPK 

phosphorylation and inhibition of the mTOR (mammalian target of rapamycin) pathway, 

which integrates growth signals and can regulate tumor growth, angiogenesis, and metastasis 

[86,87]. Finally, omega-3 PUFAs intake is inversely associated with rate of telomerase 

shortening, suggesting that they can enhance genome stability.

The clinical relevance of increased omega-3 PUFA intake as a strategy for reducing obesity-

induced inflammatory mechanisms underlying cancer risk and progression is significant. 

The anti-inflammatory properties of omega-3 PUFAs can help to reduce the obesity-induced 

secretion of pro-inflammatory cytokines such as TNF-α, IL-6 and, IL-1β that often 

accompanies poor cancer prognosis. Continued preclinical and clinical studies are essential 

to the optimization of omega-3 PUFAs’ anticancer effects in order to break the obesity-

cancer link. In particular, delineating the role and precise mechanisms of omega-3 PUFAs in 

suppressing obesity-induced inflammation will help identify promising key targets to reduce 

the human suffering caused by obesity-associated cancers.

Abbreviations

GPR120 G-protein coupled receptor 120

Barr2 beta-arrestin2

TAB1 TGF-beta activated kinase 1/MAP3K7 Binding Protein 1

LPS lipopolysaccharide

TAK1 transforming growth factor beta-activated kinase 1

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells

JNK c-Jun N-terminal kinases

IKK-β I-kappaB kinase-beta

IL–6 interleukin-6

TNF-α tumor necrosis factor-alpha

IL-1β interleukin-1 beta

Gq/11 Gq protein

PI3K phosphoinositide 3-kinase

IRS–1 insulin receptor substrate-1

IGF–1 insulin growth factor-1
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Akt protein Kinase B

mTOR mammalian target of rapamycin

HIF-1α hypoxia inducible factor-1 alpha

VEGF vascular endothelial growth factor

bFGF basic fibroblast growth factor
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Fig. 1. 
Hypothesized mechanism of omega-3 PUFA infiltration into macrophages and adipose 

tissue and its role in targeting key mechanistic activators in inflammatory and cancer-related 

signaling such as inhibition of LPS, IKK-β, and Akt signaling as well as decreasing 

circulating leptin concentrations and TNF-α stimulated reductions in adiponectin levels. 

Solid arrows indicate direct activation, solid bar-headed arrows indicate direct inhibition, 

dashed arrows indicate indirect activation, and dashed bar-headed arrows indicate indirect 

inhibition. Stars indicate process inhibited by omega-3 PUFAs.

Khatib et al. Page 16

Prostaglandins Other Lipid Mediat. Author manuscript; available in PMC 2016 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Possible roles of omega-3 PUFAs protecting against many of the hallmarks of cancer. 

Bolded words in each of the boxes correspond to the meaning of each symbol.
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Table 1

Summary of various clinical research studies implicating the role of omega-3 PUFAs on obesity-induced 

cancer risk and progression.

Author Study Title Sample Size/Target Omega-3 PUFAs dose(s) Effect

Hidaka et al. 
(2015)

Omega-3 and omega-6 Fatty 
acids
in blood and breast tissue of
high-risk women and 
association
with atypical cytomorphology

n = 70; women at high risk
of breast cancer

80 mg–1.1 g/day Decreased breast epithelial
proliferation and cytologic 
atypia;
normalized serum
omega-3:omega-6

Fabian et al. 
(2015)

Modulation of breast cancer 
risk
biomarkers by high-dose 
omega-3
fatty acids: phase II pilot study 
in
postmenopausal women

Postmenopausal women
with cytologic evidence of
hyperplasia

1,860 mg EPA + 1500 mg
DHA/day for 6 months

Serum adiponecton 
normalization;
Reduced levels of serum 
TNF-α and
MCP-1 breast tissue levels

Sandhu et al. 
(2015)

Influence of obesity on breast
density reduction by omega-3 
fatty
acids: Evidence from a 
randomized
clinical trial

n = 266; postmenopausal
women between the ages
of 35–75 with a breast
density ≥ 25%

Raloxifene 60 mg;
Raloxifene 30 mg; Lovaza
4gm; Lovaza
4gm + Raloxifene
30 mg/day for 2 years

Reduction in breast density 
only
illustrated in women with a
BMI > 29. No effect was 
seen in
normal weight women

Signori et al. 
(2012)

Administration of omega-3 fatty
acids and Raloxifene to women 
at
high risk of breast cancer: 
interim
feasibility and biomarkers 
analysis
from a clinical trial

Postmenopausal women
between the ages of 35–75
years with a breast
density > 25%

4.0 g Lovaza; 4.0 g
Lovaza + Raloxifene
30 mg/day for 2 years

Decreased serum 
triglycerides and
increased high-density 
lipoprotein
(HDL)

Yee et al. 
(2010)

ω-3 fatty acid supplements in
women at high risk of breast
cancer have dose-dependent
effects on breast adipose tissue
fatty acid composition

n = 48 women with
increased breast cancer
risk

0.84, 2.52, 5.04, and 7.56 g
EPA + DHA/day for 6
months

Increased serum and breast
adipose tissue 
concentration with
EPA + DHA supplements 
of 2.52,
5.04, and 7.56g

Davidson et 
al. (2007)

Efficacy and tolerability of 
adding
prescription omega-3 fatty acids
4 g/d to simvastatin 40 mg/d in
hypertriglyceride patients: an
8-week, randomized, double-
blind,
placebo-controlled study

n = 254 men and women
with previous history use
of statin and TG levels > 200
and < 500 mg/dL

4.0 g/day for 8 weeks Significantly decreased 
circulating
levels of CRP

Thorsdottir et 
al. (2007)

Randomized trial of
weight-loss-diets for young 
adults
varying in fish and fish oil 
content

n = 324 men/women aged
20–40 with BMI
27.5–32.5 kg/m2

9,000 mg/day for 8 weeks Individuals who were
supplemented with omega –
3
achieved significantly 
greater
weight loss and decrease in 
waist
circumference vs. 
unsupplemented

Anti et al. 
(1992)

Effect of omega-3 fatty acids on
rectal mucosal cell proliferation 
in
subjects at risk for colon cancer

n = 20; patients with
sporadic adenomatous
colorectal polyps

4.1 g EPA/day; 3.6 g
DHA/day for 12 weeks

Decreased serum 
arachidonic acid
levels and cellular 
proliferation of
colonic crypts
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